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Abstract. Let c be vertex coloring of a connected graph. Define c : V →
{1, 2, . . . , k} such that c(u) ̸= c(v) for adjacent vertices u and v in G. Let Si

be a set of vertices assigned by color i where 1 ≤ i ≤ k, defined as color class.

Let Π = {S1, S2, . . . , Sk} be an ordered partition of V (G) that is induced by colo-

ring c, then the representation of vertex v with respect to Π is called a color code

of v, denoted as cΠ(v), defined as cΠ(v) = (d(v, S1), d(v, S2), . . . , d(v, Sk)), where

d(v, Si) = min{d(v, x)|x ∈ Si} for 1 ≤ i ≤ k. If all distinct vertices of G have dis-

tinct color codes, then c is called a k-locating coloring of G. The locating-chromatic

number is defined as the minimum k such that graph G admits a k-locating coloring,

denoted by χL(G). In this paper, we determine the locating-chromatic number of

the sunflower graph SFn for n ≥ 3.
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1. INTRODUCTION

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G).
For non negative integer k, a sequence of vertices W = v0e1v1e2v2. . . ekvk, such
that v0, vi ∈ V (G) and ei = vi−1vi ∈ E(G) for 1 ≤ i ≤ k is called a (v0, vk)-walk of
G. If there is no vertex repeated in the sequence, then it is called (v0, vk)-path. For
u, v ∈ V (G), the length of the shortest (u, v)-path is called the distance between
u and v. The complete graph, denote as Kn, is a graph in which all vertices are
adjacent to each other.

Locating-chromatic number was introduced by Chartrand et al. [1], com-
bining the concepts of vertex coloring and partition dimension of a graph. The
locating-chromatic number is defined as follows. Let c be a vertex coloring of a
connected graph. Define c : V → {1, 2, . . . , k} such that c(u) ̸= c(v) for adjacent
vertices u and v in G. Let Si be a set of vertices assigned by color i where 1 ≤ i ≤ k,
defined as color class. Let Π = {S1, S2, . . . , Sk} be an ordered partition of V (G)
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that is induced by coloring c, then the representation of vertex v with respect to Π
is called a color code of v, denoted as cΠ(v), defined as

cΠ(v) = (d(v, S1), d(v, S2), . . . , d(v, Sk)), (1)

where d(v, Si) = min{d(v, x)|x ∈ Si} for 1 ≤ i ≤ k. Let c(v) = i, vertex v is called
a dominant vertex if d(v, Si) = 0 and d(v, Sj) = 1 for 1 ≤ i, j ≤ k. If all distinct
vertices of G have distinct color codes, then c is called a k-locating coloring of G.
Then, the locating chromatic number of G is defined as the minimum number of
k colors such that G has k-locating coloring, denoted by χL(G). Chartrand et al.
[1] determined the locating-chromatic number of some graph, such as path, cycle,
double stars, trees, and multipartite complete graph.

There are some studies about determining locating-coloring number of a
graph. In 2013, Purwasih et al. [2] determined the locating-chromatic number
for a subdivision of a wheel on one cycle edge. In the same year, Welyyanti, et al.
[3] determined the locating chromatic number of homogeneous lobster. Then, in
2014, Behtoei et al. [4] determined the locating chromatic number of the join of
graphs, such as the join of path and cycle graph, complete and cycle graph, and
two cycles graph. In 2015, Purwasih et al. [5] has determined the bounds on the
locating-chromatic number for a subdivision of a graph on one edge. In the same
year, Welyyanti et al. [6] determined the locating chromatic number for graphs
with dominant vertices. In two years later, Welyyanti et al. [7] also determined the
locating-chromatic number for graphs with two homogenous components. In 2021,
Irawan et al. [8] has determined the locating-chromatic number of origami graphs.
In the same year, Anti et al. [9] determined the locating-chromatic number of the
join of path and wheel graph. In the next year, Rahmatalia et al. [10] determined
the locating-chromatic number of path split graph, then Sudarsana et al. [11] has
also determined the locating chromatic number for m-shadow of a connected graph.
Subsequently, in the same year, Fakhri Zikra et al. [12] has determined the locating
chromatic number of disjoint union of fan graphs. Then, in 2023, Asmiati et al. [13]
determined the locating chromatic number for certain operation of origami graphs.
In the same year, Welyyanti et al. [14] determined the locating-chromatic number
for certain lobster graph.

In this paper, we study the locating-chromatic number of the sunflower graph
SFn for n ≥ 3. We achieve this by analyzing the maximum number of color com-
binations while considering the coloring constraints for each neighbor of a vertex.
Using these principles, we establish the exact values for χL(SFn) and demonstrate
how the graph’s structural properties influence its locating-chromatic number. Fur-
thermore, we outline the methodology used to derive these results and provide
insights into the broader implications of our findings. Our work contributes to
the understanding of locating-chromatic numbers in structured graph families and
offers directions for further exploration in this area.
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2. SUNFLOWER GRAPH

Let Wn be a wheel on n+ 1 vertices. Denote the central vertex as o and the
vertices on the n-cycle as v0, v1, . . . , vn−1. The sunflower graph SFn is constructed
by adding n vertices w0, w1, . . . , wn−1, and then adding n edges {viwi|0 ≤ i ≤ n−1},
n − 1 edges {vi+1wi|0 ≤ i ≤ n − 2}, and one edge {v0wn−1} [15]. The sunflower
graph SFn has order 2n+ 1 and size 4n. The sunflower graph SFn will be shown
in Figure 1.

Figure 1. SFn graph for n ≥ 3

The vertex and edge sets of the sunflower graph SFn for n ≥ 3 are as follows:

V (SFn) = {o} ∪ {vi, wi|0 ≤ i ≤ n− 1}, (2)

E(SFn) = {vjvj+1|0 ≤ j ≤ n− 2} ∪ {v0vn−1} ∪ {ovi|0 ≤ i ≤ n− 1}
∪{viwi|0 ≤ i ≤ n− 1} ∪ {wjvj+1|0 ≤ j ≤ n− 2}
∪{wn−1v0}, (3)

3. MAIN RESULTS

Let c be a locating-coloring in a connected graph G(V,E). Define c : V (G) →
{1, 2, . . . , k} such that c(u) ̸= c(v) if u is not adjacent to v. The following theorem
gives the locating-chromatic number of the sunflower graph (SFn) for n ≥ 3.
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Theorem 3.1. Let SFn be a sunflower graph for n ≥ 3. Then, the locating-
chromatic number of SFn for n ≥ 3,

χL(SFn) =



4, for n = 3,

5, for 4 ≤ n ≤ 28,

6, for 29 ≤ n ≤ 75,

q, for 1 +
∑3

k=0

(q − 2)!

(k + 1)!(q − (k + 4))!
≤ n ≤

∑3
k=0

(q − 1)!

(k + 1)!(q − (k + 3))!

for q ≥ 7.

Proof. Consider the following cases:

Case 1. n = 3

First, we determine the lower bound of χL(SF3). Since graph W3 is same as
graph K4, and graph W3 is a subgraph of SF3, then it is clear that we need at least
4-locating coloring. Consequently, if we use three colors, then three colors will not
enough for locating coloring of SF3. As a result, χL(SF3) ≥ 4.

Next, we determine the upper bound of χL(SF3). Define c : V → {1, 2, 3, 4},
as follows:

c(v) =


1, for v = v0, w1,

2, for v = v1, w2,

3, for v = v2, w0,

4, for v = o.

The coloring on SF3 will be shown in Figure 2.

Figure 2. The coloring on SF3

Then, we have distinct color codes as follows:

Based on the color codes above, all vertices of SF3 have distinct color codes.
As a result, χL(SF3) ≤ 4. Thus, χL(SF3) = 4.
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cΠ(o) = (1, 1, 1, 0), cΠ(v1) = (1, 0, 1, 1), cΠ(w0) = (1, 1, 0, 2), cΠ(w2) = (1, 0, 1, 2).
cΠ(v0) = (0, 1, 1, 1), cΠ(v2) = (1, 1, 0, 1), cΠ(w1) = (0, 1, 1, 2),

Case 2. 4 ≤ n ≤ 28

First, we determine the lower bound of χL(SFn) for 4 ≤ n ≤ 28. Assume
that there exists 4-locating coloring c on SFn for 4 ≤ n ≤ 28. Without loss of
generality, let c(o) = 4. Since o is adjacent to vi for 0 ≤ i ≤ n − 1, then there are
at least three colors needed to be assigned to each vi. The coloring on vi will be
divided into two subcases:

Subcase 2.1. Vertex vi for 0 ≤ i ≤ n− 1 will be assigned by one of two colors

Without loss of generality, define the coloring of vi, as follows:

c(vi) =

{
1, for even i,

2, for odd i.

Vertex wi for 0 ≤ i ≤ n − 1 can only be assigned by one of two colors, say
color 3 or 4. Let c(wi) = 3. Since d(wi, S1) = d(wi, S2) = 1, d(wi, S3) = 0, and
d(wi, S4) = 2, then to avoid two vertices have the same color code, we can assign
color 3 for only one vertex, and we assign color 4 to the other vertices. It is clear
that wi+1 and wi−1 have the same color code because d(wi+1, Sk) = d(wi−1, Sk)
for every k, 1 ≤ k ≤ 4. Therefore, we have at least two vertices that have the same
color code.

Subcase 2.2. Vertex vi for 0 ≤ i ≤ n− 1 will be assigned by one of three colors

By applying the pigeonhole principle, there are at least two vertices that have
the same color, say vertices vx and vy.

Without loss of generality, let c(vx) = c(vy) = 1. Now, we can consider three
possibilities: either vx and vy are both dominant vertices, one of them is dominant
vertex, or neither of them are dominant vertices. Then, those will be divided into
these subcases, as follows:

Subcase 2.2.1. Either vx and vy are both dominant vertices

We can clearly see that both vy and vy are dominant vertices. Hence,
cΠ(vx) = cΠ(vy) = (0, 1, 1, 1).

Subcase 2.2.2. One of vx or vy is dominant vertex

Let vy be a non-dominant vertex, then we have c(vy−1) = c(vy+1) ∈ {2, 3}
and c(wy) = c(wy−1) = 4. Without loss of generality, let c(vy−1) = c(vy+1) = 2.
Consequently, we have d(wy, S1) = d(wy, S2) = d(wy−1, S1) = d(wy−1, S2) =
1, d(wy, S3) ∈ {2, 3}, d(wy−1, S3) ∈ {2, 3}, and d(wy, S4) = d(wy−1, S4) = 0.
Since d(wy, S3) ∈ {2, 3} and d(wy−1, S3) ∈ {2, 3}, then we have some possible
colorings for vy−2, vy+2, wy−2, and wy+1. If d(wy, S3) = 2, then c(vy+2) = 3 or
c(wy+1) = 3. Alternatively, if d(wy, S3) = 3, then c(vy+2) ̸= c(wy+1) ̸= 3. Sim-
ilarly, if d(wy−1, S3) = 2, then c(vy−2) = 3 or c(wy−2) = 3. On the other hand,
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if d(wy−1, S3) = 3, then c(vy−2) ̸= c(wy−2) ̸= 3. Now, we can consider three
possibilities, as follows:

(1) Let (c(vy+2) = 3 or c(wy+1) = 3) and (c(vy−2) = 3 or c(wy−2) = 3)
Without loss of generality, let c(vy+2) = c(vy−2) = 3. Since d(wy−1, S3) =

2, then see that wy and wy−1 have the same color code, which is (1, 1, 2, 0).
Hence, cΠ(wy) = cΠ(wy−1) = (1, 1, 2, 0).

(2) Let (c(vy+2) = 3 or c(wy+1) = 3) and (c(vy−2) ̸= c(wy−2) ̸= 3), and vice
versa

Without loss of generality, let c(vy+2) = 3. Since d(wy, S3) = 2 and
d(wy−1, S3) = 3, then we have c(vy−3) ∈ {2, 3} and c(wy−3) ∈ {1, 2, 3, 4}\
{c(vy−2), c(vy−3)}. Then, consider the vertex wy−2. We have d(wy−2, S3) ∈
{2, 3}. If d(wy−2, S3) = 2, then c(vy−3) = 3 or c(wy−3) = 3. In other hand,
if d(wy−2, S3) = 3, then c(vy−3) ̸= c(wy−3) ̸= 3. Then, those will be
explained in these following cases:
(a) If d(wy−2, S3) = 2, then c(vy−3) = 3 or c(wy−3) = 3

Without loss of generality, let c(vy−3) = 2 and c(wy−3) = 3. Conse-
quently, we have two vertices that have the same color code, which are
wy−2 and wy. Thus, cΠ(wy) = cΠ(wy−1) = (1, 1, 2, 0).

(b) If d(wy−2, S3) = 3, then c(vy−3) ̸= c(wy−3) ̸= 3
Without loss of generality, let c(vy−3) = 2 and c(wy−3) = 4. Then,
see wy−1 and wy−2. Those vertices have the same color code, which is
(1, 1, 3, 0). Therefore, cΠ(wy−1) = cΠ(wy−2) = (1, 1, 3, 0).

(3) Let c(vy+2) ̸= c(wy+1) ̸= c(vy−2) ̸= c(wy−2) ̸= 3
Without loss of generality, let c(vy+2) = c(vy−2) = 1, c(wy−2) = c(wy+1) =

4, and c(vz) = 3 for 0 ≤ z ≤ n− 1, z /∈ {y − 2, y − 1, y, y + 1, y + 2}. Since
d(wy, S3) = d(wy−1, S3) = 3, then wy and wy−1 have the same color code,
which is (1, 1, 3, 0). Hence, cΠ(wy) = cΠ(wy−1) = (1, 1, 3, 0).

Subcase 2.2.3. Neither vx nor vy are dominant vertices

To demonstrate that this case also contains at least two vertices with the
same color code, we follow a similar approach as in Case 2. Considering vy as a
non-dominant vertex, the argument parallels the previous case, wherein we showed
that either vx or vy served as non-dominant vertices. Hence, by adopting the same
reasoning, we conclude that there are at least two vertices with identical color codes
in this possibility as well.

Based on Subcase 2.1 and Subcase 2.2, we have shown that there are at least
two vertices with the same color code. Consequently, this finding contradicts the
definition of locating-coloring so four colors are insufficient for locating-coloring on
SFn for 4 ≤ n ≤ 28. Thus, χL(SFn) ≥ 5 for 4 ≤ n ≤ 28.

Next, we determine the upper bound of χL(SFn) for 4 ≤ n ≤ 28. Assume
that there exists 5-locating coloring c on SFn for 4 ≤ n ≤ 28. Define c : V →
{1, 2, 3, 4, 5} and Π = {S1, S2, S3, S4, S5} be a partition on V (SFn). Without loss
of generality, let c(vi) = a, c(vi+1) = b, and c(o) = 5. Then, we have d(vi, Sa) =
0, d(vi, Sb) = 1, d(vi, S5) = 1, and d(vi, Sk) ∈ {1, 2} for 1 ≤ a, b, k ≤ 4. Since the
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color codes of each vertex are distinct, then we can count every possible color code
by arranging the coordinates except d(vi, S5), as follows:

Table 1. The number of possible distinct color codes on vi if
χL(SFn) = 5

χL(SFn)
cΠ(vi) The number of possible

distinct color codes on vid(vi, Sa) d(vi, Sb) d(vi, Sk) d(vi, S5)

5

0 1 1,1 1 4!
1!3!0! = 4

0 1 1,2 1 4!
1!2!1! = 12

0 1 2,2 1 4!
1!1!2! = 12

Total 28

According to Table 1, consider the first row where d(vi, Sa) = 0, d(vi, Sb) =
1, d(vi, Sk) = 1, and d(vi, S5) = 1 for 1 ≤ a, b, k ≤ 4. By arranging the coordinate
except for d(vi, S5) = 1, we obtain four possible distinct color codes for vi, such
as (0, 1, 1, 1, 1), (1, 0, 1, 1, 1), (1, 1, 0, 1, 1), and (1, 1, 1, 0, 1). It is same for the other
rows as well. Then, the number of possible distinct color codes on vi, are 28. Based
on the definition of locating-coloring, it is ensured that every vertex has a unique
color code. Consequently, since there are 28 possible distinct color codes on vi
from SFn, then there can be a maximum of 28 vertices on vi, and each vertex has
a different color code. Since the number of vi is same as the number of wi in SFn,
then there can also be a maximum of 28 vertices on wi. As a result, five colors are
still sufficient for locating-coloring in SFn when n ≤ 28.

Based on the upper bound and the lower bound of χL(SFn), we have χL(SFn) =
5 for 4 ≤ n ≤ 28.

Consider a 5-locating coloring of SF28. Define c : V → {1, 2, 3, 4, 5}, as
follows:

c(o) = 5,

c(vi) =


1, for i = 0, 4, 6, 12, 14, 20, 22

2, for i = 3, 5, 7, 16, 18, 25, 27,

3, for i = 1, 9, 11, 13, 15, 24, 26,

4, for i = 2, 8, 10, 17, 19, 21, 23,

c(wi) =



1, for i = 2,

2, for i = 1, 19,

3, for i = 3,

4, for i = 0, 11,

5, for i otherwise.

The coloring on SF28 will be shown in Figure 3

Then, we have distinct color codes, as follows:
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Figure 3. The 5-locating coloring on SF28

Table 2: The color codes of V (SF28)

cΠ(o) = (1, 1, 1, 1, 0), cΠ(v18) = (2, 0, 2, 1, 1), cΠ(w9) = (3, 3, 1, 1, 0),
cΠ(v0) = (0, 1, 1, 1, 1), cΠ(v19) = (1, 1, 2, 0, 1), cΠ(w10) = (2, 3, 1, 1, 0),
cΠ(v1) = (1, 1, 0, 1, 1), cΠ(v20) = (0, 1, 2, 1, 1), cΠ(w11) = (1, 3, 1, 0, 2),
cΠ(v2) = (1, 1, 1, 0, 1), cΠ(v21) = (1, 2, 2, 0, 1), cΠ(w12) = (1, 3, 1, 2, 0),
cΠ(v3) = (1, 0, 1, 1, 1), cΠ(v22) = (0, 2, 2, 1, 1), cΠ(w13) = (1, 3, 1, 3, 0),
cΠ(v4) = (0, 1, 1, 2, 1), cΠ(v23) = (1, 2, 1, 0, 1), cΠ(w14) = (1, 2, 1, 3, 0),
cΠ(v5) = (1, 0, 2, 2, 1), cΠ(v24) = (2, 1, 0, 1, 1), cΠ(w15) = (2, 1, 1, 2, 0),
cΠ(v6) = (0, 1, 2, 2, 1), cΠ(v25) = (2, 0, 1, 2, 1), cΠ(w16) = (3, 1, 2, 1, 0),
cΠ(v7) = (1, 0, 2, 1, 1), cΠ(v26) = (2, 1, 0, 2, 1), cΠ(w17) = (3, 1, 3, 1, 0),
cΠ(v8) = (2, 1, 1, 0, 1), cΠ(v27) = (1, 0, 1, 2, 1), cΠ(w18) = (2, 1, 3, 1, 0),
cΠ(v9) = (2, 2, 0, 1, 1), cΠ(w0) = (1, 2, 1, 0, 2), cΠ(w19) = (1, 0, 3, 1, 2),
cΠ(v10) = (2, 2, 1, 0, 1), cΠ(w1) = (2, 0, 1, 1, 2), cΠ(w20) = (1, 2, 3, 1, 0),
cΠ(v11) = (1, 2, 0, 1, 1), cΠ(w2) = (0, 1, 2, 1, 2), cΠ(w21) = (1, 3, 3, 1, 0),
cΠ(v12) = (0, 2, 1, 1, 1), cΠ(w3) = (1, 1, 0, 2, 2), cΠ(w22) = (1, 3, 2, 1, 0),
cΠ(v13) = (1, 2, 0, 1, 1), cΠ(w4) = (1, 1, 2, 3, 0), cΠ(w23) = (2, 2, 1, 1, 0),
cΠ(v14) = (0, 2, 1, 2, 1), cΠ(w5) = (1, 1, 3, 3, 0), cΠ(w24) = (3, 1, 1, 2, 0),
cΠ(v15) = (1, 1, 0, 2, 1), cΠ(w6) = (1, 1, 3, 2, 0), cΠ(w25) = (3, 1, 1, 3, 0),
cΠ(v16) = (2, 0, 1, 1, 1), cΠ(w7) = (2, 1, 2, 1, 0), cΠ(w26) = (2, 1, 1, 3, 0),
cΠ(v17) = (2, 1, 2, 0, 1), cΠ(w8) = (3, 2, 1, 1, 0), cΠ(w27) = (1, 1, 2, 2, 0),

Based on the color codes above, all vertices of SF28 have different color codes.
Thus, χL(SF28) = 5.

Then, we determine the locating-chromatic number for n ≥ 29 by determining
the number of possible color codes for χL(SFn) = q for q ≥ 6 that is divided into
two cases, as follows.
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Case 1. χL(SFn) = 6 for 29 ≤ n ≤ 75

Let c be a locating-coloring in SFn. Define c : V → {1, 2, 3, 4, 5, 6} and
Π = {S1, S2, S3, S4, S5, S6} be a partition on V (SFn). Without loss of generality,
let c(vi) = a, c(vi+1) = b, and c(o) = 6. Then, we have d(vi, Sa) = 0, d(vi, Sb) =
1, d(vi, S6) = 1, and d(vi, Sk) ∈ {1, 2} for 1 ≤ a, b, k ≤ 5. Since the color codes of
each vertex are distinct, then we can count every possible color code by arranging
the coordinates except d(vi, S6), as follows:

Table 3. The number of possible distinct color codes on vi if
χL(SFn) = 6

χL(SFn)
cΠ(vi) The number of possible

distinct color codes on vid(vi, Sa) d(vi, Sb) d(vi, Sk) d(vi, S6)

6

0 1 1,1,1 1 5!
1!4!0! = 5

0 1 1,1,2 1 5!
1!3!1! = 20

0 1 1,2,2 1 5!
1!2!2! = 30

0 1 2,2,2 1 5!
1!1!3! = 20

Total 75

According to Table 3, consider the first row where d(vi, Sa) = 0, d(vi, Sb) =
1, d(vi, Sk) = 1, and d(vi, S6) = 1 for 1 ≤ a, b, k ≤ 5. By arranging the coordinate
except for d(vi, S6) = 1, we obtain five possible distinct color codes for vi, such as
(0, 1, 1, 1, 1, 1), (1, 0, 1, 1, 1, 1), (1, 1, 0, 1, 1, 1), (1, 1, 1, 0, 1, 1) and (1, 1, 1, 1, 0, 1). It is
same for the other rows as well. Then, the number of possible distinct color codes
on vi, are 75. Based on the definition of locating-coloring, it is ensured that every
vertex has a unique color code. Consequently, since there are 75 possible distinct
color codes on vi from SFn, then there can be a maximum of 75 vertices on vi,
and each vertex has a different color code. Since the number of vi is same as the
number of wi in SFn, then there can also be a maximum of 75 vertices on wi. As
a result, six colors are still sufficient for locating-coloring in SFn when n ≤ 75.
Based on previous case, since χL(SFn) = 5 for 4 ≤ n ≤ 28, then χL(SFn) = 6 for
29 ≤ n ≤ 75. Hence, χL(SFn) = 6 for 29 ≤ n ≤ 75.

Case 2. χL(SFn) = q for

1 +
∑3

k=0

(q − 2)!

(k + 1)!(q − (k + 4))!
≤ n ≤

∑3
k=0

(q − 1)!

(k + 1)!(q − (k + 3))!
, for q ≥ 7

Let c be a locating-coloring in SFn. Define c : V → {1, 2, . . . , q} and Π =
{S1, S2, . . . , Sq} be a partition on V (SFn). Without loss of generality, let c(vi) =
a, c(vi+1) = b, and c(o) = q. Then, we have d(vi, Sa) = 0, d(vi, Sb) = 1, d(vi, Sq) =
1, and d(vi, Sk) ∈ {1, 2} for 1 ≤ a, b, k ≤ q − 1. Since the color codes of each
vertex are distinct, then we can count every possible color code by arranging the
coordinates except d(vi, Sq), as follows:
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Table 4. The number of possible distinct color codes on vi if
χL(SFn) = q

χL(SFn)
cΠ(vi) The number of possible

distinct color codes on vid(vi, Sa) d(vi, Sb) d(vi, Sk) d(vi, Sq)

7

0 1 1,1,1,2 1 6!
1!4!1!

0 1 1,1,2,2 1 6!
1!3!2!

0 1 1,2,2,2 1 6!
1!2!3!

0 1 2,2,2,2 1 6!
1!1!4!

8

0 1 1,1,1,2,2 1 7!
1!4!2!

0 1 1,1,2,2,2 1 7!
1!3!3!

0 1 1,2,2,2,2 1 7!
1!2!4!

0 1 2,2,2,2,2 1 7!
1!1!5!

...
...

...
...

...
...

q

0 1 1,1,1,2,...,2 1 (q−1)!
1!4!(q−6)!

0 1 1,1,2,2,...,2 1 (q−1)!
1!3!(q−5)!

0 1 1,2,2,2,...,2 1 (q−1)!
1!2!(q−4)!

0 1 2,2,2,2,...,2 1 (q−1)!
1!1!(q−3)!

Based on Table 4, consider the first row where χL(SFn) = 7, d(vi, Sa) =
0, d(vi, Sb) = 1, d(vi, Sk) = 1, and d(vi, S7) ∈ {1, 2} for 1 ≤ a, b, k ≤ 6. By arranging
the coordinate except for d(vi, S7) = 1, we obtain 6!

1!4!1! or 30 possible distinct color
codes for vi. It is same as the other rows as well. The number of possible distinct

color codes on vi is obtained by summing
6!

1!4!1!
+

6!

1!3!2!
+

6!

1!2!3!
+

6!

1!1!4!
. Then,

we have 180 distinct color codes on vi if χL(SFn) = 7. Similarly, this holds true
for χL(SFn) = q where q ≥ 7.

Then, consider the number of color codes when χL(SFn) = q, for q ≥ 7. By
induction, the number of possible distinct color codes on vi when χL(SFn) = q, are

(q − 1)!

1!3!(q − 5)!
+

(q − 1)!

1!2!(q − 4)!
+

(q − 1)!

1!2!(q − 4)!
+

(q − 1)!

1!1!(q − 3)!

=

3∑
k=0

(q − 1)!

(k + 1)!(q − (k + 3))!
(4)

Based on the definition of locating-coloring, it is ensured that every vertex

has a unique color code. Consequently, since there are
∑3

k=0

(q − 1)!

(k + 1)!(q − (k + 3))!
possible distinct color codes on vi from SFn, then there can be a maximum of
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∑3
k=0

(q − 1)!

(k + 1)!(q − (k + 3))!
vertices on vi, and each vertex has a different color

code. Since the number of vi is same as the number of wi in SFn, then there

can also be a maximum of

3∑
k=0

(q − 1)!

(k + 1)!(q − (k + 3))!
vertices on wi. As a result,

q colors for q ≥ 7 are still sufficient for q-locating-coloring in SFn when n ≤∑3
k=0

(q − 1)!

(k + 1)!(q − (k + 3))!
.

Then, let χL(SFn) = q − 1, for q ≥ 7. Based on Equation 4, the maximum
number of possible distinct color codes on vi and wi are

3∑
k=0

((q − 1)− 1)!

(k + 1)!((q − 1)− (k + 3))!
=

3∑
k=0

(q − 2)!

(k + 1)!(q − (k + 4))
(5)

Therefore, based on Equation 4 and Equation 5, we can conclude that q colors
are still sufficient for q-locating coloring in SFn if

1 +
3∑

k=0

(q − 2)!

(k + 1)!(q − (k + 4))
≤ n ≤

3∑
k=0

(q − 1)!

(k + 1)!(q − (k + 3))
.

Thus, we have χL(SFn) = q for

1 +
∑3

k=0

(q − 2)!

(k + 1)!(q − (k + 4))!
≤ n ≤

∑3
k=0

(q − 1)!

(k + 1)!(q − (k + 3))!
, for q ≥ 7. ■

4. CONCLUDING REMARKS

In this paper, we have determined that the locating-chromatic number of the
sunflower graph, as follows:

χL(SFn) =



4, for n = 3,

5, for 4 ≤ n ≤ 28,

6, for 29 ≤ n ≤ 75,

q, for 1 +
∑3

k=0

(q − 2)!

(k + 1)!(q − (k + 4))!
≤ n ≤

∑3
k=0

(q − 1)!

(k + 1)!(q − (k + 3))!

for q ≥ 7.
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