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Abstract. A tree of minimum size in an edge-colored connected graph G is a

rainbow Steiner tree if no two edges of G are colored the same. For an integer k,

the strong k-rainbow index srxk(G) of G is the smallest number of colors required

in an edge-coloring of G so that there exists a rainbow Steiner tree connecting every

k-subset S of V (G). We focus on k = 3. It is obvious that srx3(G) ≤ ∥G∥ where

∥G∥ denotes the size of G. It has been proven that srx3(Tn) = ∥Tn∥. This paper

investigates the behavior of the srx3(Tn) under the addition of at least one edge

to Tn. We establish sharp upper bounds and exact values of the srx3 for unicylic

and bicyclic graphs. Our results show that srx3(G) = ∥G∥ if G is a unicyclic graph

with girth 7 or at least 9. In all other cases, where G is either a unicylic graph or

bicyclic graph, it holds that srx3(G) < ∥G∥.
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1. INTRODUCTION

Graph theory provides a powerful framework for modeling and analyzing com-
munication networks, where reliability, security, and efficiency are crucial. Various
coloring concepts have been proposed to ensure that networks can support secure
and interference-free communication. One such concept is the strong k-rainbow
index of a graph, introduced by Awanis and Salman [1], which measures the mini-
mum number of colors needed to color the edges of a connected graph so that every
set of k vertices is connected by a rainbow Steiner tree—a tree of minimum size
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whose edges have distinct colors. This parameter is closely tied to combinatorial
optimization and connectivity theory, particularly through its relation to Steiner
trees.

In the case of the strong 3-rainbow index, the aim is to guarantee minimum
rainbow connectivity for every three vertices of a graph. When interpreted in a
network model, vertices represent devices such as servers or routes, while edges
represent direct communication links between these devices. Assigning distinct
colors to the edges of a Steiner tree can be viewed as assigning different frequency
channels or encryption keys to ensure interference-free and secure multi-terminal
communication. Beyond its practical relevance, determining a strong 3-rainbow
index also yields theoretical insights into how cycle constraints and structural prop-
erties of a graph influence its rainbow connectivity requirements. By minimizing
the number of colors used while maintaining strong connectivity properties, the
strong 3-rainbow index contributes to the efficient use of network resources.

Before we discuss the formal definitions of a strong k-rainbow index, the
readers are advised to understand the formal definitions of a k-rainbow index first.
Let G be a connected graph of order n ≥ 3 that admits an edge-coloring. The size
of G is denoted by ∥G∥. A tree in G is a rainbow tree if all edges of the tree are
colored with distinct colors. Let k be an integer with 2 ≤ k ≤ n. In this paper,
we always consider S as a k-subset of V (G). The k-rainbow index rxk(G) of G is
the smallest number of colors required in an edge-coloring of G so that every set
S in G is connected by a rainbow tree. The 2-rainbow index of G is also known
as the rainbow connection number rc(G) of G [2]. Hence, it is easy to see that
rc(G) = rx2(G) ≤ rx3(G) ≤ . . . ≤ rxn(G).

Chakraborty et al. in [3] proved a conjecture given by Caro et al. [4] which
states that computing the rc of a graph is an NP-Hard problem. Hence, it is more
difficult to compute the rx3 of a graph. Some previous researchers studied the
upper bounds for rx3 of graphs (e.g. [5, 6, 7]), the rx3 of some graphs and some
graph operations (e.g., [8, 6, 9, 10, 11]), and the characterization of graphs G with
certain values of rx3(G) (e.g., [9, 12]). We refer to [13, 14] for some detailed surveys
on 3-rainbow index.

Later, Awanis and Salman [1] proposed the concept of a strong k-rainbow
index. A tree of minimum size in G that connects S is called a Steiner S-tree and
the minimum size is defined as the Steiner distance d(S) of S. The Steiner {u, v}-
tree is also known as the u − v geodesic [2]. The strong k-rainbow index srxk(G)
of G is the smallest number of colors required in an edge-coloring of G so that
every set S in G is connected by a rainbow Steiner S-tree. Such an edge-coloring
of G is called a strong k-rainbow coloring of G. The strong 2-rainbow index of G
is also known as the strong rainbow connection number src(G) of G [2]. Awanis
and Salman [1] provided sharp lower and upper bounds for the srx3 of a connected
graph G, that is

sdiamk(G) ≤ rxk(G) ≤ srxk(G) ≤ ∥G∥, (1)

where sdiamk(G) denotes the k-Steiner diameter ofG and is defined as sdiamk(G) =
max{d(S) : S is a k-subset of G}.
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In the same paper, Awanis and Salman [1] established the edge-coloring rules
for connected graphs containing at least two bridges. Let e1 = u1v1 and e2 = u2v2
be these two bridges. Since G−e1−e2 consists of three components, say G1, G2, and
G3, without loss of generality, we may assume that u1 ∈ V (G1), v1, u2 ∈ V (G2),
and v2 ∈ V (G3). Under this condition, any rainbow Steiner tree connecting a
set S of three vertices that includes vertices u1 and v2 must necessarily contain
both bridges e1 and e2. This directly leads to Observation 1.1. According to this
observation and Eq. (1), Awanis and Salman further established that srx3 of trees
is equal to its size, as stated in Theorem 1.2.

Observation 1.1. [1] Let G be a strong 3-rainbow colored connected graph of order
n ≥ 3. If e and f are any two bridges of G, then e and f are colored with distinct
colors.

Theorem 1.2. [1] For a tree Tn of order n ≥ 3, srx3(Tn) = ∥Tn∥ = n− 1.

Many researchers have investigated the srx3 of graphs resulting from some
graph operations, such as some certain graphs and their amalgamation [1], the
edge-amalgamation of some graphs [15], the comb product of a tree and a connected
graph [16], and the edge-comb product of a path and a connected graph [17]. In
addition, we are also interested in exploring the characteristics of graphs G with
srx3(G) = 2, as presented in [18].

Since a tree is an acyclic connected graph, adding even a single edge neces-
sarily creates a graph that contains at least one cycle. Cycles, especially those with
small girths, are of particular interest because they generate alternative Steiner
trees between three vertices, which may affect the existence and structure of rain-
bow Steiner trees. Therefore, adding one or two edges to a tree increases the graph’s
connectivity and redundancy. These structural changes may impact the minimum
number of colors required to ensure strong 3-rainbow connectivity.

A natural question then arises: What happens to the srx3 when at least
one edge is added to a tree? Specifically, does the srx3 of the resulting graph
remain equal to its size? Motivated by this, the present study investigates the
srx3 of graphs containing some cycles, with a particular focus on unicyclic and
bicyclic graphs. First, we establish an upper bound for the srx3 of these graphs
and demonstrate that the bound is sharp. These results are presented in Section 2.
Subsequently, we determine the exact values of the srx3 for unicyclic and bicyclic
graphs, which are presented in Sections 3 and 4, respectively.

2. SHARP UPPER BOUND FOR THE STRONG 3-RAINBOW INDEX
OF GRAPHS CONTAINING AT MOST TWO CYCLES

Several notations are defined in this paper as follows. For an integer x with
a ≤ x ≤ b, let [a, b] denotes a set of all integers x. For an integer t with 1 ≤ t ≤ 2,
let

• Gt denotes a connected graph of order n ≥ 3 containing exactly t cycles,
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• Cgi := v1i v
2
i . . . v

gi
i v1i for 1 ≤ i ≤ t denotes a cycle of length gi ≥ 3 contained

in Gt,
• X denotes a set of all bridges in Gt, and
• c(U) denotes a set of all colors assigned to the edges in U ⊆ E(Gt).

Note that if t = 2, then there exists exactly one path connecting the two cycles in
G2. We denote P := v11 − v12 as such a path. Since X denotes a set of all bridges
in Gt for t ∈ [1, 2], it follows from Observation 1.1 that

|c(X)| ≥ ∥Gt∥ −
t∑

i=1

gi. (2)

Now, we are ready to provide an upper bound of the srx3(Gt) for t ∈ [1, 2].
This result is given in the following theorem.

Theorem 2.1. For n ≥ 3 and t ∈ [1, 2], let Gt be a connected graph of order n
containing exactly t cycles of length at least 3. Then

srx3(Gt) ≤ ∥Gt∥ − t+ 1.

Proof. For t = 1, it follows from Eq. (1) that srx3(G1) ≤ ∥G1∥.
For t = 2, we show that srx3(G2) ≤ ∥G2∥ − 1 by defining a strong 3-

rainbow coloring c : E(G2) → [1, ∥G2∥ − 1], which can be obtained by defining

c(v
⌊ g1

2 ⌋+1
1 v

⌊ g1
2 ⌋+2

1 ) = c(v
⌊ g2

2 ⌋+1
2 v

⌊ g2
2 ⌋+2

2 ) = 1 and assigning colors 2, 3, . . . , ∥G2∥ − 1
to the remaining ∥G2∥ − 2 edges of G2. Now, we show that every three vertices of
G2 is connected by a rainbow Steiner tree by considering the following properties.

• For each i ∈ [1, 2], all edges of Cgi have distinct colors. This ensures that
for every three vertices of Cgi for i ∈ [1, 2], there exists a rainbow Steiner
tree connecting them.

• All edges of Cg1 and Cg2 are colored with distinct colors, except for edges

v
⌊ g1

2 ⌋+1
1 v

⌊ g1
2 ⌋+2

1 and v
⌊ g2

2 ⌋+1
2 v

⌊ g2
2 ⌋+2

2 , which are both colored with 1. This
implies that for distinct i, j ∈ [1, 2], p ∈ [1, gi], and q, r ∈ [1, gj ], there exist
a rainbow v1i −vpi geodesic Ti in Cgi and a rainbow Steiner {v1j , v

q
j , v

r
j}-tree

Tj in Cgj such that c(E(Ti)) ∩ c(E(Tj)) = ∅. Therefore, there exists a
rainbow Steiner tree connecting one vertex of Cgi and two vertices of Cgj .

• If G2 contains bridges, then all bridges of G2 are colored with distinct colors
and c(X) ∩ c(E(Cgi)) = ∅ for all i ∈ [1, 2]. Consequently, for every three
vertices of G2, where at least one of them is not a vertex of Cgi for i ∈ [1, 2],
there exists a rainbow Steiner tree connecting them.

Thus, the theorem holds. □

The upper bound provided in Theorem 2.1 is sharp. Theorem 2.5 shows that
srx3(Gt) = ∥Gt∥ − t + 1, where Gt is a connected graph containing exactly t odd
cycles of length at least 7. Before we proceed to this theorem, we first need several
preliminary results as given in Theorem 2.2 and Lemmas 2.3 and 2.4.
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Theorem 2.2. [1] For a cycle Cn of order n ≥ 3,

srx3(Cn) =

 2, n = 3;
n− 2, n ∈ {4, 5, 6, 8};

n, n = 7 or n ≥ 9.

According to theorem above, it is not difficult to define a strong 3-rainbow
coloring of Cn for n = 7 or n ≥ 9, since all edges of the cycle can simply be assigned
with distinct colors. The challenge lies in defining such an edge-coloring for smaller
values of n, where fewer colors must be used while still maintaining the existence
of rainbow Steiner trees. Figure 1 below illustrates the strong 3-rainbow colorings
of Cn for n = 3, 4, 5, 6, 8. Since the graphs studied in this paper contain at most
two cycles, and the rainbow Steiner tree connecting every three vertices within the
cycle must lies in it, these edge-coloring illustrations are essential to guarantee the
existence of rainbow Steiner trees that support the results established in Sections
3 and 4.

Figure 1. Strong 3-rainbow colorings of C3, C4, C5, C6, and C8

Lemma 2.3. For n ≥ 5 and g ≥ 4, let G be a strong 3-rainbow colored connected
graph of order n containing a cycle Cg. If e ∈ E(Cg) and f is an arbitrary bridge
of G, then e and f are colored with distinct colors.

Proof. Let Cg := v1v2 . . . vgv1. Suppose that there exist e ∈ E(Cg) and a bridge
f ∈ E(G) so that e and f are colored with the same color. Let e = vpvp+1

for p ∈ [1, g] and f = xy, and assume that d(Cg, x) < d(Cg, y). Observe that
every rainbow Steiner {vp, vp+1, y}-tree must contain edges e and f , which is a
contradiction since these two edges have the same color. □

To assist the reader’s understanding, an illustration of Lemma 2.3 is provided
in Figure 2.

For further discussion, we always let Ai = E(Cgi) \ {v
⌊ gi

2 ⌋+1
i v

⌊ gi
2 ⌋+2

i } if gi is

odd or Ai = E(Cgi) \ {v
gi
2
i v

gi
2 +1
i , v

gi
2 +1
i v

gi
2 +2
i } if gi is even, for i ∈ [1, 2].

Lemma 2.4. For n ≥ 5, let G2 be a bicyclic graph of order n containing two cycles
Cg1 and Cg2 of length at least 3. If c is a strong 3-rainbow coloring of G2, then
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Figure 2. An illustration of Lemma 2.3, where edges e and f are
colored with distinct colors

(i) |c(Ai)| ≥ gi − 2 for gi ∈ [3, 4] or even gi ≥ 10, |c(Ai)| ≥ gi − 3 for
gi ∈ {5, 6, 8}, and |c(Ai)| ≥ gi − 1 for odd gi ≥ 7;

(ii) c(Ai) ∩ c(E(Cgj )) = ∅ for distinct i, j ∈ [1, 2] and gj ≥ 4.

Proof.

(i) For gi = 3, it is clear that |c(Ai)| ≥ 1. For gi ∈ [4, 5], since two adjacent
edges should have distinct colors, we have |c(Ai)| ≥ 2. For gi = 6, by
considering {v1i , v3i , v6i }, we obtain that no edge of path v3i v

2
i v

1
i v

6
i is colored

the same. A similar argument applies to {v1i , v2i , v5i }. However, edges v2i v
3
i

and v5i v
6
i may be colored the same. Thus, |c(Ai)| ≥ 3. For gi = 8, suppose

that |c(Ai)| ≤ 4. First, by considering {v1i , v3i , v7i }, we obtain that no
edge of path v7i v

8
i v

1
i v

2
i v

3
i is colored the same, which implies we have used

all colors in c(Ai). Next, by considering {v2i , v4i , v8i } and {v2i , v6i , v8i }, we
obtain that c(v3i v

4
i ) = c(v7i v

8
i ) and c(v6i v

7
i ) = c(v2i v

3
i ). However, there is no

rainbow Steiner {v2i , v4i , v7i }-tree, a contradiction. For odd gi ≥ 7 or even
gi ≥ 10, since no edge of Cgi is colored the same by Theorem 2.2, we have
|c(Ai)| ≥ gi − 1 or |c(Ai)| ≥ gi − 2, respectively.

(ii) Let i, j ∈ [1, 2] with i ̸= j and gj ≥ 4. Let e = xy be an arbitrary
edge of Cgj . Observe that every rainbow Steiner {x, y, vpi }-tree for p ∈
[⌊ gi

2 ⌋+1, ⌊ gi
2 ⌋+2] if gi is odd or p ∈ { gi

2 ,
gi
2 +2} if gi is even must contain

edge e and a v1i − vpi geodesic, implying that c(Ai) ∩ c(E(Cgj )) = ∅.
□

To assist the reader’s understanding, an illustration of Lemma 2.4 is provided
in Figure 3.

Now, we are ready to prove the sharpness of the upper bound in Theorem
2.1, as given in the following theorem.

Theorem 2.5. For n ≥ 3 and t ∈ [1, 2], let Gt be a connected graph of order n
containing exactly t odd cycles of length at least 7. Then, srx3(Gt) = ∥Gt∥− t+1.

Proof. For each i ∈ [1, t], let Cgi be an odd cycle of length gi ≥ 7 contained in Gt.
It follows from Theorem 2.1 that srx3(Gt) ≤ ∥Gt∥ − t + 1. For the lower bound,
suppose that srx3(Gt) ≤ ∥Gt∥ − t. Then there exists a strong 3-rainbow coloring
c : E(Gt) → [1, ∥Gt∥ − t]. Let Y be the set of colors assigned to the edges of Cgi
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Figure 3. An illustration of Lemma 2.4, where the shaded grey
area represents the set Ai for the cases when (a) gi is odd and (b)
gi is even

for all i ∈ [1, t]. According to Lemma 2.3, c(X) ∩ Y = ∅. Thus, it follows from Eq.

(2) that |Y | ≤
∑t

i=1 gi − t. Now, we distinguish two cases.

Case 1. t = 1.

It means c : E(G1) → [1, ∥G1∥ − 1]. If G1
∼= Cn, then there are at least

two edges of Cn that are colored the same, contradicting Theorem 2.2. If G1 is a
unicyclic graph and not a cycle, then we have |Y | ≤ g1 − 1. This implies there are
at least two edges of Cg1 that are colored the same, contradicting Theorem 2.2.

Case 2. t = 2.

It means c : E(G2) → [1, ∥G2∥− 2]. Note that |Y | ≤ g1 + g2 − 2. However, it
follows from Theorem 2.2 and Lemma 2.4 that |c(A1) ∪ c(E(Cg2))| ≥ g1 + g2 − 1,
which is impossible. □

Following the result above, an immediate question arises: What is the srx3(Gt)
for Gt that does not satisfy the premise of Theorem 2.5? The answers to this ques-
tion are given in Sections 3 and 4.

3. THE STRONG 3-RAINBOW INDEX OF UNICYCLIC GRAPHS

Let G1 be a unicyclic graph of order n ≥ 3 and girth g1 ≥ 3. Chartrand et
al. [6] have determined the rx3 of unicyclic graphs as follows.

Theorem 3.1. [6] For n, g1 ≥ 3, let G1 be a unicyclic graph of order n and girth
g1. Then,

rx3(G1) =

{
n− 1, if g1 = 3;
n− 2, otherwise.
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Motivated by the result above, we are interested in studying the srx3 of
unicyclic graphs. Awanis and Salman in [1] have determined the srx3 of cycles (see
Theorem 2.2). Hence, in this section, we determine the srx3 of unicyclic graphs
that is not a cycle as given in the following theorem.

Theorem 3.2. For n ≥ 4 and g1 ≥ 3, let G1 be a unicyclic graph of order n and
girth g1 that is not a cycle. Then,

srx3(G1) =

 n− 1, if g1 = 3;
n− 2, if g1 ∈ {4, 5, 6, 8};

n, otherwise.

Proof. Note that ∥G1∥ = n. It follows from Eq. (1) and Theorem 3.1 that
srx3(G1) ≥ n− 1 for g1 = 3 and srx3(G1) ≥ n− 2 for g1 ∈ {4, 5, 6, 8}. Meanwhile
for g1 = 7 or g1 ≥ 9, it follows from Eq. (2), Theorem 2.2, and Lemma 2.3 that
srx3(G1) ≥ n.

Next, we prove the upper bound. For each i ∈ [1, n − g1], let ei be the i-
th bridge of G1. As srx3(C3) = 2, srx3(Cg1) = g1 − 2 for g1 ∈ {4, 5, 6, 8}, and
srx3(Cg1) = g1 for g1 = 7 or g1 ≥ 9 by Theorem 2.2, there exists a strong 3-rainbow
coloring c′ of Cg1 . Thus, we define a strong 3-rainbow coloring of G1 as follows.

c(e) =

{
c′(e), if e ∈ E(Cg1);

srx3(Cg1) + i, if e = ei for each i ∈ [1, n− g1].

Now, we show that every three vertices of G1 is connected by a rainbow
Steiner tree by considering the following properties.

• All edges of Cg1 are colored according to the edge-coloring rule c′. This
guarantees that for every three vertices of Cg1 , there exists a rainbow
Steiner tree connecting them.

• All bridges of G1 are colored with distinct colors and c(X)∩c(E(Cg1)) = ∅.
Consequently, for every three vertices of G1, where at least one of them is
not a vertex of Cg1 , there exists a rainbow Steiner tree connecting them.

□

As an example, let G1 be an unicylic graph of order n = 12 and girth g1 = 6.
According to Theorem 2.2, we have srx3(C6) = 4. Let c′ be a strong 3-rainbow col-
oring of C6 that follows the edge-coloring pattern illustrated in Figure 1. Based on
the edge-coloring c defined in the proof of theorem above, we assign the first 4 col-
ors to the edges of C6 using the edge-coloring c′, and then assign colors 5, 6, . . . , 10
to the bridges of G1. As a result, we obtain a strong 3-rainbow coloring of G1 as
illustrated in Figure 4(a). By using a similar procedure, we also obtain a strong
3-rainbow coloring of G1 with order n = 13 and girth g1 = 7 as illustrated in Figure
Figure 4(b).

We now conclude this section by outlining the main results obtained as given
in the following corollary.
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Figure 4. Strong 3-rainbow colorings of G1, where (a) n = 12
and g1 = 6, and (b) n = 13 and g1 = 7

Corollary 3.3. For n, g1 ≥ 3, let G1 be a unicyclic graph of order n and girth g1.
Then,

srx3(G1) =

 n− 1, if g1 = 3;
n− 2, if g1 ∈ {4, 5, 6, 8};

n, otherwise.

Recall that adding an edge to a tree creates a unicyclic graph. Following the
corollary above, we obtain that the srx3 of unicyclic graphs is equal to its size if it
has a girth of 7 or at least 9. Otherwise, its srx3 is less than its size.

4. THE STRONG 3-RAINBOW INDEX OF BICYCLIC GRAPHS

For n ≥ 5 and g1, g2 ≥ 3, let G2 be a bicyclic graph of order n containing two
cycles Cg1 and Cg2 . Recall that we denote Cgi := v1i v

2
i . . . v

gi
i v1i for each i ∈ [1, 2]

and P := v11 − v12 as the only path connecting Cg1 and Cg2 . Let e = xy be an
arbitrary bridge of G2. Thus, it is clear that for each i ∈ [1, 2], there exists exactly
one vertex vpi ∈ V (Cgi) for p ∈ [1, gi] such that d(vpi , x) < d(vqi , x) for all q ∈ [1, gi]
with q ̸= p.

In this section, we provide the exact value of the srx3 of bicyclic graphs. We
first need the following results.

Observation 4.1. For n ≥ 5, let G2 be a strong 3-rainbow colored bicyclic graph
of order n containing two cycles. Let one of its cycles be C3 := v1v2v3v1. Let
vp, vq, vr ∈ V (C3) for distinct p, q, r ∈ [1, 3] and e = xy be an arbitrary bridge of
G2 such that d(vp, x) < d(vq, x) ≤ d(vr, x). Then, edges vpvq and vpvr should have
distinct colors from e.

Proof. Let {v1, v2, v3} = {vp, vq, vr}. Assume that d(vp, x) < d(vp, y). Thus, by
considering {vp, vq, y} and {vp, vr, y}, it is clear that edges vpvq and vpvr should
have distinct colors from bridge e. □

The following observation is an immediate consequence of Observation 4.1.
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Observation 4.2. For n ≥ 5, let G2 be a strong 3-rainbow colored bicyclic graph
of order n containing two cycles. Let one of its cycles be C3 := v1v2v3v1. Then, at
most one color of the bridges of G2 can be used on C3.

Proof. Let {v1, v2, v3} = {vp, vq, vr}. Let c be a strong 3-rainbow coloring of G2.
Suppose that there are two colors of the bridges of G2, say 1 and 2, which are
used on C3. Let e = xy and e′ = x′y′ be two distinct bridges of G2 with c(e) = 1
and c(e′) = 2. Recall that there exist vp, vq ∈ V (C3) such that d(vp, x) < d(u, x)
for u ∈ V (C3) \ {vp} and d(vq, x

′) < d(w, x′) for w ∈ V (C3) \ {vq}. Assume that
d(vp, x) < d(vp, y) and d(vq, x

′) < d(vq, y
′). Thus, it follows by Observation 4.1

that edges vqvr and vpvr may be colored with 1 and 2, respectively. If p = q, then
there exists an edge of C3 with colors 1 and 2, which is impossible. Thus, p ̸= q.
However, observe that every rainbow Steiner {vr, y, y′}-tree must contain bridges e
and e′ and two edges of C3, say f and f ′, where at least one of f and f ′ is colored
with 1 or 2, a contradiction. □

Let c be a strong 3-rainbow coloring of G2. For gi ∈ {5, 6, 8} with i ∈ [1, 2],
it follows from Theorem 2.2 that we need at least gi − 2 distinct colors to color the
edges of Cgi . Hence, we assign these colors to the edges of Cgi by adopting the
edge-coloring pattern illustrated in Figure 1, as given in (A1). This ensures the
existence of a rainbow Steiner tree connecting every three vertices of Cgi .

(A1) For gi = 5, define c(v1i v
2
i ) = c(v4i v

5
i ) and c(v2i v

3
i ) = c(v1i v

5
i ). For gi =

6, define c(v2i v
3
i ) = c(v5i v

6
i ) and c(v3i v

4
i ) = c(v1i v

6
i ). For gi = 8, define

c(v2i v
3
i ) = c(v6i v

7
i ) and c(v4i v

5
i ) = c(v1i v

8
i ). Furthermore, assign gi−4 distinct

colors that are not used to the preceding edges to the remaining gi−4 edges
of Cgi .

As an example, let Cgi
∼= C5 be one of the cycles contained in G2. By using

the edge-coloring rules given in (A1), we assign three distinct colors, say a, b, and c,
so that c(v1i v

2
i ) = c(v4i v

5
i ) = a, c(v2i v

3
i ) = c(v1i v

5
i ) = b, and c(v3i v

4
i ) = c. Hence, we

have an edge-coloring of C5 as illustrated in Figure 5. By using a similar argument,
we also obtain edge-colorings of C6 and C8 as illustrated in Figure 5.

Figure 5. Illustration of edge-coloring rules given in (A1), where
a, b, c, d, e, and f are distinct colors
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We now determine the srx3 of bicyclic graphs as given in the following theo-
rem.

Theorem 4.3. For n ≥ 5 and g2 ≥ g1 ≥ 3, let G2 be a bicyclic graph of order n
containing two cycles of lengths g1 and g2. Then

srx3(G2) =



∥G2∥ − 3, if g1 = 3 and g2 ∈ [3, 4], or
g1 ∈ {5, 6, 8} and g2 = 7 or g2 ≥ 9;

∥G2∥ − 4, if g1 = 3 and g2 ∈ {5, 6, 8}, or
g1 = 4 and g2 ∈ {4, 5, 6, 8};

∥G2∥ − 2, if g1 ∈ [3, 4] and g2 = 7 or g2 ≥ 9;
∥G2∥ − 5, if g1, g2 ∈ {5, 6, 8};
∥G2∥ − 1, otherwise.

Proof. To prove the exact value of srx3(G2), it is necessary to establish both the
lower and upper bounds. The lower bound is obtained by considering two main
cases based on the lengths of the cycles in G2: (i) both cycles have length at least
4, and (ii) at least one cycle has length 3. In each case, the bound is derived by
applying key lemmas and theorems linking cycle structure to rainbow connectivity.
For the upper bound, we define a strong 3-rainbow coloring in a case-by-case man-
ner, mirroring the cycle-length distinctions, with the following rules: (i) cycles are
colored to guarantee internal rainbow Steiner trees, and (ii) bridges are assigned
distinct colors not used in the cycles to prevent overlap in any Steiner tree span-
ning both cycle and tree parts. For every three vertices, the coloring guarantees
a rainbow Steiner tree entirely within a cycle or through uniquely colored bridges.
In each case, the number of colors used matches the lower bound, thereby estab-
lishing sharpness. Having set these proof sketches, we are now ready to present the
detailed proofs.

Note that ∥G2∥ = n + 1. First, we prove the lower bound. We distinguish
two cases as follows.

Case 1. The two cycles contained in G2 have length at least 4.

Let c be a strong 3-rainbow coloring of G2. Note that for distinct i, j ∈ [1, 2],
we have

srx3(G2) ≥ |c(X)|+ |c(Ai)|+ |c(E(Cgj ))| (3)

by Lemmas 2.3 and 2.4(ii). Without loss of generality, let i = 1 and j = 2. Thus,
it follows from Eq. (2), Theorem 2.2, and Lemma 2.4(i) that srx3(G2) ≥ ∥G2∥− 3
for g1 ∈ {5, 6, 8} and g2 = 7 or g2 ≥ 9, srx3(G2) ≥ ∥G2∥ − 4 for g1 = 4 and
g2 ∈ {4, 5, 6, 8}, srx3(G2) ≥ ∥G2∥ − 2 for g1 = 4 and g2 = 7 or g2 ≥ 9, and
srx3(G2) ≥ ∥G2∥ − 5 for g1, g2 ∈ {5, 6, 8}.

We now consider the case where both g1 and g2 are equal to 7 or at least
9. If g1 and g2 are both odd, or if g1 and g2 have distinct parity, then by using
a similar argument, we have srx3(G2) ≥ ∥G2∥ − 1. Thus, the remaining case to
consider is when both g1 and g2 are even. According to Eq. (3), we need at least
∥G2∥ − 2 distinct colors to color all edges of X, A1 and Cg2 . Now, consider edges
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v
g1
2

1 v
g1
2 +1

1 and v
g1
2 +1

1 v
g1
2 +2

1 . By using Theorem 2.2 and considering {v
g1
2

1 , v
g1
2 +2

1 , vp2}
for p ∈ { g2

2 ,
g2
2 + 2}, we have {c(v

g1
2

1 v
g1
2 +1

1 ), c(v
g1
2 +1

1 v
g1
2 +2

1 )} ⊈ c(A1) ∪ c(A2). This

forces {c(v
g1
2

1 v
g1
2 +1

1 ), c(v
g1
2 +1

1 v
g1
2 +2

1 )} = {c(v
g2
2

2 v
g2
2 +1

2 ), c(v
g2
2 +1

2 v
g2
2 +2

2 )}. However,

observe that every rainbow Steiner {v
g1
2

1 , v
g1
2 +2

1 , v
g2
2 +1

2 }-tree must contain edges

v
g1
2

1 v
g1
2 +1

1 , v
g1
2 +1

1 v
g1
2 +2

1 , and either v
g2
2

2 v
g2
2 +1

2 or v
g2
2 +1

2 v
g2
2 +2

2 , a contradiction.

Case 2. At least one of the cycles contained in G2 has length 3.

Without loss of generality, let g1 = 3 and g2 ≥ 3. To simplify the discussion,
let us denote srx3(G2) = Z. Suppose that srx3(G2) ≤ Z − 1. Then there exists a
strong 3-rainbow coloring c : E(G2) → [1, Z − 1]. Since |c(X)| ≥ ∥G2∥ − g2 − 3 by
Eq. (2), we have at most Z − ∥G2∥+ g2 + 2 remaining colors. Let the set of these
remaining colors be denoted by Y = [1, Z−∥G2∥+ g2+2]. Further, we distinguish
three subcases depending on the length g2 as follows.

Subcase 2.1. g2 ∈ [3, 4].

Since Z = ∥G2∥ − 3, we have Y = [1, g2 − 1]. For g2 = 3, Y = [1, 2]. If G2

does not contain bridges, then |c(X)| = 0 and v11 = v12 . However, by considering
{v21 , v31 , v22}, we need at least three distinct colors to color edge v12v

2
2 and two edges in

a rainbow Steiner {v11 , v21 , v31}-tree, which is impossible. Thus, G2 contains bridges.
Note that c(Ai) ⊆ c(X) ∪ Y for each i ∈ [1, 2]. However, according to Observation
4.2, edges v1i v

2
i or v1i v

3
i should be colored with colors from Y for each i ∈ [1, 2].

Without loss of generality, let {c(v11v21), c(v12v22)} ⊆ Y . Since c(v11v
p
1) ̸= c(v12v

q
2) for

p, q ∈ [2, 3], let c(v11v
2
1) = 1 and c(v12v

2
2) = 2. Now, consider edge v11v

3
1 . Note that

c(v11v
3
1) ∈ c(X)∪{1}. If c(v11v31) ∈ c(X), then let e = xy be the bridge of G2 where

c(e) = c(v11v
3
1), and assume that d(Cg1 , x) < d(Cg1 , y). Now, consider edge v21v

3
1 .

According to Observation 4.2, c(v21v
3
1) /∈ c(X). This forces c(v21v

3
1) ∈ Y . However,

there is no rainbow Steiner {v31 , v22 , y}-tree, a contradiction. If c(v11v
3
1) = 1, then

c(v21v
3
1) /∈ Y . This forces c(v21v

3
1) ∈ c(X). Let e = xy be the bridge of G2 where

c(e) = c(v21v
3
1), and assume that d(Cg1 , x) < d(Cg1 , y). However, there is no rainbow

Steiner {v21 , v31 , y}-tree, a contradiction.

Meanwhile for g2 = 4, Y = [1, 3]. Since c(E(C4)) ∩ c(X) = ∅ by Lemma
2.3, we have c(E(C4)) ⊆ Y . Since c(A2) ≥ 2 by Lemma 2.4(i), without loss of
generality, let c(v12v

2
2) = 1 and c(v12v

4
2) = 2. Now, consider edges v11v

2
1 and v11v

3
1 .

Since {c(v11v21), c(v11v31)} ⊈ [1, 2] by Lemma 2.4(ii), we have {c(v11v21), c(v11v31)} ⊆
c(X)∪{3}. According to Observation 4.2, edges v11v

2
1 or v11v

3
1 should be colored with

3. Thus, without loss of generality, we have either c(v11v
2
1) = 3 and c(v11v

3
1) ∈ c(X),

or c(v11v
2
1) = c(v11v

3
1) = 3. By using a similar argument as case g2 = 3, we will

obtain a contradiction.

Subcase 2.2. g2 ∈ {5, 6, 8}.

Since Z = ∥G2∥ − 4, we have Y = [1, g2 − 2]. Note that c(E(Cg2)) ≥
g2 − 2 and c(E(Cg2)) ∩ c(X) = ∅ by Theorem 2.2 and Lemma 2.3, respectively.
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Thus, c(E(Cg2)) = Y . Now, consider edges v11v
2
1 and v11v

3
1 . By Lemma 2.4(ii),

{c(v11v21), c(v11v31)} ⊈ Y . This forces {c(v11v21), c(v11v31)} ⊆ c(X), contradicting Ob-
servation 4.2.

Subcase 2.3. g2 = 7 or g2 ≥ 9.

Since Z = ∥G2∥ − 2, we have Y = [1, g2]. By using a similar argument as
Subcase 2.2, we obtain that {c(v11v21), c(v11v31)} ⊆ c(X), contradicting Observation
4.2.

The following figure presents an illustration of the contradiction arising in
Subcases 2.2 and 2.3.

Figure 6. An illustration of the contradiction for Subcases 2.2
and 2.3.

Now, we proceed to prove the upper bound. For g1, g2 are equal to 7 or at
least 9, it follows from Theorem 2.1 that srx3(G2) ≤ ∥G2∥ − 1.

For g1 = 3 and g2 ≥ 3, we define a strong 3-rainbow coloring c of G2 as
follows.

(1) Define c(v11v
2
1) = c(v11v

3
1) = 1 and c(v21v

3
1) = 2.

(2) For g2 = 3, do step (a). For g2 = 4, do step (b). For g2 ∈ {5, 6, 8}, do step
(c). For g2 = 7 or g2 ≥ 9, do step (d).
(a) Define c(v12v

2
2) = c(v12v

3
2) = 3 and c(v22v

3
2) = 2. Furthermore, if ∥G2∥ >

6, then assign colors 4, 5, . . . , ∥G2∥ − 3 to the ∥G2∥ − 6 bridges of G2.
(b) Define c(v12v

2
2) = c(v32v

4
2) = 3 and c(v22v

3
2) = c(v12v

4
2) = 4. Further-

more, if ∥G2∥ > 7, then assign colors 5, 6, . . . , ∥G2∥−3 to the ∥G2∥−7
bridges of G2.

(c) Assign colors 2, 3, . . . , g2 − 1 to the edges of Cg2 by using the edge-

coloring rules given in (A1) such that c(v
⌊ g2

2 ⌋+1
2 v

⌊ g2
2 ⌋+2

2 ) = 2. Further-
more, if ∥G2∥ > g2 + 3, then assign colors g2, g2 + 1, . . . , ∥G2∥ − 4 to
the ∥G2∥ − g2 − 3 bridges of G2.

(d) Assign colors 2, 3, . . . , ∥G2∥− 2 to the remaining ∥G2∥− 3 edges of G2

such that c(v
⌊ g2

2 ⌋+1
2 v

⌊ g2
2 ⌋+2

2 ) = 2.

For g1 = 4 and g2 ≥ 4, we define a strong 3-rainbow coloring c of G2 as
follows.

(1) Define c(v11v
2
1) = c(v31v

4
1) = 1 and c(v21v

3
1) = c(v11v

4
1) = 2.
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(2) For g2 = 4, do step (a). For g2 ∈ {5, 6, 8}, do step (b). For g2 = 7 or
g2 ≥ 9, do step (c).
(a) Define c(v12v

2
2) = c(v32v

4
2) = 3 and c(v22v

3
2) = c(v12v

4
2) = 4. Further-

more, if ∥G2∥ > 8, then assign colors 5, 6, . . . , ∥G2∥−4 to the ∥G2∥−8
bridges of G2.

(b) Assign colors 3, 4, . . . , g2 to the edges of Cg2 by using the edge-coloring
rules given in (A1). Furthermore, if ∥G2∥ > g2 + 4, then assign colors
g2 + 1, g2 + 2, . . . , ∥G2∥ − 4 to the ∥G2∥ − g2 − 4 bridges of G2.

(c) Assign colors 3, 4, . . . , ∥G2∥−2 to the remaining ∥G2∥−4 edges of G2.

For g1 ∈ {5, 6, 8}, and g2 ≥ g1 ≥ 5, we define a strong 3-rainbow coloring c
of G2 as follows.

(1) Assign colors 1, 2, . . . , g1 − 2 to the edges of Cg1 by using the edge-coloring

rules given in (A1) such that c(v
⌊ g1

2 ⌋+1
1 v

⌊ g1
2 ⌋+2

1 ) = g1 − 2.
(2) For g2 ∈ {5, 6, 8}, do step (a). For g2 = 7 or g2 ≥ 9, do step (b).

(a) Assign colors g1−2, g1−1, . . . , g1+g2−5 to the edges of Cg2 by using

the coloring rules given in (A1) such that c(v
⌊ g2

2 ⌋+1
2 v

⌊ g2
2 ⌋+2

2 ) = g1 − 2.
Furthermore, if ∥G2∥ > g1 + g2, then assign colors g1 + g2 − 4, g1 +
g2 − 3, . . . , ∥G2∥ − 5 to the ∥G2∥ − g1 − g2 bridges of G2.

(b) Assign colors g1 − 2, g1 − 1, . . . , ∥G2∥ − 3 to the remaining ∥G2∥ − g1

edges of G2 such that c(v
⌊ g2

2 ⌋+1
2 v

⌊ g2
2 ⌋+2

2 ) = g1 − 2.

The next step is to show that there exists a rainbow Steiner tree connecting
every 3-subset S of V (G2). Since the edge-colorings c assign distinct colors to all
bridges of G2 and ensure that c(X) ∩ c(E(Cgi)) = ∅ for all i ∈ [1, 2], it suffices to
consider the subsets S = {u, v, w} under the following two cases.

(i) u, v, w ∈ V (Cgi) for some i ∈ [1, 2]. For gi ∈ [3, 4], the existence of a
rainbow Steiner S-tree is immediate. Moreover, for gi ∈ {5, 6, 8}, the edge-
colorings c assign gi − 2 distinct colors to the edges of Cgi according to the
edge-coloring rules given in (A1), while for gi = 7 or gi ≥ 9, all edges of
Cgi are colored with distinct colors. Thus, in all these cases, the existence
of a rainbow Steiner S-tree is also guaranteed.

(ii) u ∈ V (Cg1) and v, w ∈ V (Cg2). Observe that there exists a rainbow v11 −
u geodesic T1 in Cg1 , a rainbow Steiner {v12 , v, w}-tree T2 in Cg2 , and a
rainbow v11 − v12 geodesic T3, such that c(E(Ta))∩ c(E(Tb)) = ∅ for distinct
a, b ∈ [1, 3]. Thus, the tree T = T1 ∪ T2 ∪ T3 is a rainbow Steiner S-tree.

□

As an example, let G2 be a bicyclic graph of order n = 18 with g1 = 3 and
g2 = 5. According to the edge-coloring c defined in the proof of theorem above, we
first assign colors 1 and 2 to the edges of C3 so that the edges v11v

2
1 and v11v

3
1 receive

the color 1, and then assign colors 2, 3 and 4 to the edges of C5 so that the edge
v32v

4
2 receives color 2. The remaining edges, which are the bridges of G2, are then

colored with colors 5, 6, . . . , 15. As a result, we obtain a strong 3-rainbow coloring
of G2 as illustrated in Figure 7(a). By using a similar procedure, we also obtain a
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strong 3-rainbow coloring of G2 with n = 24, g1 = 6 and g2 = 7, as illustrated in
Figure 7(b).

Figure 7. Strong 3-rainbow colorings of G2 where (a) n = 18,
g1 = 3 and g2 = 5, and (b) n = 24, g1 = 6 and g2 = 7

According to Theorem 4.3, it can be concluded that the srx3 of bicyclic
graphs, which is a graph obtained by adding two edges to a tree, is always less than
its size.

5. CONCLUSION

It is known that srx3(Tn) = ∥Tn∥ (see Theorem 1.2). Therefore, this paper
investigated how the addition of one or two edges to a tree Tn affected the srx3 of
the resulting graphs. We first provided sharp upper bounds for srx3(G) where G is
a unicyclic or bicyclic graph, and then determined the exact values of srx3(G) for
such graphs. Our results showed that srx3(G) = ∥G∥ if G is a unicyclic graph with
girth 7 or at least 9; in all other cases, srx3(G) < ∥G∥. More specifically, Corollary
3.3 and Theorem 4.3 showed that for t ∈ [1, 2], srx3(G) = ∥G∥ − t + 1 if G is a
connected graph containing t odd cycles of lengths at least 7. These results raise a
natural question regarding the sharpness of this bound for connected graphs with
more cycles, as formulated belows.

Problem 5.1. For t ≥ 3, is the upper bound ∥G∥ − t + 1 always sharp for a
connected graph G containing t odd cycles of lengths at least 7?

Additionally, it is important to note that adding two edges to a tree Tn may
produce a graph containing exactly three cycles, one of which is commonly known
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as a theta graph. This observation naturally motivates further investigation of the
following problem.

Problem 5.2. What is the exact values of srx3(G) where G is a theta graph of
order n ≥ 4?

Moreover, exploring the behavior of srx3 in general cyclic graphs presents a
promising direction for future research. We hope that the results presented in this
paper provide a foundation for the broader characterization of the srx3 for cyclic
graphs.

REFERENCES

[1] Z. Y. Awanis and A. N. M. Salman, “The strong 3-rainbow index of some certain graphs and

its amalgamation,” Opuscula Math., vol. 42, no. 2, pp. 527–547, 2022. https://doi.org/10.
7494/OpMath.2022.42.4.527.

[2] G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang, “Rainbow connection in graphs,”

Math. Bohem., vol. 133, pp. 85–98, 2008. https://doi.org/10.21136/MB.2008.133947.
[3] S. Chakraborty, E. Fischer, A. Matsliah, and R. Yuster, “Hardness and algorithms for rain-

bow connection,” J. Comb. Optim., vol. 21, pp. 330–347, 2011. https://doi.org/10.1007/

s10878-009-9250-9.
[4] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, and R. Yuster, “On rainbow connection,” Electron. J.

Combin., vol. 15, p. R57, 2008. https://doi.org/10.37236/781.

[5] Q. Cai, X. Li, and Y. Zhao, “Note on the upper bound of the rainbow index of a graph,”
Discrete Appl. Math., vol. 209, pp. 68–74, 2016. https://doi.org/10.1016/j.dam.2015.10.

019.

[6] G. Chartrand, F. Okamoto, and P. Zhang, “Rainbow trees in graphs and generalized connec-
tivity,” Networks, vol. 55, pp. 360–367, 2010. https://doi.org/10.1002/net.20339.

[7] T. Liu and Y. Hu, “Some upper bounds for 3-rainbow index of graphs,” J. Combin. Math.
Combin. Comput., vol. 97, pp. 217–225, 2016. https://combinatorialpress.com/article/

jcmcc/Volume%20097/vol-097-paper%2015.pdf.

[8] Z. Y. Awanis and A. N. M. Salman, “The 3-rainbow index of amalgamation of some graphs
with diameter 2,” in IOP Conference Series: Journal of Physics, vol. 1127, p. 012058, IOP

Publishing Ltd, 2019. https://doi.org/10.1088/1742-6596/1127/1/012058.

[9] L. Chen, X. Li, K. Yang, and Y. Zhao, “The 3-rainbow index of a graph,” Discuss. Math.
Graph Theory, vol. 35, pp. 81–94, 2015. https://doi.org/10.7151/dmgt.1780.

[10] D. Kartika and A. N. M. Salman, “The 3-rainbow index of some graphs that constructed by

joining a graph with a trivial graph,” in IOP Conference Series: Journal of Physics, vol. 1127,
p. 012060, IOP Publishing Ltd, 2019. https://doi.org/10.1088/1742-6596/1127/1/012060.

[11] T. Liu and Y. Hu, “The 3-rainbow index of graph operations,” WSEAS Trans. Math.,

vol. 13, pp. 161–170, 2014. https://www.wseas.org/multimedia/journals/mathematics/

2014/a045706-361.pdf.

[12] X. Li, I. Schiermeyer, K. Yang, and Y. Zhao, “Graphs with 3-rainbow index n−1 and n−2,”
Discuss. Math. Graph Theory, vol. 35, pp. 105–120, 2015. https://doi.org/10.7151/dmgt.

1783.
[13] X. Li, Y. Shi, and Y. Sun, “Rainbow connections of graphs: a survey,” Graphs Combin.,

vol. 29, pp. 1–38, 2013. https://doi.org/10.1007/s00373-012-1243-2.

[14] X. Li and Y. Sun, “An updated survey on rainbow connections of graphs - a dynamic sur-

vey,” Theory Appl. Graphs, vol. 0, p. Article 3, 2017. https://doi.org/10.20429/tag.2017.
000103.

https://doi.org/10.7494/OpMath.2022.42.4.527
https://doi.org/10.7494/OpMath.2022.42.4.527
https://doi.org/10.21136/MB.2008.133947
https://doi.org/10.1007/s10878-009-9250-9
https://doi.org/10.1007/s10878-009-9250-9
https://doi.org/10.37236/781
https://doi.org/10.1016/j.dam.2015.10.019
https://doi.org/10.1016/j.dam.2015.10.019
https://doi.org/10.1002/net.20339
https://combinatorialpress.com/article/jcmcc/Volume%20097/vol-097-paper%2015.pdf
https://combinatorialpress.com/article/jcmcc/Volume%20097/vol-097-paper%2015.pdf
https://doi.org/10.1088/1742-6596/1127/1/012058
https://doi.org/10.7151/dmgt.1780
https://doi.org/10.1088/1742-6596/1127/1/012060
https://www.wseas.org/multimedia/journals/mathematics/2014/a045706-361.pdf
https://www.wseas.org/multimedia/journals/mathematics/2014/a045706-361.pdf
https://doi.org/10.7151/dmgt.1783
https://doi.org/10.7151/dmgt.1783
https://doi.org/10.1007/s00373-012-1243-2
https://doi.org/10.20429/tag.2017.000103
https://doi.org/10.20429/tag.2017.000103


17

[15] Z. Y. Awanis, A. Salman, S. W. Saputro, M. Bača, and A. Semaničová-Feňovč́ıková, “The
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