
J. Indones. Math. Soc.
Vol. 32, No. 01 (2026), pp. 1–15.

Analysis of Earthquake Potential along the Coastal Region
of South Java using Semi-Markov Models as a Tsunami

Mitigation

Athaya Rahma Puteri1, Halimatus Sa’diyah1, Alfia Nur Fauziah1,

Christina Agustin Raphonhita Simbolon1, Ramadhani Latief Firmansyah1,

and Dwi Ertiningsih1∗

1Department of Mathematics, Universitas Gadjah Mada, Indonesia

Abstract. This study applies a semi-Markov model to assess earthquake occurrence

in the South Java coastal region. The main objective is to forecast earthquakes in

this area, considering three key factors: geographic location, timing, and seismic

magnitude. The South Java coastal region is chosen for this study due to its prox-

imity to the island of Java, the economic hub of Indonesia. The study divides

the South Java coastal region into five distinct zones and categorizes earthquakes

into three magnitude groups. The results predict that earthquakes will occur in the

South Coast regions of East Java, Central Java, or West Java between December 26,

2022, and November 20, 2023. Additionally, projections suggest that earthquakes

are likely to occur in East Java, West Java, or Banten between November 21, 2023,

and December 31, 2030. The estimated magnitudes range from 5 to 6 Mw. The

findings also indicate that no tsunamis are expected along the South Java coast

until 2030. Model validation using the Mean Absolute Percentage Error (MAPE)

results in a value of 4.224%. This confirms the high accuracy of the predictions.

Although no tsunamis are forecasted, the public must remain alert and prepared for

the anticipated earthquakes. These findings provide important insights for disaster

mitigation and emphasize the need for ongoing monitoring, early warning systems,

and community preparedness to minimize potential risks.
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1. INTRODUCTION

Reporting from the National Agency for Disaster Countermeasure (BNPB)
page, Indonesia is an archipelagic country that is geographically located at the
meeting point of four tectonic plates, namely the Asian continental plate, the Aus-
tralian continental plate, the Indian Ocean plate, and the Pacific Ocean plate.
This situation is one of the reasons why earthquakes often hit Indonesia. One of
the causes of earthquakes is the movement of tectonic plates (tectonic movement).
Tectonic movement is the movement of the world’s tectonic plates which will cause
two tectonic plates to collide and shift each other. This earthquake is called a
tectonic earthquake.

The United States Geological Survey (USGS) recorded that from January 1 to
September 30, 2023, Indonesia experienced 1,618 earthquakes. These earthquakes
can cause losses to the community because it can cause building damage, fires,
landslides, economic losses, and even loss of life. An earthquake can also cause a
tsunami if it occurs in the deep sea which shifts the tectonic plates on the seabed
and the earthquake has a magnitude of more than 7.6 on the Richter scale (CNN
Indonesia, 2021).

Hiller and Lieberman [1] emphasize that operations research provides a pow-
erful framework for making optimal decisions in complex systems. By integrating
mathematical modeling, quantitative analysis, and computational tools, OR helps
organizations allocate resources efficiently, evaluate alternatives rigorously, and im-
prove overall performance. In case of the occurrence of earthquake, forecasting the
occurrence of earthquakes is crucial to minimizing these potential losses. Several
studies have been conducted on earthquake forecasting. Lewis [2] emphasizes that
effective forecasting requires selecting methods suited to the data, the decision con-
text, and the desired time horizon. No single technique is universally superior;
rather, combining statistical approaches with managerial judgment yields the most
reliable results, whereas Jafari [3] attempted to forecast an earthquake in Tehran,
Iran, using several statistical models, but the resulting error rate was quite large.

Many classical studies such as Vere-Jones [4] and Harte [5] also emphasize
that statistical forecasting remains challenging due to complex seismic patterns.
Gkarlaouni et.al. [6] presents a stochastic comparison of earthquake activity in two
Greek fault systems: the Mygdonia graben and the Gulf of Corinth. Using local
seismic catalogues, the authors analyse magnitude, inter-event time and distance
distributions, along with spatial clustering. The results show clear differences in
seismic behaviour between the two regions, underscoring the value of statistical
methods for characterizing fault-specific seismicity. Sadeghian [7] investigates how
different zoning methods influence the accuracy of earthquake forecasting using
semi-Markov models. The study shows that the choice of spatial zoning signif-
icantly affects predicted earthquake occurrences, highlighting the importance of
appropriate zoning for reliable seismic hazard assessment.

In this research, several methods were used, including Exponential, Gamma,
Lognormal, Pareto, Rayleigh, and Weibull models. Each method has its limita-
tions, such as exponential and Weibull using only one parameter, the gamma only
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uses two parameters, lognormal has a large error value, the Pareto is not suit-
able for long-term distributions, and the Rayleigh requires data to come from a
two-dimensional Gaussian distribution. Furthermore, Alarifi, et.al. [8] conducted
research to forecast the magnitude of earthquakes in the Northern Red Sea region
using the Artificial Neural Network (ANN) method and obtained forecasting results
that were 32% better than other methods. This research produces predictions of
the magnitude of earthquakes, while predicting the time of earthquake events is
still not lacking because this method cannot capture time relationships with high
accuracy. In the same year, Sadeghian [9] forecasted earthquakes in Tehran, Iran,
using semi-Markov which was able to forecast the location, time, and magnitude of
an earthquake simultaneously with a high level of accuracy. This method produces
complete predictions compared to other methods.

Furthermore, in [8], a research has been conducted to forecast the magnitude
of earthquakes in the Northern Red Sea region using the Artificial Neural Network
(ANN) method and obtained forecasting results that were 32% better than other
methods. This research produces predictions of the magnitude of earthquakes, while
predicting the time of earthquake events is still not lacking because this method
cannot capture time relationships with high accuracy. In the same year, Ramin
Sadeghian forecasted earthquakes in Tehran, Iran, using semi-Markov which was
able to forecast the location, time, and magnitude of an earthquake simultaneously
with a high level of accuracy. This method produces complete predictions compared
to other methods.

Considering the limitations of previous models and the success of the semi-
Markov model in earthquake forecasting, this research adopts the semi-Markov
method. This approach was chosen because this approach is more effective than
other models. This research focuses on the south coast of the Java region because
it is near Java Island, the center of the Indonesian economy, and if an earthquake
or tsunami occurs in this region, it will cause massive loss to Indonesia. Thus,
applying the semi-Markov model can estimate the possibility of an earthquake
occurring when, where, and how strong the earthquake will be, and can find out
which areas have the potential for a tsunami due to the earthquake so that it can
minimize the impact of the earthquake, that is, the impact of the losses incurred.

2. METHODS

2.1. Data Collection.

This research was conducted using data from earthquake disasters site (the
United States Geological Survey, USGS) recorded on the period January 1, 1910 to
December 31, 2022 on the south coast of Java. This data consists of location, depth
of earthquake (≤ 60 km), time of occurrence of the earthquake, and magnitude (≥
5 Mw). The criteria for the depth and strength of the earthquake data are based on
the characteristics of earthquakes that have the potential to cause tsunamis, which
were obtained from earthquake events that caused tsunamis in the past. The south
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coast of Java is an area of investigation, bounded by longitudes 5◦52′35”S, 11◦S
and latitudes 105◦1′11”E, 114◦40′22.8”E. The data were collected from the United
States Geological Survey (USGS) site from January 1, 1910 to December 31, 2022.
Regions are chosen as states. We divided the coastal area of the south coast of
Java into five regions based on the division of provincial areas on the island of
Java, i.e., the south coast of East Java (R1), Central Java (R2), Yogyakarta (R3),
West Java (R4), and Banten (R5). Furthermore, magnitudes were chosen as states.
We divided the magnitudes into three categories based on the earthquake strength
data pattern, i.e.,

M1 : 5 ≤ Mw < 6

M2 : 6 ≤ Mw < 7.6

M3 : Mw ≥ 7.6

where Mw is a unit of magnitude of earthquakes; it is called moment magnitude.

Figure 1. Map of South Coast of Java

2.2. Analysis Method.

To find forecasting for earthquakes, the Semi-Markov process is used, which
is a development of the Markov stochastic process. Further explanation is given as
follows.

2.2.1. Stochastic Process.

A stochastic process is a collection of random variables {X(t)} indexed by
the index t running through the set T , where T is a set of non-negative integers.
The random variable X(t) represents the state of a system at time t. Stochastic
processes are divided into 2 types, namely, if T = 0, 1, 2, . . . then it is called a
stochastic process with discrete parameters and is denoted by {X(n)}, whereas if
T = {t | t ≥ 0} then it is called a stochastic process with continuous parameters
and is denoted by {X(t) | t ≥ 0}. This research was conducted to investigate the
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systematic nature of earthquake events related to space and place, time distribution,
and regional earthquake magnitude. This approach is suitable for application in
urgent needs because it can utilize all available information and develop hypotheses
about the systematics governing seismicity at all scales, such as groupings expressed
as consecutive earthquake events. Using a stochastic approach to seismicity will
reveal additional implications about the seismic behavior of fault systems that
should be applicable in any seismotectonic setting.

2.2.2. Semi-Markov Process.

The semi-Markov process is an extension of the stochastic Markov process.
In a semi-Markov process, the Markov property is no longer fulfilled, meaning that
predicting the future state is not only based on the current state but also on the
length of time in the current state before moving to the future state. Consider a
stochastic process with a state space {1, 2, . . . , n} and the system is in the initial
state X(0) at time T (0). The process remains in that state for a certain amount of
time m0 and then moves to state X(1) at time T (1). The process remains in that
state for a certain amount of time m1. Then move to state X(2) at time T (2), and
so on until the n-th state. This process is called a semi-Markov process. One of
the applications of the semi-Markov process is to predict disasters.

2.2.3. Transition Matrix.

The transition matrix is denoted by G which is obtained by calculating the
probability of a semi-Markov process is in state i and then makes a transition to
state j. The transition matrix is calculated based on two classifications, namely
based on the location of the earthquake and the earthquake strength scale. Thus,
there are two transition matrices, namely the transition matrix for the location
of the earthquake and the earthquake strength scale. The transition matrix must
satisfy the following two conditions.

Gij ≥ 0;

N∑
j=1

Gij = 1; i, j = 1, 2, . . . , N,
(1)

where Gij is the ij-th element of the transition matrix and N is the number of
states in the system.

2.2.4. Holding Time Matrix.

The time during which the semi-Markov process remains in state i within
time tij before transitioning to state j is called holding time. In this case, the unit
of time used is 30 days. Continue with calculating the mass holding time function
for transitions between earthquake locations and the earthquake strength scale.
The holding time mass function is the probability mass function of Tij in tij , as
given below:

Pr{tij = m} = Tij(m); m = 1, 2, . . . , n, i, j = 1, 2, . . . , N, (2)
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where tij is the time during which the semi-Markov process remains in state i before
transitioning to state j, Tij is the mass holding time function, and n is the number
of time intervals.

2.2.5. Core Matrix.

The core matrix is denoted by C(m) which is the probability of two joint
events in which a system in state i at time 0 transitions to state j after m holding
time as follow:

Cij(m) = GijTij(m); m = 1, 2, . . . , n, i, j = 1, 2, . . . , N, (3)

where Cij(m) is the ij-th element of the core matrix at time m, Gij is the ij-th
element of the transition matrix, and Tij(m) is the ij-th element of the holding
time matrix at time m.

2.2.6. Waiting Time Mass Function.

After calculating the core matrix, continue by adding up each row of the
core matrix for each time difference (holding time) to get the mass waiting time
function. That is

N∑
j=1

Cij(m) =

N∑
j=1

GijTij(m) = wi(m), (4)

where wi(m), namely the probability that the waiting time for the i-th state is
equal to m. The cumulative probability distribution of waiting time is given as
follow:

LEwi(n) =

n∑
m=1

wi(m), (5)

where LEwi(n) is the probability that the waiting time for the i-th state is less
than or equal to n. Meanwhile, the complement of LEwi(n) is

Gwi(n) =

∞∑
m=n+1

wi(m), (6)

where Gwi(n) is the probability that the waiting time for the i-th state is greater
than n.

2.2.7. Interval Transition Probability Matrix.

The interval transition probability matrix F (n) is obtained through a recur-
sive procedure, with F (0) being the identity matrix. So we will obtain an inter-
val transition probability matrix for transitions between locations and earthquake
strength scales. The interval transition probability matrix formula is

F (n) = GW (n) +

n∑
m=0

(G · T (m))F (n−m) = GW (n) +

n∑
m=0

C(m)F (n−m), (7)

where m and n are natural numbers representing the time interval, G is the transi-
tion matrix, T (n) is the holding time matrix, C(m) is the core matrix, and GW (n)
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is a diagonal matrix where the i-th element in the matrix is the same as the ele-
ment in the matrix Gwi(n) in Eqn. (6). By using Eqn. (7), it can be obtained that
FR(n) and FM (n) respectively express the interval transition probability matrix
for transitions between earthquake locations and the interval transition probability
matrix for transitions in the earthquake strength scale.

2.2.8. Earthquake Forecasting Matrix.

Based on Bruin [10], the earthquake forecasting matrix, F̂RM , is obtained
by multiplying the interval transition probability matrix FR(n) with the interval
transition probability matrix FM (n) using the following equation:

F̂RM (d) = FRr0,r1
(d) · FMm0,m1

(d), (8)

where FRr0,r1
represents the interval transition probability matrix for transition

from the region r0to the region r1, and FMm0,m1
represents the interval transition

probability matrix for transitions from an earthquake magnitude of m0 to m1. For
example, the entries of the FRM (d) matrix, denoted as FRMrimj

(d), express the

probability of an earthquake occurring in region ri with a magnitude mj within
in the time interval n. By using Algorithm 1, we can deterministically forecast
earthquake occurrences over the next several time periods.

Definition 2.1. (i-th order maximum). The i-th element in a sorted as well as
decreased list, in which none of the elements are equal to each other, is named i-th
order maximum.

Algorithm 1 Deterministic Forecasting Algorithm

Step 0: Begin
Step 1: Use the past n data to determine F̂RM (n is the number of total data)

Step 2: Determine F̂RM

Step 3: F̂RM1(i) = F̂RM (i)∀i = 1, . . . , k (is the number of future time intervals
that can be forecasted)

Step 4: Mj = {t-th order maximum in F̂RM1(j), ∀j = 1, . . . , k}

Step 5: F̂RM2(j) =

[
F̂RM1(j)

Mj

]
, ∀j = 1, . . . , k

(The highest integer number that is less than the real number x is obtained by
using [x].)

Step 6: For all element x ∈ F̂RM2(j) with x ≥ 1 will be replaced by 1 and name
the resulted matrices FRMD(j),∀j = 1, . . . , k
Step 7: An earthquake with magnitude m in region r will occur in the j-th time
period if FRMDrm(j) = 1; else, no earthquake with magnitude m in region r will
occur in the j-th time period.
Step 8: End
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2.2.9. The Model Validation.

To determine the level of accuracy of earthquake forecasting results, a valida-
tion process must be carried out. Many indicators can be used to measure the level
of accuracy of forecasting, including Mean Square Error (MSE), Root Mean Square
Error (RMSE), Mean Absolute Deviation (MAD), and Mean Absolute Percentage
Error (MAPE). The forecasting results are always attempted to be close to actual
events. In other words, the error value produced by the forecasting results should
be small. Mean Absolute Percentage Error (MAPE) can be calculated by using the
absolute error for each period divided by the actual observed value for that period.
The advantage of the MAPE approach is that it can express the percentage error
in forecasting results regarding actual demand during a certain period, providing
information on whether the percentage error is too high or too low, thereby enhanc-
ing accurate. However, a significant deficiency of MAPE is that the calculation will
yield an infinite or undefined value if the actual value is zero or near zero (see [11]).
We can determine the level of accuracy of earthquake forecasting results using Al-
gorithm 2. If the actual value is zero, Algorithm 2 bypasses this calculation and
reduces the count r and m by one.

Algorithm 2 Validation Algorithm

Step 0: Begin
Step 1: d = 0
Step 2: n2(0) = 0
Step 3: d = 1
Step 4: Use the (n1 + n2(d)) first data to determine F̂RM and FRM where n1 is
the number of the first data that used to forecast the next n2 data and n2(d) is
the number of the actual data that occurred during d periods time after the first
n1 data.
Step 5: Determine F̂RM and FRM

Step 6: If FRMij
̸= 0, then

MAPE(d) =

∑r
i=1

∑m
j=1

(
|FRMij − F̂RMij |

FRMij

)
r ·m

× 100% (9)

Step 7: d = d+ 1
Step 8:

MAPE =

∑p
d=1 MAPE(d)

p
(10)

Step 9: End

The results of the MAPE calculation are usually in percentage form. The
smaller the percentage, the better the accuracy level. The MAPE calculation cri-
teria to measure the accuracy of the forecasting results are given in Table 1.
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Table 1. MAPE Criteria for Model Evaluation
MAPE Forecasting power
< 10% Highly accurate forecasting

10%− 20% Good forecasting
20%− 50% Reasonable forecasting
> 50% Weak and inaccurate forecasting

3. MAIN RESULTS

3.1. Transition matrix.

The transition probability matrix of region-to-region (GR) transitions and
magnitude-to-magnitude (GM ) were determined in Eqn. (1).

GR =


R1 R2 R3 R4 R5

R1 0.6565 0.0404 0.0455 0.1667 0.0909
R2 0.2759 0.1724 0 0.4483 0.1034
R3 0.2 0.04 0.24 0.32 0.2
R4 0.1759 0.0553 0.0301 0.6231 0.1156
R5 0.2836 0.0746 0.0597 0.3134 0.2687


The elements in the GR matrix represent the probability of an earthquake occurring
in region j, given that the previous earthquake occurred in region i. For example,
the probability that an earthquake will occur in region R4 after the previous earth-
quake occurred in region R2, is 0.4483.

GM =


M1 M2 M3

M1 0.9206 0.0751 0.0043
M2 0.72 0.28 0
M3 1 0 0


The elements in theGM matrix represent the probability of an earthquake occurring
with magnitude j, given that the previous earthquake occurred with magnitude i.
For example, the probability that an earthquake will occur with magnitude M1

after the previous earthquake occurred with magnitude M2, is 0.72. Furthermore,
it should be noted that if an earthquake occurs, whether with a magnitude of
M1,M2, or M3, the aftershocks will tend to have a magnitude of M1. In other
words, the intensity of the subsequent earthquake will tend to decrease compared
to the initial earthquake.

3.2. Holding Time.

The largest time interval between the times of earthquake occurrences is 2978

days, so by selecting 30 days for time unit, forecasting the next

⌈
2978

30

⌉
= 100 time

units in each forecasting will be possible. Therefore, holding time mass functions
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TR(m) and TM (m) are obtained using Eqn. (2).

TR(1) =


R1 R2 R3 R4 R5

R1 0.8769 0.375 0.5556 0.2424 0.3333
R2 0.625 0.4 0 0.5384 0.6667
R3 0.2 0 0.6667 0.125 0.2
R4 0.3142 0.7272 0.6667 0.8145 0.2174
R5 0.4736 0.6 0.25 0.3333 0.4444



TR(2) =


R1 R2 R3 R4 R5

R1 0.0538 0.25 0.2222 0.4545 0.2778
R2 0.125 0.4 0 0.1538 0.3333
R3 0 1 0.1667 0.125 0.2
R4 0.2857 0.0909 0 0.0806 0.1304
R5 0.1579 0 0.25 0.2381 0.1111


and so on until TR(100).

TM (1) =


M1 M2 M3

M1 0.6550 0.4286 0
M2 0.4167 0.2143 0
M3 1 0 0



TM (2) =


M1 M2 M3

M1 0.1375 0.2286 1
M2 0.1944 0 0
M3 0 0 0


and so on until TM (100).

3.3. Core Matrix.

The core matrix is obtained using Eqn. (3).

CR(1) =


R1 R2 R3 R4 R5

R1 0.5757 0.0152 0.0253 0.0404 0.0303
R2 0.1724 0.0689 0 0.2414 0.0689
R3 0.04 0 0.16 0.04 0.04
R4 0.0553 0.0402 0.0201 0.5075 0.0251
R5 0.1343 0.0447 0.0149 0.1044 0.1194



CR(2) =


R1 R2 R3 R4 R5

R1 0.0353 0.0101 0.0101 0.0757 0.0253
R2 0.0344 0.0689 0 0.0689 0.0344
R3 0 0.04 0.04 0.04 0.04
R4 0.0502 0.0050 0 0.0502 0.0151
R5 0.0447 0 0.0149 0.0746 0.0298


and so on until CR(100).

Elements in the matrix CR represent the probability of a joint event. The
first event is an earthquake occurring in region Rj , where previously an earthquake
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occurred in region Ri, while the second event is the transition carried out after
a holding time m. For example, the value 0.1724 in the matrix CR(1) represent
the probability that an earthquake will occur in region R1, where an earthquake
previously occurred in region R2, and the earthquake took place within a time
interval of one period or 30 days.

CM (1) =


M1 M2 M3

M1 0.6030 0.0322 0
M2 0.3 0.06 0
M3 1 0 0



CM (2) =


M1 M2 M3

M1 0.1267 0.0171 0.0043
M2 0.14 0 0
M3 0 0 0


and so on until CM (100).

Elements in the matrix CM represent the probability of a joint event. The
first event is an earthquake occurring at magnitude Mj , given that a previous
earthquake occurred at magnitude Mi. The second event is the transition that
occurs after a holding time of m. For example, the value 0.3 in the matrix CM (1)
indicates the probability that an earthquake will occur at magnitude M1, given
that a previous earthquake occurred at magnitude M2, and this occurred within a
time interval of one period or 30 days.

3.4. Waiting Time Mass Function.

The waiting time mass function is obtained using Eqn. (5).

wiR(1) =


R1 0.6868
R2 0.5517
R3 0.28
R4 0.6482
R5 0.4179



wiR(2) =


R1 0.1565
R2 0.2069
R3 0.16
R4 0.1206
R5 0.1642


and so on until WiR(100).

wiM (1) =

M1 0.6352
M2 0.36
M3 1





12

wiM (2) =

M1 0.1480
M2 0.14
M3 0


and so on until WiM (100).

3.5. Interval Transition Probability Matrix.

The interval transition probability matrix is obtained using Eqn. (7).

FR(1) =


R1 R2 R3 R4 R5

R1 0.8889 0.0151 0.0252 0.0404 0.0303
R2 0.1724 0.5172 0 0.2413 0.0689
R3 0.04 0 0.88 0.04 0.04
R4 0.0553 0.0402 0.0201 0.8592 0.0251
R5 0.1343 0.0447 0.0149 0.1044 0.6716



FR(2) =


R1 R2 R3 R4 R5

R1 0.7136 0.0296 0.0481 0.1415 0.0661
R2 0.2222 0.3614 0.0102 0.3072 0.0968
R3 0.0495 0.0440 0.7432 0.0865 0.0754
R4 0.1385 0.0482 0.0296 0.7328 0.0499
R5 0.1943 0.0347 0.0353 0.1937 0.5084


and so on until FR(100).

FM (1) =


M1 M2 M3

M1 0.9365 0.0591 0.0043
M2 0.4483 0.5516 0
M3 0.9678 0 0



FM (2) =


M1 M2 M3

M1 0.9257 0.0716 0.0026
M2 0.5033 0.4953 0.0013
M3 0.9366 0.0591 0.0043


and so on until FM (100).

3.6. Forecasting.

Widiyantoro et.al. [12] analyze seismic gaps south of Java to assess the poten-
tial for future megathrust earthquakes and tsunamis. The study identifies regions
of accumulated strain, suggesting heightened seismic and tsunami risk, and un-
derscores the need for improved monitoring and disaster preparedness in the area.
Based on the data, the last earthquake occurred on December 25, 2022, in the
Southern Coastal Region of Central Java (R2) with a magnitude of 5.13 Mw (M1).

We have F̂RM (m) as a probabilistic forecasting matrix for 1 to 100 time periods
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for the South Coast of Java using Eqn. (8).

F̂RM (1) =


M1 M2 M3

R1 0.16686 0.00555 0
R2 0.50059 0.01665 0
R3 0 0 0
R4 0.23361 0.00777 0
R5 0.06674 0.00221 0



F̂RM (2) =


M1 M2 M3

R1 0.20814 0.01313 0.00095
R2 0.33856 0.02136 0.00155
R3 0.00958 0.00060 0.000043
R4 0.28772 0.01816 0.00132
R5 0.09071 0.00572 0.000415


and so on until F̂RM (100).
By using Algorithm 1, deterministic forecasting during the future 100 time periods,
for the South Coast of Java zoning is determined as shown in Table 2.

Table 2. Deterministic forecasting matrix in South Coast of Java
Periods South Coast of Java zoning method
1 to 11 R1M1, R2M1, R4M1

12 to 100 R1M1, R4M1, R5M1

Table 3. Real occurrences during next 10 time periods after last
earthquake occurrences in South Coast of Java

Periods South Coast of Java zoning method
1 R1M1

2 R5M1

3 R1M1, R2M1

4 -
5 -
6 R3M1

7 -
8 R5M1

9 -
10 R4M1
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3.7. The Model Validation.

Using Algorithm 2, we obtain the value of MAPE is 4.224%. Based on Table
1, the forecasting power is highly accurate. Moreover, Tables 2 and 3 show that, in
the zoning of the south coast of Java, 57% of the earthquakes have been accurately
forecasted in both location and magnitude. In addition, 43% of the forecasted
earthquakes occurred in nearby areas, but their magnitudes were correct.

4. CONCLUDING REMARKS

This research was conducted by processing earthquake data from the United
States Geological Survey website for the period from January 1, 1910 to December
31, 2022. According to the results, earthquakes occurred between the southern
coastal areas of East Java, Central Java, andWest Java with a magnitude ofM1(5 ≤
Mw < 6) from December 26, 2022 to November 20, 2023. Additionally, earthquakes
occurred between the southern coastal areas of East Java, West Java, and Banten,
with a magnitude of M1(5 ≤ Mw < 6) from November 21, 2023, to December 31,
2030. In conclusion, it is forecasted that there will be no tsunami in the southern
coastal area of Java until 2030. Our model validation using MAPE calculations
indicates a highly accurate forecasting level.
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