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Abstract. A tree of minimum size in an edge-colored connected graph G is a
rainbow Steiner tree if no two edges of G are colored the same. For an integer k,
the strong k-rainbow index srzj(G) of G is the smallest number of colors required
in an edge-coloring of G so that there exists a rainbow Steiner tree connecting every
k-subset S of V(G). We focus on k = 3. It is obvious that srz3(G) < ||G|| where
|G|l denotes the size of G. It has been proven that srz3(Ty) = ||Th||. This paper
investigates the behavior of the srzs(Ty,) under the addition of at least one edge
to T,. We establish sharp upper bounds and exact values of the srz3 for unicylic
and bicyclic graphs. Our results show that srz3(G) = ||G|| if G is a unicyclic graph
with girth 7 or at least 9. In all other cases, where G is either a unicylic graph or
bicyclic graph, it holds that srz3(G) < ||G]|.

Key words and Phrases: cycle, rainbow Steiner tree, strong 3-rainbow index, tree.

1. INTRODUCTION

Graph theory provides a powerful framework for modeling and analyzing com-
munication networks, where reliability, security, and efficiency are crucial. Various
coloring concepts have been proposed to ensure that networks can support secure
and interference-free communication. One such concept is the strong k-rainbow
index of a graph, introduced by Awanis and Salman [I], which measures the mini-
mum number of colors needed to color the edges of a connected graph so that every
set of k vertices is connected by a rainbow Steiner tree—a tree of minimum size
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whose edges have distinct colors. This parameter is closely tied to combinatorial
optimization and connectivity theory, particularly through its relation to Steiner
trees.

In the case of the strong 3-rainbow index, the aim is to guarantee minimum
rainbow connectivity for every three vertices of a graph. When interpreted in a
network model, vertices represent devices such as servers or routes, while edges
represent direct communication links between these devices. Assigning distinct
colors to the edges of a Steiner tree can be viewed as assigning different frequency
channels or encryption keys to ensure interference-free and secure multi-terminal
communication. Beyond its practical relevance, determining a strong 3-rainbow
index also yields theoretical insights into how cycle constraints and structural prop-
erties of a graph influence its rainbow connectivity requirements. By minimizing
the number of colors used while maintaining strong connectivity properties, the
strong 3-rainbow index contributes to the efficient use of network resources.

Before we discuss the formal definitions of a strong k-rainbow index, the
readers are advised to understand the formal definitions of a k-rainbow index first.
Let G be a connected graph of order n > 3 that admits an edge-coloring. The size
of G is denoted by ||G||. A tree in G is a rainbow tree if all edges of the tree are
colored with distinct colors. Let k be an integer with 2 < k < n. In this paper,
we always consider S as a k-subset of V(G). The k-rainbow index rxy(G) of G is
the smallest number of colors required in an edge-coloring of G so that every set
S in G is connected by a rainbow tree. The 2-rainbow index of G is also known
as the rainbow connection number rc(G) of G [2]. Hence, it is easy to see that
re(G) = rze(G) < rzs(G) < ... <rz,(G).

Chakraborty et al. in [3] proved a conjecture given by Caro et al. [4] which
states that computing the rc of a graph is an NP-Hard problem. Hence, it is more
difficult to compute the rx3 of a graph. Some previous researchers studied the
upper bounds for rx3 of graphs (e.g. [5, [0 [7]), the ra3 of some graphs and some
graph operations (e.g., [8 [6] @, 10, [I1]), and the characterization of graphs G with
certain values of rz3(G) (e.g., [9,[12]). We refer to [I3|[14] for some detailed surveys
on 3-rainbow index.

Later, Awanis and Salman [I] proposed the concept of a strong k-rainbow
index. A tree of minimum size in G that connects S is called a Steiner S-tree and
the minimum size is defined as the Steiner distance d(S) of S. The Steiner {u,v}-
tree is also known as the u — v geodesic [2]. The strong k-rainbow index srxy(G)
of G is the smallest number of colors required in an edge-coloring of G so that
every set S in G is connected by a rainbow Steiner S-tree. Such an edge-coloring
of G is called a strong k-rainbow coloring of G. The strong 2-rainbow index of G
is also known as the strong rainbow connection number src(G) of G [2]. Awanis
and Salman [I] provided sharp lower and upper bounds for the srzs of a connected
graph G, that is

sdiamy(G) < rap(G) < srap(G) < |G|, (1)

where sdiamy,(G) denotes the k-Steiner diameter of G and is defined as sdiamy(G) =
max{d(S) : S is a k-subset of G}.



In the same paper, Awanis and Salman [I] established the edge-coloring rules
for connected graphs containing at least two bridges. Let e; = ujv1 and es = usv9
be these two bridges. Since G—e; —es consists of three components, say G1, G2, and
G3, without loss of generality, we may assume that u; € V(Gy), v1,us € V(G2),
and vy € V(G3). Under this condition, any rainbow Steiner tree connecting a
set S of three vertices that includes vertices u; and vs must necessarily contain
both bridges e; and e3. This directly leads to Observation According to this
observation and Eq. , Awanis and Salman further established that srzs of trees
is equal to its size, as stated in Theorem

Observation 1.1. [I] Let G be a strong 3-rainbow colored connected graph of order
n > 3. Ife and f are any two bridges of G, then e and f are colored with distinct
colors.

Theorem 1.2. [I] For a tree T,, of order n > 3, srxs(T,) = |Tn|| =n — 1.

Many researchers have investigated the srxs of graphs resulting from some
graph operations, such as some certain graphs and their amalgamation [I], the
edge-amalgamation of some graphs [15], the comb product of a tree and a connected
graph [I6], and the edge-comb product of a path and a connected graph [17]. In
addition, we are also interested in exploring the characteristics of graphs G with
srxs(G) = 2, as presented in [18].

Since a tree is an acyclic connected graph, adding even a single edge neces-
sarily creates a graph that contains at least one cycle. Cycles, especially those with
small girths, are of particular interest because they generate alternative Steiner
trees between three vertices, which may affect the existence and structure of rain-
bow Steiner trees. Therefore, adding one or two edges to a tree increases the graph’s
connectivity and redundancy. These structural changes may impact the minimum
number of colors required to ensure strong 3-rainbow connectivity.

A natural question then arises: What happens to the srxzs when at least
one edge is added to a tree? Specifically, does the srxs of the resulting graph
remain equal to its size? Motivated by this, the present study investigates the
srxg of graphs containing some cycles, with a particular focus on unicyclic and
bicyclic graphs. First, we establish an upper bound for the srzs of these graphs
and demonstrate that the bound is sharp. These results are presented in Section [2]
Subsequently, we determine the exact values of the sras for unicyclic and bicyclic
graphs, which are presented in Sections [3] and [4] respectively.

2. SHARP UPPER BOUND FOR THE STRONG 3-RAINBOW INDEX
OF GRAPHS CONTAINING AT MOST TWO CYCLES

Several notations are defined in this paper as follows. For an integer z with
a <z <b,let [a,b] denotes a set of all integers z. For an integer ¢ with 1 < ¢ < 2,
let

e (G; denotes a connected graph of order n > 3 containing exactly ¢ cycles,



o Uy = viv? ...
in Gt,
e X denotes a set of all bridges in G, and

e ¢(U) denotes a set of all colors assigned to the edges in U C E(G,).

Note that if ¢ = 2, then there exists exactly one path connecting the two cycles in
G5. We denote P := v} — vd as such a path. Since X denotes a set of all bridges
in G, for t € [1,2], it follows from Observation that

vl-givil for 1 <14 <t denotes a cycle of length g; > 3 contained

(X)) = 1Gell = gs- (2)
i=1

Now, we are ready to provide an upper bound of the srz3(G;) for t € [1,2].
This result is given in the following theorem.

Theorem 2.1. Forn > 3 and t € [1,2], let Gy be a connected graph of order n
containing exactly t cycles of length at least 3. Then

sreg(Gy) < ||Gel| —t + 1.

Proof. For t =1, it follows from Eq. that sraxs(Gy) < |Gy

For t = 2, we show that sra3(Gs) < ||Gz]| — 1 by defining a strong 3-
rainbow coloring ¢ : E(G2) — [1,]|Gz|| — 1], which can be obtained by defining
c(vlL%HlvlL%lHQ) = C(UQL%QHIUQL%QHQ) = 1 and assigning colors 2,3, ..., ||Gz|| — 1
to the remaining ||Gz|| — 2 edges of G2. Now, we show that every three vertices of
G is connected by a rainbow Steiner tree by considering the following properties.

e For each i € [1,2], all edges of Cy, have distinct colors. This ensures that
for every three vertices of Cy, for i € [1,2], there exists a rainbow Steiner
tree connecting them.

o All edges of Cy, and C, are colored with distinct colors, except for edges
vlL%lHlvlL%HQ and v%%ﬁlv%%ﬂﬁ, which are both colored with 1. This

implies that for distinct 4, j € [1,2], p € [1,¢;], and ¢, € [1, g;], there exist

a rainbow v} —v? geodesic T; in Cy, and a rainbow Steiner {v}, v, v7 }-tree

T; in Cy, such that c(E(T;)) N c(E(T;)) = 0. Therefore, tjherje eicists a
rainbow Steiner tree connecting one vertex of Cy, and two vertices of Cy;.
o If G5 contains bridges, then all bridges of G2 are colored with distinct colors
and ¢(X) Nc(E(Cy,)) = 0 for all i € [1,2]. Consequently, for every three
vertices of G, where at least one of them is not a vertex of C, for i € [1,2],

there exists a rainbow Steiner tree connecting them.
Thus, the theorem holds. [l

The upper bound provided in Theorem is sharp. Theorem [2.5] shows that
sre3(Gy) = |G| — t 4+ 1, where G; is a connected graph containing exactly ¢ odd
cycles of length at least 7. Before we proceed to this theorem, we first need several
preliminary results as given in Theorem [2.2] and Lemmas [2.3] and



Theorem 2.2. [1] For a cycle C,, of order n > 3,

2, n=23;
sre3(Cp) =4 n—2, ne{4,56,8};
n, n=7o0rn2>09.

According to theorem above, it is not difficult to define a strong 3-rainbow
coloring of C,, for n = 7 or n > 9, since all edges of the cycle can simply be assigned
with distinct colors. The challenge lies in defining such an edge-coloring for smaller
values of n, where fewer colors must be used while still maintaining the existence
of rainbow Steiner trees. Figure [1| below illustrates the strong 3-rainbow colorings
of C,, for n = 3,4,5,6,8. Since the graphs studied in this paper contain at most
two cycles, and the rainbow Steiner tree connecting every three vertices within the
cycle must lies in it, these edge-coloring illustrations are essential to guarantee the
existence of rainbow Steiner trees that support the results established in Sections
3 and 4.

FIGURE 1. Strong 3-rainbow colorings of C3, Cy, Cs5, Cg, and Cg

Lemma 2.3. Forn >5 and g > 4, let G be a strong 3-rainbow colored connected
graph of order n containing a cycle Cy. If e € E(Cy) and f is an arbitrary bridge
of G, then e and f are colored with distinct colors.

Proof. Let Cy := viva...v4v1. Suppose that there exist e € E(Cy) and a bridge
f € E(G) so that e and f are colored with the same color. Let e = vyvp41
for p € [1,¢9] and f = =zy, and assume that d(C,,z) < d(C,,y). Observe that
every rainbow Steiner {vp,v,11,y}-tree must contain edges e and f, which is a
contradiction since these two edges have the same color. O

To assist the reader’s understanding, an illustration of Lemma|2.3|is provided
in Figure [2|
9 9
TS

For further discussion, we always let A; = E(Cy,) \ if g; is

9 g 949 %
odd or A; = E(Cy,) \ {v;? v;? +1, v, 2 +2} if g; is even, for i € [1,2].

3 K2

Lemma 2.4. Forn > 5, let G5 be a bicyclic graph of order n containing two cycles
Cy, and Cy, of length at least 3. If c is a strong 3-rainbow coloring of Ga, then



FIGURE 2. An illustration of Lemma [2.3] where edges e and f are
colored with distinct colors

(i) |c(4:)] > gi — 2 for g € [3,4] or even g; > 10, |c(4;)] > g;i — 3 for
gi € {5,6,8}, and |c(A;)| > gi — 1 for odd g; > 7;
(ii) c¢(A;) Ne(E(Cy,)) =0 for distinct i,j € [1,2] and g; > 4.

Proof.

(i) For g; = 3, it is clear that |c(4;)| > 1. For g; € [4,5], since two adjacent
edges should have distinct colors, we have |c(A;)| > 2. For g; = 6, by

considering {v},v3,v%}, we obtain that no edge of path vivZvlv? is colored

1) 7)) T (2 2 A2

the same. A similar argument applies to {v},vZ,v?}. However, edges v?v?

and v?v¢ may be colored the same. Thus, |¢(4;)| > 3. For g; = 8, suppose

that |c(A4;)| < 4. First, by considering {v},v3,v7}, we obtain that no

edge of path v!v¥vlvZv? is colored the same, which implies we have used

all colors in ¢(4;). Next, by considering {v?, v}, v$} and {v2,0%, 08}, we
6,7

obtain that c(v3v}) = c(v/vf) and c(vév]) = c(v?v?). However, there is no

rainbow Steiner {vZ, vy, v]}-tree, a contradiction. For odd g; > 7 or even
¢i > 10, since no edge of Cy, is colored the same by Theorem we have
|e(A;)] > g: — 1 or |c(4;)| > gi — 2, respectively.

(ii) Let 4,57 € [1,2] with ¢ # j and g; > 4. Let e = zy be an arbitrary
edge of Cy,. Observe that every rainbow Steiner {z,y, v} }-tree for p €
(1] +1, %] +2]if g;isodd or p € {4, % + 2} if g; is even must contain
edge e and a v} — vl geodesic, implying that ¢(A4;) N c(E(Cy,)) = 0.

O

To assist the reader’s understanding, an illustration of Lemma[2.4]is provided
in Figure [3]

Now, we are ready to prove the sharpness of the upper bound in Theorem
as given in the following theorem.

Theorem 2.5. Forn > 3 and t € [1,2], let G; be a connected graph of order n
containing exactly t odd cycles of length at least 7. Then, srxz3(Gi) = ||Ge|| —t + 1.

Proof. For each i € [1,¢], let C,, be an odd cycle of length g; > 7 contained in G;.
It follows from Theorem that srzs(Gt) < ||G¢]| —t + 1. For the lower bound,
suppose that sraxs(Gy) < |G| —t. Then there exists a strong 3-rainbow coloring
c: E(Gy) — [1,||Ge|| — t]. Let Y be the set of colors assigned to the edges of Cj,
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FIGURE 3. An illustration of Lemma [2.:4] where the shaded grey
area represents the set A; for the cases when (a) g; is odd and (b)
g; 1S even

for all ¢ € [1,¢]. According to Lemma ¢(X)NY = 0. Thus, it follows from Eq.
that |Y| < 22:1 g; —t. Now, we distinguish two cases.

Case 1. t=1.

It means ¢ : E(Gy) — [1,||G1]| = 1]. If G; = C,, then there are at least
two edges of C,, that are colored the same, contradicting Theorem 2.2 If G is a
unicyclic graph and not a cycle, then we have |Y| < g; — 1. This implies there are
at least two edges of Cy, that are colored the same, contradicting Theorem

Case 2. t = 2.

It means ¢ : E(G3) — [1,||G2|| — 2]. Note that Y] < g1 + g2 — 2. However, it
follows from Theorem and Lemma that [¢(A1) Uc(E(Cy,))| = g1 + g2 — 1,
which is impossible. O

Following the result above, an immediate question arises: What is the srzs(Gy)
for G; that does not satisfy the premise of Theorem [2.5]? The answers to this ques-
tion are given in Sections [3] and [

3. THE STRONG 3-RAINBOW INDEX OF UNICYCLIC GRAPHS

Let G; be a unicyclic graph of order n > 3 and girth ¢g; > 3. Chartrand et
al. [6] have determined the rx3 of unicyclic graphs as follows.

Theorem 3.1. [6] For n,g; > 3, let Gy be a unicyclic graph of order n and girth
g1- Then,

n —2, otherwise.

pr(Gl):{ n—1, Z.)“91237



Motivated by the result above, we are interested in studying the srzs of
unicyclic graphs. Awanis and Salman in [I] have determined the srzs of cycles (see
Theorem [2.2). Hence, in this section, we determine the srxs of unicyclic graphs
that is not a cycle as given in the following theorem.

Theorem 3.2. Forn >4 and g1 > 3, let G1 be a unicyclic graph of order n and
girth g1 that is not a cycle. Then,

srez(Gr) =< n—2, ifg €{4,5,6,8};
n, otherwise.

Proof. Note that ||G1]| = n. It follows from Eq. and Theorem that
srx3(Gy1) > n—1 for gy = 3 and srx3(Gy) > n — 2 for g1 € {4,5,6,8}. Meanwhile
for gy = 7 or g1 > 9, it follows from Eq. , Theorem and Lemma that
srxs3(Gy) > n.

Next, we prove the upper bound. For each i € [1,n — ¢1], let e; be the -
th bridge of Gi. As srzs(Cs) = 2, srx3(Cy,) = g1 — 2 for g1 € {4,5,6,8}, and
sraz(Cy,) = g1 for g1 =Tor g1 > 9 by Theorem there exists a strong 3-rainbow
coloring ¢’ of Cy,. Thus, we define a strong 3-rainbow coloring of G as follows.

() = d(e), ifee E(Cy);
aer = srx3(Cy,) +1, if e=e; for each i € [1,n — g1].

Now, we show that every three vertices of G; is connected by a rainbow
Steiner tree by considering the following properties.

e All edges of C,, are colored according to the edge-coloring rule ¢’. This
guarantees that for every three vertices of C,, there exists a rainbow
Steiner tree connecting them.

e All bridges of Gy are colored with distinct colors and ¢(X)Ne(E(Cy,)) = 0.
Consequently, for every three vertices of G1, where at least one of them is
not a vertex of C,, there exists a rainbow Steiner tree connecting them.

O

As an example, let G; be an unicylic graph of order n = 12 and girth g; = 6.
According to Theorem we have sra3(Cg) = 4. Let ¢’ be a strong 3-rainbow col-
oring of Cg that follows the edge-coloring pattern illustrated in Figure[I] Based on
the edge-coloring ¢ defined in the proof of theorem above, we assign the first 4 col-
ors to the edges of Cg using the edge-coloring ¢/, and then assign colors 5,6, ...,10
to the bridges of G;. As a result, we obtain a strong 3-rainbow coloring of G; as
illustrated in Figure a). By using a similar procedure, we also obtain a strong
3-rainbow coloring of G; with order n = 13 and girth g; = 7 as illustrated in Figure
Figure [4[b).

We now conclude this section by outlining the main results obtained as given
in the following corollary.



FIGURE 4. Strong 3-rainbow colorings of G, where (a) n = 12
and g1 =6, and (b) n =13 and g; =7

Corollary 3.3. Forn,g1 > 3, let G1 be a unicyclic graph of order n and girth g;.
Then,
n—1, if g =3;
sres(G1) =4 n—2, if g1 €{4,5,6,8};
n, otherwise.

Recall that adding an edge to a tree creates a unicyclic graph. Following the
corollary above, we obtain that the srxs of unicyclic graphs is equal to its size if it
has a girth of 7 or at least 9. Otherwise, its srxs is less than its size.

4. THE STRONG 3-RAINBOW INDEX OF BICYCLIC GRAPHS

For n > 5 and g1, g2 > 3, let G5 be a bicyclic graph of order n containing two
cycles Cy, and Cy,. Recall that we denote Cy, := viv?...vf"v} for each i € [1,2]
and P := v{ — v} as the only path connecting C,, and C,,. Let e = zy be an
arbitrary bridge of G5. Thus, it is clear that for each i € [1, 2], there exists exactly
one vertex v € V(Cy,) for p € [1, g;] such that d(v?, x) < d(v],z) for all ¢ € [1, g;]
with ¢ # p.

In this section, we provide the exact value of the srzs of bicyclic graphs. We
first need the following results.

Observation 4.1. Forn > 5, let Gy be a strong 3-rainbow colored bicyclic graph
of order n containing two cycles. Let one of its cycles be C5 := vivougvy. Let
Up, Vg, U € V(Cs) for distinct p,q,r € [1,3] and e = zy be an arbitrary bridge of
G such that d(vy, z) < d(vg,z) < d(v,,x). Then, edges vyv, and vyv, should have
distinct colors from e.

Proof. Let {vi,vs,v3} = {vp,vq,vr}. Assume that d(vp,z) < d(vp,y). Thus, by
considering {v,, vq,y} and {v,,v,,y}, it is clear that edges v,v, and v,v, should
have distinct colors from bridge e. O

The following observation is an immediate consequence of Observation
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Observation 4.2. Forn > 5, let Gy be a strong 3-rainbow colored bicyclic graph
of order n containing two cycles. Let one of its cycles be C'5 := vivavzvy. Then, at
most one color of the bridges of Go can be used on Cs.

Proof. Let {v1,va,v3} = {vp,vq,v,}. Let ¢ be a strong 3-rainbow coloring of Ga.
Suppose that there are two colors of the bridges of G, say 1 and 2, which are
used on C3. Let e = zy and ¢/ = 2’y be two distinct bridges of G2 with ¢(e) = 1
and c(e’) = 2. Recall that there exist v,,v, € V(C3) such that d(vp,z) < d(u, z)
for u € V(Cs) \ {vp} and d(vg,2’) < d(w,2’) for w € V(C3) \ {vg}. Assume that
d(vp,xz) < d(vp,y) and d(vg,z’) < d(vg,y’). Thus, it follows by Observation
that edges vqv, and vpv, may be colored with 1 and 2, respectively. If p = ¢, then
there exists an edge of C3 with colors 1 and 2, which is impossible. Thus, p # q.
However, observe that every rainbow Steiner {v,., y, y’}-tree must contain bridges e
and €’ and two edges of C3, say f and f’, where at least one of f and f’ is colored
with 1 or 2, a contradiction. (I

Let ¢ be a strong 3-rainbow coloring of Gs. For g; € {5,6,8} with i € [1,2],
it follows from Theorem [2:2] that we need at least g; — 2 distinct colors to color the
edges of Cy,. Hence, we assign these colors to the edges of Cy, by adopting the
edge-coloring pattern illustrated in Figure [1} as given in This ensures the
existence of a rainbow Steiner tree connecting every three vertices of Cl,.

(A1) For g; = 5, define c(v}v?) = c(viv?) and c(v?v?) = c(v}v?). For g; =
c(viof

6, define c(v?v?) = c(vPvf) and c(viv}) = c(v}vf). For g; = 8, define
c(v2v?) = c(v¥o!) and c(viv?) = c(vivf). Furthermore, assign g;—4 distinct
colors that are not used to the preceding edges to the remaining g; —4 edges

of Cy,.

As an example, let Cy, = C5 be one of the cycles contained in G3. By using
the edge-coloring rules given in we assign three distinct colors, say a, b, and c,
so that c(viv?) = c(viv?) = a, c(viv}) = c(v}vd) = b, and c(v3v}) = c. Hence, we
have an edge-coloring of C as illustrated in Figure[5] By using a similar argument,
we also obtain edge-colorings of Cs and Cy as illustrated in Figure

FIGURE 5. Illustration of edge-coloring rules given in|(Al)| where
a, b, ¢, d, e, and f are distinct colors
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We now determine the srzg of bicyclic graphs as given in the following theo-
rem.

Theorem 4.3. Forn > 5 and g2 > g1 > 3, let Gy be a bicyclic graph of order n
containing two cycles of lengths g1 and go. Then

G2l =3, if g1 =3 and g2 € [3,4], or

g1 € {5,6,8} and g2 =T or go > 9;
G2l =4, if g1 =3 and g2 € {5,6,8}, or
sres3(Ga) = g1 =4 and g2 € {4,5,6,8};
||G2|| -2, ifg € [374} and go =7 or ga > 9;
||G2|| =5, ifgl7g2 € {57618}7
G2l = 1, otherwise.

Proof. To prove the exact value of srz3(Gs), it is necessary to establish both the
lower and upper bounds. The lower bound is obtained by considering two main
cases based on the lengths of the cycles in Ga: (i) both cycles have length at least
4, and (ii) at least one cycle has length 3. In each case, the bound is derived by
applying key lemmas and theorems linking cycle structure to rainbow connectivity.
For the upper bound, we define a strong 3-rainbow coloring in a case-by-case man-
ner, mirroring the cycle-length distinctions, with the following rules: (i) cycles are
colored to guarantee internal rainbow Steiner trees, and (ii) bridges are assigned
distinct colors not used in the cycles to prevent overlap in any Steiner tree span-
ning both cycle and tree parts. For every three vertices, the coloring guarantees
a rainbow Steiner tree entirely within a cycle or through uniquely colored bridges.
In each case, the number of colors used matches the lower bound, thereby estab-
lishing sharpness. Having set these proof sketches, we are now ready to present the
detailed proofs.

Note that ||Gz|| = n + 1. First, we prove the lower bound. We distinguish
two cases as follows.

Case 1. The two cycles contained in Gy have length at least 4.

Let ¢ be a strong 3-rainbow coloring of G2. Note that for distinct 4,5 € [1,2],
we have
str3(Ga) 2 |e(X)| + [e(Ai)| + |c(E(Cy, )| (3)
by Lemmas and [2.4}(i1)} Without loss of generality, let « = 1 and j = 2. Thus,
it follows from Eq. ', Theorem [2.2] and Lemma [2.4(i)| that srz3(G2) > [|G2| —3
for g1 € {5,6,8} and go = 7 or go > 9, srx3(G2) > ||Ge| — 4 for g1 = 4 and
g2 € {4,5,6,8}, srx3(Ga) > ||G2|| — 2 for gy = 4 and g2 = 7 or g2 > 9, and
srxs(Ge) > |Gz — 5 for g1, 92 € {5,6,8}.
We now consider the case where both g; and g, are equal to 7 or at least
9. If g1 and go are both odd, or if g; and go have distinct parity, then by using
a similar argument, we have sra3(Ga) > [|G2f| — 1. Thus, the remaining case to
consider is when both ¢g; and go are even. According to Eq. , we need at least
|G| — 2 distinct colors to color all edges of X, A; and C,,. Now, consider edges



12

91 9;1_;'_1 £+1 il +2 P
v? v?  and vy’ = By usmg Theorem and con81der1ng {v U 2 , U5}
l
+1 +1 +2 .
forpe {2, 2 —|— 2}, we have {c(’u1 v2 ), ( X 2 } Z (A1) Uc AQ) ThlS
241 +1 242 241 +1 +2
forces {c(v1 vl ),c(vl2 vf )} = {c(qu 1122 . ),6(1122 Vg 2 )}. However,
2 f4o 24
observe that every rainbow Steiner {v,> ,v,2 ", v,? | }-tree must contain edges
ql 91 ‘71 92 ‘72 92 92
+1 +1 Y42 +1 241 242 -
v? v, vy v12 , and either vy,®> v, " or vy " Twy> 7, a contradiction.

Case 2. At least one of the cycles contained in G5 has length 3.

Without loss of generality, let g1 = 3 and g2 > 3. To simplify the discussion,
let us denote sra3(Ga) = Z. Suppose that sra3(G2) < Z — 1. Then there exists a
strong 3-rainbow coloring ¢ : E(G2) — [1,Z — 1]. Since |¢(X)| > ||Gz|| — g2 — 3 by
Eq. (2), we have at most Z — ||Ga|| + g2 + 2 remaining colors. Let the set of these
remaining colors be denoted by Y = [1, Z — ||G2|| 4+ g2 + 2]. Further, we distinguish
three subcases depending on the length go as follows.

Subcase 2.1. go € [3,4].

Since Z = ||Ga|| — 3, we have Y = [1,g2 — 1]. For go =3,Y = [1,2]. If G,
does not contain bridges, then |c¢(X)| = 0 and v{ = v1. However, by considering
{v?,v3,v3}, we need at least three distinct colors to color edge vav3 and two edges in
a rainbow Steiner {v{, v?, v?}-tree, which is impossible. Thus, G5 contains bridges.
Note that ¢(4;) C c(X ) UY for each i € [1,2]. However, according to Observation
2| edges v}v? or vlv? should be colored with colors from Y for each i € [1,2].
Wlthout loss of generahty, let {c(viv?),c(viv3)} C Y. Since c(vlvl) 7& c(vivd) for
p,q € [2,3], let c(viv}) = 1 and c(viv3) = 2. Now, consider edge vivj. Note that

c(vivd) € e(X)U{1}. If c(viv}) € ¢(X), then let e = 2y be the bridge of G where
cle) = c(vlvf), and assume that d(Cy,,z) < d(Cy,,y). Now, consider edge viv}.
According to Observation c(v3v3) ¢ ¢(X). This forces c(vlvl) €Y. However,
there is no rainbow Stemer {vl,vz, y}-tree, a contradiction. If c(viv}) = 1, then

c(viv}) ¢ Y. This forces c(vivy) € ¢(X). Let e = xy be the bridge of G Where
c(e) = c(viv}), and assume that d(Cy, , x) < d(Cy,,y). However, there is no rainbow
Steiner {v?,v$, y}-tree, a contradiction.

Meanwhile for go = 4, Y = [1,3]. Since ¢(E(C4)) Ne(X) = @ by Lemma
we have ¢(E(C4)) C Y. Since ¢(Az) > 2 by Lemma without loss of
generality, let c(vivs) = 1 and c(vivy) = 2. Now consider edges viv} and vivs.
Since {c(vivi),c(viv)} ¢ [1,2] by Lemma we have {c(viv}),c(viv)} C
c(X)U{3}. According to Observatlon edges v; vl or viv$ should be colored with
3. Thus, without loss of generality, we have either c(viv}) = 3 and c(viv?) € ¢(X),
or c(v}v%) = c(viv}) = 3. By using a similar argument as case g = 3, we will
obtain a contradiction.

Subcase 2.2. go € {5,6,8}.

Since Z = ||Ga|| — 4, we have Y = [1,g9o — 2]. Note that ¢(E(Cy,)) >
g2 — 2 and ¢(E(Cy,)) Ne¢(X) = 0 by Theorem and Lemma respectively.
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Thus, ¢(E(Cy,)) = Y. Now, consider edges v{v? and vivy. By Lemma
{c(viv}), c(viv)} € Y. This forces {c(vivi),c(viv)} C ¢(X), contradicting Ob-
servation .2

Subcase 2.3. go =7 or go > 9.

Since Z = |G| — 2, we have Y = [1, g2]. By using a similar argument as
Subcase 2.2, we obtain that {c(viv}),c(vivd)} C ¢(X), contradicting Observation

The following figure presents an illustration of the contradiction arising in
Subcases 2.2 and 2.3.

FIGURE 6. An illustration of the contradiction for Subcases 2.2
and 2.3.

Now, we proceed to prove the upper bound. For g, g2 are equal to 7 or at
least 9, it follows from Theorem that sraz3(Gz) < [|Gaf| — 1.

For gy = 3 and ¢go > 3, we define a strong 3-rainbow coloring ¢ of Go as
follows.

(1) Define c(viv?) = c(viv}) = 1 and c(viv}) = 2.

(2) For g2 = 3, do step (a). For go =4, do step (b). For g2 € {5,6,8}, do step
(c). For g2 =7 or g2 > 9, do step (d).
(a) Define c(viv3) = c(viv3) = 3 and c(v3v3) = 2. Furthermore, if |G| >

6, then assign colors 4,5, ..., ||Gz|| — 3 to the ||G2|| — 6 bridges of Gs.
(b) Define c(viv3) = c(vg’v‘zl) = 3 and c(v2v2) = c(vjvs) = 4. Further—
more, if ||Gz|| > 7, then assign colors 5,6, ..., |G| —3 to the |G| —

bridges of Gs.
(c) Assign colors 2,3,...,92 — 1 to the edges of Cg2 by using the edge-

coloring rules given 1nMsuch that c(vy L# FH, L 2 J+2) 2. Further-

more, if ||G2|| > g2 + 3, then assign colors 92, 92 —|— L... [|Gz| — 4 to
the ||G2|| — g2 — 3 bridges of Gs.
(d) Assign colors 2,3, . HGQH — 2 to the remaining ||Ga|| — 3 edges of G»

such that c(vy L% Hl L 2 J—H) =2.

For ¢y = 4 and g2 > 4, we define a strong 3-rainbow coloring ¢ of Gy as
follows.

(1) Define c(viv?) = c(viv}) = 1 and c(v?v3) = c(viv]) = 2.
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(2) For go = 4, do step (a). For go € {5,6,8}, do step (b). For g = 7 or
g2 > 9, do step (c).

(a) Define c(viv3) = c(vivs) = 3 and c(v3vi) = c(vivi) = 4. Further-
more, if |Gz|| > 8, then assign colors 5,6, ..., ||G2|| —4 to the |G2|| —8
bridges of G.

(b) Assign colors 3,4, ..., g2 to the edges of Cy, by using the edge-coloring
rules given in Furthermore, if |G2|| > g2 + 4, then assign colors
g2+ 1,92+ 2,...,]|Ga|| — 4 to the |G2| — g2 — 4 bridges of Gs.

(c) Assign colors 3,4, ..., ||G2|| — 2 to the remaining ||G2|| —4 edges of Go.

For g1 € {5,6,8}, and g2 > g1 > 5, we define a strong 3-rainbow coloring ¢
of G5 as follows.

(1) Assign colors 1,2,..., g1 — 2 to the edges of Cy, by using the edge-coloring
91 9
rules given in |[(Al)|such that c(111L 2 HlvlL 2 JH) =g — 2.
(2) For g2 € {5,6,8}, do step (a). For go = 7 or go > 9, do step (b).
(a) Assign colors g1 —2,91 —1,...,91 +g2—5 to the edges of C,, by using
HTQJ+1U2LHTQJ+2)

the coloring rules given in|(A1)|such that c(vQL =g — 2.
Furthermore, if ||Ga|| > g1 + g2, then assign colors g1 + go — 4,91 +
g2 —3,...,||G2|| = 5 to the ||G2|| — g1 — g2 bridges of Gs.
(b) Assign colors g1 — 2,91 — 1,...,||G2]| — 3 to the remaining ||Gz|| — g1
LZ]+1, L5 ]+2
edges of G such that c(vy 2" vy 2" ") = g1 — 2.

The next step is to show that there exists a rainbow Steiner tree connecting
every 3-subset S of V(G2). Since the edge-colorings ¢ assign distinct colors to all
bridges of G5 and ensure that ¢(X) N ¢(E(Cy,)) = 0 for all i € [1,2], it suffices to
consider the subsets S = {u,v,w} under the following two cases.

(i) u,v,w € V(Cy,) for some i € [1,2]. For g; € [3,4], the existence of a
rainbow Steiner S-tree is immediate. Moreover, for g; € {5, 6,8}, the edge-
colorings c assign g; — 2 distinct colors to the edges of C,, according to the
edge-coloring rules given in while for g; = 7 or g; > 9, all edges of
Cy, are colored with distinct colors. Thus, in all these cases, the existence
of a rainbow Steiner S-tree is also guaranteed.

(ii) u € V(C,,) and v,w € V(C,,). Observe that there exists a rainbow v} —
u geodesic Ty in Cj,, a rainbow Steiner {v},v,w}-tree Tp in C,,, and a
rainbow v — v geodesic T3, such that ¢(E(T,)) Ne(E(T,)) = 0 for distinct
a,b € [1,3]. Thus, the tree T'= Ty U T U T3 is a rainbow Steiner S-tree.

O

As an example, let G5 be a bicyclic graph of order n = 18 with g; = 3 and
g2 = 5. According to the edge-coloring ¢ defined in the proof of theorem above, we
first assign colors 1 and 2 to the edges of C3 so that the edges vivf and viv$ receive
the color 1, and then assign colors 2, 3 and 4 to the edges of C5 so that the edge
v3vj receives color 2. The remaining edges, which are the bridges of G, are then
colored with colors 5,6,...,15. As a result, we obtain a strong 3-rainbow coloring
of G5 as illustrated in Figure a). By using a similar procedure, we also obtain a



15

strong 3-rainbow coloring of G5 with n = 24, g = 6 and g2 = 7, as illustrated in

Figure [7[(b).

FIGURE 7. Strong 3-rainbow colorings of G5 where (a) n = 18,
gi=3and go=5,and (b) n=24, g1y =6 and go =7

According to Theorem it can be concluded that the srzs of bicyclic
graphs, which is a graph obtained by adding two edges to a tree, is always less than
its size.

5. CONCLUSION

It is known that srzs(T,) = ||T5.|| (see Theorem [1.2]). Therefore, this paper
investigated how the addition of one or two edges to a tree T,, affected the srzg of
the resulting graphs. We first provided sharp upper bounds for srz3(G) where G is
a unicyclic or bicyclic graph, and then determined the exact values of srzs(G) for
such graphs. Our results showed that srz3(G) = |G|l if G is a unicyclic graph with
girth 7 or at least 9; in all other cases, srz3(G) < ||G||. More specifically, Corollary
and Theorem [4.3] showed that for ¢ € [1,2], sra3(G) = |G| —t+1if Gis a
connected graph containing t odd cycles of lengths at least 7. These results raise a
natural question regarding the sharpness of this bound for connected graphs with
more cycles, as formulated belows.

Problem 5.1. For t > 3, is the upper bound |G| —t + 1 always sharp for a
connected graph G containing t odd cycles of lengths at least 77

Additionally, it is important to note that adding two edges to a tree T, may
produce a graph containing exactly three cycles, one of which is commonly known
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as a theta graph. This observation naturally motivates further investigation of the
following problem.

Problem 5.2. What is the exact values of srxs(G) where G is a theta graph of
order n > 4°¢

Moreover, exploring the behavior of srxs in general cyclic graphs presents a

promising direction for future research. We hope that the results presented in this
paper provide a foundation for the broader characterization of the srxs for cyclic
graphs.
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