
J. Indones. Math. Soc.
Vol. 31, No. 02 (2025), pp. 1–13.

Mathematical Study for Proving Correctness of the Serial
Graph-Validation Queue Scheme

Fitra Nuvus Salsabila1∗, Fahren Bukhari2, and Sri Nurdiati3

1,2,3Department of Mathematics, IPB University, Indonesia.
1fitrasalsabila@apps.ipb.ac.id, 2fahrenbu@apps.ipb.ac.id, 3nurdiati@apps.ipb.ac.id

Abstract. Numerous studies have been conducted to develop concurency control

schemes that can be applied to client-server systems, such as the Validation Queue

(VQ) scheme, which uses object caching on the client side. This scheme has been

modified into the Serial Graph-Validation Queue (SG-VQ) scheme, which employs

validation algorithms based on queues on the client side and graphs on the server

side. This study focuses on verifying the correctness of the SG-VQ scheme by us-

ing serializability as a mathematical tool. The results of this study demonstrate

that the SG-VQ scheme can execute its operations correctly, in accordance with

Theorem 4.16, which states that every history (H) of SG-VQ is serializable. Im-

plementing a cycle-free transaction graph is a necessary and sufficient condition to

achieve serializability. To prove Theorem 4.16, mathematical statements involving

ten definitions, two propositions, and three lemmas have been formulated.

Key words and Phrases: client-server, concurrency control, correctness, serializabil-
ity.

1. INTRODUCTION

According to Ali et al. [1], future generations will have cutting-edge tech-
nology to connect everyone wherever they are. This development has been felt for
several years now. Remote work, commonly known as Work From Home (WFH) or
Work From Anywhere (WFA), is increasingly accepted in various fields. The abil-
ity to perform information-based work remotely has significantly increased in the
past decade. Collaboration tools can be a solution to overcome these challenges.
Currently, the typical solution is applications that allow real-time collaboration,
enabling multiple users to work together simultaneously, such as collaborating on
editing a document through a real-time collaboration (RTC) [2]. The client-server

∗Corresponding author

2020 Mathematics Subject Classification: 68Q85

Received: 05-12-2023, accepted: 10-01-2025.

1

mailto:fitrasalsabila@apps.ipb.ac.id
mailto:fahrenbu@apps.ipb.ac.id
mailto:nurdiati@apps.ipb.ac.id

2

system is an architecture suitable for applications that support real-time collabora-
tion [3]. The client-server system is a distributed computing between two types of
independent and autonomous entities known as the server and the client [4]. When
multiple clients simultaneously access data in the same database, and one of the
clients makes changes to the data, this can trigger inconsistent data. Therefore, in a
client-server system, a mechanism is required to regulate access to shared resources
by multiple clients simultaneously to ensure data consistency. This mechanism is
called concurrency control [5]. However, in concurrency control, complexity can
arise in completing transactions and sometimes increase the load on the server,
affecting performance [6]. In recent years, caching has become an effective solution
to reduce and balance the increasing traffic in communication networks [7].

Bukhari and Shrivastava [8] introduced a scheme in the client-server system
that uses object caching on the client side. This scheme is called Validation Queue
(VQ). Jauhari [6] modified the VQ scheme, particularly on the server side. The
modified VQ scheme is called the Serial Graph-Validation Queue (SG-VQ) scheme.
The modification focuses on the server side and is based on a graph.

After the modification, testing is required to prove the correctness of the mod-
ified scheme. Applying a cycle-free transaction graph is a necessary and sufficient
condition to achieve serializability [9]. Therefore, this research focuses on testing
the correctness of the SG-VQ scheme. The expected processing or execution is pro-
cessing that is free from overlapping transactions (interleaving). Non-overlapping
transaction execution is called serial execution. Serial execution can be achieved
by processing transactions alternately or one by one. The advantage of serial ex-
ecution is the guarantee of data consistency because there is no overlap between
transactions. Each transaction views data in a consistent state and is not affected
by changes made by other transactions. Therefore, serial execution is considered
correct.

However, in a concurrent transaction environment, the expected processing is
the system’s ability to execute multiple transactions simultaneously or concurrently
as if the transactions were executed sequentially (serially). Such execution is called
serializable execution [9]. So, in an environment that supports concurrent data
processing, serializable execution is the desired target because it allows for efficiency
and high performance without sacrificing data consistency. Serializable execution
has an equivalent effect to serial execution, so it is also considered correct [10].
Therefore, in this research a mathematical tool called serializability is used to prove
the correctness of the SG-VQ scheme. Serializability is a crucial criterion to ensure
correctness [11].

2. SERIAL GRAPH-VALIDATION QUEUE SCHEME

Below is a comparison table between the Validation Queue (VQ) scheme by
Bukhari and Shrivastava [12] and Serial Graph-Validation Queue (SG-VQ) scheme
by Jauhari [6]:

3

Table 1. SG-VQ and VQ Scheme Comparison

Features VQ Scheme SG-VQ Scheme
Architecture Client-Server Client-Server
Validation Cache: Queue based Cache: Queue based

Server: Queue based Server: Graph based

Based on the comparison table, it can be observed that modifications were
only made on the server side. However, in this research, the proof of correctness
for the SG-VQ scheme is not focused solely on the server side but on the scheme
as a whole.

2.1. Element.

Element is a part of a transaction. A corresponding element is generated
based on the request. An element consists of:

a. Transaction Identifier (TID);
b. Element Type:

(1) Read Element: Includes a set of data to be read, known as a ”readset”;
(2) Commit Element: May include a set of data to be written, known as

a ”writeset”;
(3) Update Propagation Element: Similar to an update from a remote

transaction. This element includes the readset and writeset of the
remote transaction.

(4) Validated Element: Corresponds to a validated transaction. This ele-
ment includes the readset and writeset of a transaction.

(5) Local Validated Element: Represents a locally validated transaction;
(6) Cache Element: Corresponds to a cache transaction consisting of a

collection of client’ cached objects.
c. Object identifier fields containing a list of objects to be accessed with ad-

ditional information;
d. Queue management link.

The elements and fields are depicted as in Figure 1 below,

Figure 1. Element Structure

2.2. Cache Side Validation Algorithm.

4

The cache-side validation algorithm is initiated by the local cache manager
during the validation of local transactions. This algorithm is responsible for veri-
fying the accuracy of transaction execution by examining the order in which trans-
actions are executed, aiming to prevent the commit of inaccurate transaction exe-
cutions. When an execution of a transaction is detected to interleave with another
transaction, it is returned as failure. If not, it is returned as success.

The cache-side validation algorithm uses VQ to record the sequence of local
executions. VQ consists of elements like Read, Commit, Validated, Local Validated,
and Update Propagation. The Update Propagation element represents the process
of executing remote update transactions. These transactions include the readset
and writeset of the update and are sent to the local manager through an Update
Propagation message from the server. When local transactions receives requests to
read or commit, the Read or Commit elements are added to VQ.

Before a transaction is completed, it sends a request to the local cache man-
ager to commit. Once the local cache manager receives this request, it creates a
commit element and places it in VQ. The transaction is then validated.

Figure 2. Queue Structure

Consider a transaction Ti that has n elements: ei,0 through ei,n. There
are three sets of elements that connect these transactions: E1 goes between ei,0
and ei,1, E2 goes between ei,1 and ei,2, and Ej goes between ei,j−1 and ei,j for
1 ≤ j ≤ n. Suppose that Ek contains an element e′ that divides Ek into two parts,
P and Q. Here, we can represent Ek as P ; e′;Q, where P and/or Q could be empty.
For a transaction Ti to pass the validation process, it must meet one of these two
conditions:

a. Condition 1. An element or a combination of elements ei,0 ∪ei,1 ∪. . . ∪ ei,j
does not conflict with any element in the sequence Ej+1, for every j =
0, 1, . . . n− 1.

b. Condition 2. The combined elements ei,0∪ei,1∪. . . ∪ei,j do not conflict with
any element in the sequence Ej+1, for every j = 0, 1, . . . k − 1, and every

5

element in P but the combined elements conflict with e′, for k = 1, 2, . . . , n.
Then, element ei,n or the combined elements ei,0 ∪ ei,1 ∪ . . . ∪ ei,j , do not
conflict with any element in the sequence Ej , for every j = n, n−1, . . . k+1,
and the combined elements ei,n ∪ ei,n−1 ∪ . . . ∪ ei,k−1 ∪ ei,k do not conflict
with e′ and any element in Q.

Read-only transactions are merged into Validated elements if they pass the
validation process. When an update transaction is validated, all elements are
merged into Local Validated elements, and the local cache manager sends a commit
request to the server. The Local Validated elements are changed to Validated ele-
ments if the server’s response is positive. Otherwise, they are discarded if the server
responds with an abort. In the SG-VQ scheme’s cache-side validation algorithm,
read-only transactions are validated if they satisfy Condition 1 or 2. If not, they
fail. Update transactions pass the validation process if they meet Condition 1. If
not, they fail.

2.3. Server Side Validation Algorithm.

The validation algorithm on the server side is called the SG algorithm. The
SG algorithm consists of two parts: commit request processing and validation pro-
cessing. When a commit request message is sent to the server, it checks whether
the message carries the latest cache version. If the cache version carried does not
match the latest version, a message is sent to the original cache manager to verify
the cache version of the message and update it first. Then, if the cache version is
up to date, the validation process is carried out. A commit message will be sent
to the object manager if it passes the validation process. If it fails, all transac-
tion elements being committed are removed, and an abort message will be sent to
the original cache manager. In this validation process, considering that Tij is the
transaction to be validated on the server side, and Σ is the set of transactions being
validated on the server side, if there is a transaction Tkl with ∀Tkl ∈ Σ, then it is
checked whether there is a conflict between Tij and Tkl. If conflicts exist between
these transactions, Tij is aborted, and a failure is returned. However, if there are no
conflicts, Tij is inserted into the serial graph, meaning a node is created containing
information about transaction Tij , and the direction of the edge for transaction Tij ,
indicating its execution order, is determined. If wset(Tij) ∩ rset(Tkl) ̸= ∅, a serial
graph is created, as shown in Figure 3. This serial graph shows that transaction
Tij will be executed after transaction Tkl.

Figure 3. Tkl precedes Tij

6

Furthermore, if wset(Tkl) ∩ rset(Tij) ̸= ∅, a serial graph is formed, as shown
in Figure 4. This serial graph indicates that transaction Tij will be executed before
transaction Tkl.

Figure 4. Tij precedes Tkl

3. SERIALIZABILITY

In an application where multiple transactions are executed concurrently, it’s
essential to establish an order for carrying out operations because only one oper-
ation can be executed at a time. This sequence of transaction execution is known
as a schedule. According to Connolly and Begg [13], a schedule is a sequence of
operations by a set of concurrent transactions that maintains the operations’ order
within each transaction. Bernstein et al. [12] stated that the theory of serializability
provides mathematical tools to verify the correctness of a scheduler. In the theory
of serializability, ”history” refers to a structure representing a set of transactions
executed concurrently. An execution is considered serializable if it is equivalent to
a serial execution of the same transactions. Two histories H and H∗ are equivalent
if:

a. both histories have the same sets of transactions and operations;
b. operations pi belonging to transaction Ti conflicts with qj belonging to

transaction Tj are not present in H with ai, aj /∈ H, where a represents
an abort. If pi <H qj , then pi <H∗ qj , where <H indicates the order in
history H.

4. MAIN RESULTS

Definition 4.1. [10] An element ekℓ represents the ℓ-th element in transaction Tk

where:

a. ekℓ ⊆ rkℓ(x), wkℓ(x)|x := object;
b. rset(ekℓ) ∩ wset(ekℓ) = ∅|rset(ekℓ) := readset and wset(ekℓ) := writeset.

Definition 4.2. [10] If element ekm is a compound element resulting from the
merging of elements ekp and ekq, then wset(ekm) = wset(ekp) ∪ wset(ekq) and
rset(ekm) = rset(ekp) ∪ rset(ekq).

Definition 4.3. [10] Element ekℓ and emn are conflicting if and only if k ̸= m and
satisfy one of the following statement:

a. wset(ekℓ) ∩ wset(emn) ̸= ∅;
b. wset(ekℓ) ∩ rset(emn) ̸= ∅;

7

c. rset(ekℓ) ∩ wset(emn) ̸= ∅.

Definition 4.4. [10] Transaction Tk and Tℓ are conflicting if and only if their
elements or compound elements are conflicting.

Definition 4.5. [10] A transaction Tk is considered as a partial order with ordering
relation <k where:

a. Tk = ek1, ek2, . . . , ekn ∪ ak, ck|ak := abort, ck := commit;
b. ak ∈ Tk only if ck /∈ Tk;
c. if t is ak or ck, for any element ekl in Tk, ekl <k t;
d. if rkℓ(x) ∈ ekℓ and wmn(x) ∈ emn, then ekℓ <i emn.

Definition 4.6. [12] A complete history H over transaction T is considered as a
partial order with ordering relation <H where:

a. H =
⋃n

k=1;
b. <H⊇

⋃n
k=1 <k;

c. for any two conflicting elements x, y ∈ H, either x <H y or y <H x.

Definition 4.7. [12] The Serialization Graph (SG) for a complete history H over
a set of transactions T = T1, ..., Tn is a directed graph denoted as SG(H). The
nodes represent the transactions in T , and the edges are all Tk → Tℓ(k ̸= ℓ) such
that one of Tk’s elements precedes and conflicts with one of Tℓ’s elements in H.

Definition 4.8. [14] Distributed serialization order: A global history H is con-
sidered serializable if there exists a total ordering of T such that for each pair
of conflicting element ek ∈ Tk and eℓ ∈ Tℓ where k ̸= ℓ, ek precedes eℓ in any
H1, ...,Hn if and only if Tk precedes Tℓ in the total ordering.

Definition 4.9. [10] Suppose Hi is a complete history at cache side i where i =
1, 2, .., n. Hi is a partial order over a set of transaction T from cache side i with
ordering relation <Hi where:

a. Hi = Ti,1 ∪ Ti,2 ∪ ... ∪ Ti,ni
;

b. <H,i⊇<1 ∪ <2 ∪...∪ <ni;
c. for any two conflicting elements x, y ∈ Hi, either x <Hi y or y <Hi x.

Definition 4.10. [10] Suppose T = T1, ..., Tn is a set of transaction, H is a com-
plete history generated by the SG-VQ algorithm, and the system has n cache sides.
History H is considered as a partial order over transaction T with ordering relation
<H where:

a. H = H1 ∪H2 ∪ ...∪Hn where Hn is a complete history at cache side n and
Hn is partial order over transaction T ;

b. <H⊇<H1
∪ <H2

∪...∪ <Hn
;

c. for any two conflicting elements x, y ∈ H, either x <H y or y <H x.

Proposition 4.11. Suppose the cache side algorithm of the SG-VQ scheme gen-
erates a local history Hi at cache side i. If Tk is a transaction from cache side i,
then the execution of Tk’s elements at cache side i is equivalent to a single element,
denoted as ek.

8

Proposition 4.12. Let there be Hi as a local history at cache side i where i =
1, 2, ..., n, a set of transaction T = T1, T2, ..., and H is a global history. Suppose Tk

and Tℓ are from cache side i, if ek <Hi eℓ, then ek <H eℓ.

Lemma 4.13. Let T = T1, T2, ... be a set of transactions, and there are n clients
in the system. Based on the SG-VQ algorithm, each client executes a serial local
history, H1, H2, ...,Hn. The SG-VQ scheme’s global history H is defined over T .
If ek <H eℓ, then ek <Hi eℓ for client i that generates both transactions, where
i = 1, . . . , n.

Proof. Suppose clients k and ℓ each create transactions Tk and Tℓ. If ek <Hi
eℓ,

then ek conflicts with eℓ. According to Definition 4.3, three cases demonstrate how
ek conflicts with eℓ. Here is an overview of the conflict occurrence process:

(1) rset(ek) ∩ wset(eℓ) ̸= ∅
In this case, ek reads an object on client k, which is then updated by eℓ.
Since ek is a read-only transaction, its validation is only local. As a result,
there is no ek <Hℓ

eℓ on client ℓ. However, globally, ek <H eℓ still holds.

Figure 5. Case rset(ek) ∩ wset(el) ̸= ∅

(2) wset(ek) ∩ rset(eℓ) ̸= ∅
In this case, ek updates an object that is later read by eℓ, resulting in
a write-read conflict. Since ek <Hℓ

eℓ, the commit of Tk precedes Tℓ on
the server, and therefore, the cache manager on client ℓ executes update
propagation from Tk before conflicting object is read by Tℓ. Update trans-
actions are not allowed to read stale objects. As a result, the commit of
Tk precedes Tℓ on the server. If the update transaction by Tℓ reads a stale
object that Tk has updated, then the cache version carried by Tℓ becomes
outdated, and Tℓ is rolled back to its original cache for revalidation. Hence,
ek <Hℓ

eℓ and ek <Hi
eℓ holds for every client i = 1, ..., n that generates

both transactions.

9

Figure 6. Case wset(ek) ∩ rset(eℓ) ̸= ∅

(3) wset(ek) ∩ wset(eℓ) ̸= ∅
In this case, ek and eℓ update the same object, resulting in a write-write
conflict. Since ek <Hℓ

eℓ, Tk is committed to the server first. If the update
propagation from Tk is received by client ℓ after Tℓ has already been locally
committed, then when Tℓ is validated on the server, the cache version it
carries is no longer valid and is rolled back for revalidation. As a result,
the commit of Tk precedes Tℓ on the server, and therefore, ek <Hℓ

eℓ and
ek <Hi

eℓ hold for every client i = 1, . . . , n that generates both transactions.

Figure 7. Case wset(ek) ∩ wset(eℓ) ̸= ∅

□

Lemma 4.14. Let T = T1, T2, The SG-VQ algorithm produces a complete
history of H over T . The serialization graph SG is defined over H. If Tk → Tℓ

exists in SG(H), then the validated element ek of Tk conflicts with the validated
element eℓ of Tℓ in H, thus ek <H eℓ.

Proof. If Tk → Tℓ exists in SG(H), then, according to Definition 4.8, there exists
ek conflicting with eℓ, and ek precedes eℓ. Therefore, ek <H eℓ. □

10

Lemma 4.15. The SG-VQ algorithm generates a complete history H. Suppose
there is a path T1 → T2 → ... → Tn in SG(H), where n > 1, then e1 precedes en in
H, e1 <H en.

Proof. Induction will be used to prove the statement. Let n = 2 as the induction
base. In accordance with Lemma 4.14, we can identify a path T1 → T2 in SG(H)
where an edge of e1 ∈ T1conflicts with an edge of e2 ∈ T2 This implies that e1 <H e2.
Hence, Lemma 3 holds true for n = 2.

Assuming Lemma 4.15 is true for n = k where k ≥ 2 and k is a positive
integer, we can show that Lemma 4.15 also holds true for n = k + 1. Consider the
path T1 → T2 → ... → Tk → Tk+1 in SG(H). We will prove that e1 precedes ek+1

in the total order H, e1 <H ek+1.

Based on the assumption that Lemma 4.15 is true for n = k, the following
can be derived:

(1) In the total order H, e1 precedes ek because there is a path T1 → T2 →
... → Tk in SG(H). According to Lemma 4.14, e1 conflicts with ek, and e1
precedes ek, or it can be denoted as e1 <H ek.

(2) In the total order H, ek precedes ek+1 because there is a path Tk → Tk+1 in
SG(H). According to Lemma 4.14, ek conflicts with ek+1, and ek precedes
ek+1, or it can be denoted as ek <H ek+1.

Since e1 precedes ek and ek precedes ek+1, based on the transitive property
of the total order, it can be concluded that e1 precedes ek+1 in the total order
H, which can be denoted as e1 <H ek+1. By proving this inductively, it has been
shown that if Lemma 4.15 is true for n = k, then it is also true for n = k+1. Thus,
it can be concluded that Lemma 4.15 is true for all n > 1. □

Theorem 4.16. Every history H from SG-VQ is serializable.

Proof. To prove this, we will use contradiction. Suppose there is a cycle in SG(H),
denoted by T1 → T2 → ... → Tn → T1, with n > 1. According to Lemma 4.15,
one element from T1 conflicts with another element from T1 in history H. This
condition contradicts Proposition 4.11, which explains the singularity of elements.
Hence, SG(H) does not have cycles, and H is serializable. □

5. IMPLEMENTATIONS

In collaborative editing systems, users work simultaneously on the same docu-
ment. SG-VQ can be used to ensure that changes made by users on different devices
remain consistent, even when performed concurrently. This approach prevents data
conflicts when multiple users modify the same data object.

Jauhari [6] conducted hypothetical transaction executions involving three val-
idation cases on the server. The first case describes a transaction validated and

11

added to a serial graph containing the set of ongoing transactions. The second case
identifies conflicts arising from the intersection of the writeset between the new
transaction and the ongoing transactions, leading to the rejection (abort) of the
new transaction. The last case explains a cycle in the serial graph.

The application of SG-VQ is not limited to editing systems. However, this
section briefly explains these three cases within an editing system as an example
of SG-VQ implementation. A document editing system implementing RTC (Real-
Time Collaboration) allows multiple users to edit a document simultaneously. Each
modification is treated as a transaction T that the server must validate to avoid
conflicts.

5.1. Case 1.

Two transactions are in progress. Transaction T11 = {w11(x)} represents a
user editing part x of the document, for example, the first paragraph. Transaction
T21 = {r21(x), w21(y)} represents another user reading the first paragraph (x) and
editing the second paragraph (y). The server forms an initial serial graph where
T21 → T11. A new transaction then arrives: T31 = {r31(y), w31(z)}, where the third
user reads the second paragraph (y) and edits the third paragraph (z). The server
accepts the request from T31 and begins the validation process. The validation
process starts by ensuring that the cache version of T31 is the latest, meaning that
the editing system verifies that the third user is working on the most up-to-date
version of the document—next, the system checks for conflicts. If no user is editing
the same part of the document, the document remains safe. If a conflict is detected,
the editing system will arrange the transactions in the correct order. In this case,
the conflict check shows that T31 ∩ T11 = 0, meaning there is no conflict between
T31 and T11. However, T31 ∩ T21 ̸= 0 because rset31 ∩ wset21 ̸= 0; transaction T31

reads part y, which is being written by T21. Since there is no cycle in the serial
graph, T31 is added to the execution order, resulting in a new serial graph order of
T31 → T21 → T11. Thus, the order of operations in this case is as follows: the third
user reads the second paragraph and writes to the third paragraph, the second user
completes editing the first and second paragraphs, and the first user finishes editing
the first paragraph.

5.2. Case 2.

Case 2 is the continuation of Case 1. Three users edit the document simulta-
neously, each making changes to different sections. At this point, the serial graph
has already established the order T31 → T21 → T11. User 4 T41 arrives and makes
changes to the section being worked on by T31, specifically the third paragraph
(z), creating T41 = {w41(z)}, and submits a validation request to check whether
their changes can be accepted without interfering with others. The editing system
will check if any changes conflict with previous edits. As in the previous case, the
validation starts by checking the version of the document edited by T41. Since
T31 is writing to the third paragraph, the same section that T41 wants to modify,
the system detects a write-write conflict, wset31 ∩ wset41 ̸= 0. Because there is a

12

conflict between the changes made by user 3 and user 4, the changes from user 4
will be aborted. Therefore, the conflicting edit will not be accepted.

5.3. Case 3.

We encounter a scenario where three users are editing the document simul-
taneously. Initially, there are two users. User 1 generates transaction T11 =
r11(y), w11(x), which involves reading the second paragraph and editing the first
paragraph (x), while user 2 generates transaction T21 = r21(x), w21(y), which
involves reading the first paragraph (x) and editing the second paragraph (y).
These changes do not cause conflicts, thus the execution order is T11 → T21.
Then, user 3 joins and attempts to edit the document. User 3 makes transaction
T31 = r31(z), w31(x), which involves reading the third paragraph (z) and attempt-
ing to modify the first paragraph (x). When the system checks the changes for
T31, it shows that rset31 ∩ wset11 ̸= 0, thus T31 → T11 and rset21 ∩ wset31 ̸= 0
thus T21 → T31. Thefore a cycle is created: T31 → T11 → T11 → T31. To maintain
document consistency, the editing system rejects the changes made by T31 and the
system removes these changes from the list of modifications to be applied.

6. CONCLUDING REMARKS

In proving the correctness of the transaction execution produced by the SG-
VQ scheme, ten definitions, two propositions, and three lemmas have been elab-
orated to establish Theorem 4.16. Based on the proof of this theorem, it can be
concluded that every history H produced by the SG-VQ scheme is serializable.
Therefore, it has been theoretically proven that the Serial Graph-Validation Queue
(SG-VQ) scheme can execute transactions correctly.

Acknowledgement. The author would like to express gratitude to M. Fakhri J.
as a fellow researcher who contributed to developing the Serial Graph-Validation
Queue scheme.

REFERENCES

[1] S. Ali, R. Alauldeen, and R. A. Khamees, “What is client-server system: Architecture, issues

and challenge of client-server system (review),” Recent Trends in Cloud Computing and Web
Engineering, vol. 2, no. 1, pp. 1–6, 2020. https://doi.org/10.5281/zenodo.3673071.

[2] Q.-V. Dang and C.-L. Ignat, “Performance of real-time collaborative editors at large scale:

User perspective,” in 2016 IFIP Networking Conference (IFIP Networking) and Workshops,
pp. 548–553, IEEE, May 2016. https://doi.org/10.1109/IFIPNetworking.2016.7497258.

[3] M. Hartwig and S. Gartz, “Mobile modeling with real-time collaboration support,” J. Object
Technol., vol. 21, no. 3, pp. 1–15, 2022. https://doi.org/10.5381/jot.2022.21.3.a2.

[4] S. Kumar, “A review on client-server based applications and research opportunity,” Int. J.

Recent Sci. Res., vol. 10, no. 7, pp. 33857–33862, 2019. https://doi.org/10.24327/ijrsr.
2019.1007.3768.

https://doi.org/10.5281/zenodo.3673071
https://doi.org/10.1109/IFIPNetworking.2016.7497258
https://doi.org/10.5381/jot.2022.21.3.a2.
https://doi.org/10.24327/ijrsr.2019.1007.3768.
https://doi.org/10.24327/ijrsr.2019.1007.3768.

13

[5] M. Kaur and H. Kaur, “Concurrency control in distributed database system,” International

Journal of Advanced Research in Computer Science and Software Engineering, vol. 3, no. 7,

pp. 1443–1447, 2013. https://api.semanticscholar.org/CorpusID:7899973.
[6] M. F. Jauhari, “Skema serial graph-validation queue pada sistem klien-server,” Magister

Theses, IPB University, 2024. https://repository.ipb.ac.id/handle/123456789/152689.
[7] F. Rezaei and B. H. Khalaj, “Stability, rate, and delay analysis of single bottleneck caching

networks,” IEEE Trans Commun., vol. 64, no. 1, pp. 300–313, 2016. https://doi.org/10.

1109/TCOMM.2015.2498177.

[8] F. Bukhari and S. Shrivastava, “An efficient distributed concurrency control scheme for trans-

actional systems with client-side caching,” in Proc. 14th International Conference on High

Performance Computing and 9th International Conference on Embedded Software and Sys-
tems, 2012. https://doi.org/10.1109/HPCC.2012.157.

[9] T. Wang, R. Johnson, A. Fekete, and I. Pandis, “Efficiently making (almost) any concurrency

control mechanism serializable,” VLDB J., vol. 26, no. 4, pp. 537–562, 2017. https://doi.
org/10.1007/s00778-017-0463-8.

[10] F. Bukhari, “Maintaining consistency in client-server database systems with client-side

caching,” Doctoral dissertation, Newcastle University. http://theses.ncl.ac.uk/jspui/

handle/10443/1789.

[11] A. Mhatre and R. Shedge, “Comparative study of concurrency control techniques in dis-
tributed databases,” in Proc. 4th International Conference on Communication Systems and

Network Technologies, 2014. https://doi.org/10.1109/CSNT.2014.81.

[12] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in
Database System. Addison-Wesley Longman, 1987. https://www.sigmod.org/publications/

dblp/db/books/dbtext/bernstein87.html.

[13] T. Connolly and C. Begg, Database Systems: A Practical Approach in Design, Implementa-
tion, and Management Database, Sixth Edition. Pearson Education, 2015.

[14] P. A. Bernstein and N. Goodman, “Concurrency control in distributed database systems,”

ACM Comput. Surv., vol. 13, no. 2, pp. 185–221, 1981. https://doi.org/10.1145/356842.
356846.

https://api.semanticscholar.org/CorpusID:7899973
https://repository.ipb.ac.id/handle/123456789/152689
https://doi.org/10.1109/TCOMM.2015.2498177.
https://doi.org/10.1109/TCOMM.2015.2498177.
https://doi.org/10.1109/HPCC.2012.157.
https://doi.org/10.1007/s00778-017-0463-8.
https://doi.org/10.1007/s00778-017-0463-8.
http://theses.ncl.ac.uk/jspui/handle/10443/1789
http://theses.ncl.ac.uk/jspui/handle/10443/1789
https://doi.org/10.1109/CSNT.2014.81.
https://www.sigmod.org/publications/dblp/db/books/dbtext/bernstein87.html
https://www.sigmod.org/publications/dblp/db/books/dbtext/bernstein87.html
https://doi.org/10.1145/356842.356846
https://doi.org/10.1145/356842.356846

	1. INTRODUCTION
	2. SERIAL GRAPH-VALIDATION QUEUE SCHEME
	2.1. Element
	2.2. Cache Side Validation Algorithm
	2.3. Server Side Validation Algorithm

	3. SERIALIZABILITY
	4. MAIN RESULTS
	5. IMPLEMENTATIONS
	5.1. Case 1
	5.2. Case 2
	5.3. Case 3

	6. CONCLUDING REMARKS
	REFERENCES

