A SHORT NOTE ON BANDS OF GROUPS

B. Davvaze1, and F. Sepahi2

1Department of Mathematics, Yazd University, Yazd, Iran
davvaz@yazd.ac.ir
2Department of Mathematics, Yazd University, Yazd, Iran

Abstract. In this paper, we give necessary and sufficient conditions on a semigroup S to be a semilattice of groups, a normal band of groups and a rectangular band of groups.

Key words and Phrases: Semigroup, band, semilattice, band of semigroup.

Abstrak. Pada paper ini, kami menyatakan syarat perlu dan cukup dari suatu semigrup S untuk menjadi semilatish dari grup, pita normal dari grup, dan pita persegi panjang dari grup.

Kata kunci: Semigrup, pita, semilatish, pita dari semigrup.

1. Introduction and Preliminaries

Before we present the basic definitions we give a short history of the subject. In [4], Clifford introduced bands of semigroups and determined their structure. In [3], Ciric and S. Bogdanovic studied sturdy bands of semigroups. Then, this concept is studied by many authors, for example see [6, 11]. In [7, 8, 9, 10], Lajos studied semilattices of groups. In [1], Bogdanovic presented a characterization of semilattices of groups using the notion of weakly commutative semigroup. The purpose of this paper is as stated in the abstract.

A semigroup S is a group, if for every $a, b \in S$, $a \in bS \cap Sb$. A semigroup S is a band, if for every $a \in S$, $a^2 = a$. A commutative band is called a semilattice.

Let S be a semigroup. If there exists a band $\{S_\alpha \mid \alpha \in \mathcal{C}\}$ of mutually disjoint subsemigroups S_α such that

\begin{enumerate}
\item $S = \bigcup_{\alpha \in \mathcal{C}} S_\alpha,$
\item for every $\alpha, \beta \in \mathcal{C}$, $S_\alpha S_\beta \subseteq S_{\alpha \beta},$
\end{enumerate}
then we say S is a band of semigroups of type C.

A congruence ρ of a semigroup S is a semilattice congruence of S if the factor S/ρ is a semilattice. If there exists a congruence relation ρ on a semigroup S such that S/ρ is a semilattice and every ρ-class is a group, then we say S is a semilattice of groups.

2. Main Results

Let S be a semigroup. Then, S^1 is “S with an identity adjoined if necessary”; if S is not already a monoid, a new element is adjoined and defined to be an identity. For an element a of S, the relevant ideals are: (1) The principal left ideal generated by a: $aS^1 = \{sa \mid s \in S^1\}$, this is the same as $\{sa \mid s \in S\} \cup \{a\}$; (2) The principal right ideal generated by a: $S^1a = \{as \mid s \in S^1\}$, this is the same as $\{as \mid s \in S\} \cup \{a\}$.

Let $a, b \in S$. We use the following well known notations:

\[aL b \iff b \in aS^1 \text{ and } aL b \iff b \in S^1a, \]
\[aL b \iff aL b, aL b. \]

For elements $a, b \in S$, Green’s relations L, R and H are defined by

\[aL b \iff aL b, bL a, \]
\[aR b \iff aR b, bL a, \]
\[aH b \iff aH b, bL a. \]

Indeed, $H = L \cap R$.

Lemma 2.1. R is a left congruence relation and L is a right congruence relation on S.

Proof. It is well-known in algebraic semigroup theory [4].

An element x of a semigroup S is said to be left (right) regular if $x = yx^2$ ($x = x^2y$) for some $y \in S$, or equivalently, xLx^2 (xRx^2). The second condition in the following theorem is equivalent to a semigroup being left regular and right regular.

Theorem 2.2. A semigroup S is a semilattice of groups if and only if

\[(\forall a, b \in S) \ b[a|a, a^2|a. \]

Proof. Suppose that a semigroup S is a semilattice of groups and $S = \bigcup_{\alpha} S_{\alpha}$. If $a \in S_{\alpha}$ and $b \in S_{\beta}$, then $ab, ba \in S_{\alpha \beta}$. Since $S_{\alpha \beta}$ is a group, $ba \in abS \cap S_{\alpha \beta}$. Since a, $a^2 \in S_{\alpha}$, we conclude that $a^2|a$.

Conversely, we define the relation η on S as follows:

\[a \eta b \iff a|b, b|a. \]

Obviously, $\eta \subseteq H$, where H is the Green relation. Now, suppose that aHb. Then, $a \in bS \cap Sb$ and $b \in aS \cap Sa$. Hence, $a \eta b$, and so $H = \eta$. Suppose that aHb and
A Short Note on Bands of Groups

c ∈ S. Then, ac ∈ bSc. Thus, there exists t ∈ S such that ac = btc. By (1), we have
\[ac = btc ∈ btec^2S ⊆ bc^2tS ⊆ bcS. \]

Similarly, bc ∈ acS. Hence, acRbc and so \(R \) is a right congruence relation. By
Lemma 2.1, we conclude that \(R \) is a congruence relation. Since \(a ∈ Shb \), there exists
\(m ∈ S \) such that \(a = mb \). By (1), we obtain
\[ca = cmb ∈ Smcb ⊆ Scb. \]

So, \(L \) is a left congruence relation. By Lemma 2.1, we conclude that \(L \) is a con-
gruence relation. Therefore, \(H = R ∩ L \) is a congruence relation. For every \(a ∈ S, \)
we have \(a^2 ∈ aS ∩ Sa \). Then, by (1), \(a ∈ a^2S ∩ Sa^2 \) which implies that \(aHa^2 \).

Also, by (1), we obtain \(abHba \). Therefore, \(H \) is a congruence semilattice. Now, let
\(S = \bigcup S_α, \) where \(C \) is a semilattice and \(S_α \) is \(H \)-class, for every \(α ∈ C \). We prove
that \(S_α \) is a group, for every \(α ∈ C \). Suppose that \(aHa^2 \). Then, for some \(α ∈ C, \)
a, b ∈ \(S_α \) and \(aHa^2 \). Hence, there exists \(x ∈ S \) such that \(a = b^2x \). If \(a, b ∈ S_α \)
and \(x ∈ S_β \), then \(αβ = α \). From (1), we conclude that there exists \(y ∈ S \) such that
\(a = a^2y \). If \(y ∈ S_γ \), then \(αγ = α \). So, we have
\[a = a^2y = aay = b^2xay = bbyxay ∈ bS_αβαγ = bS_α. \]

Similarly, we can prove that \(a ∈ S_αb \) and \(b ∈ S_αa ∩ aS_α \). Thus, \(a|b \) and \(b|a \) in \(S_α \).
Therefore, \(S \) is a semilattice of groups \(S_α \).

Definition 2.3. A band \(B \) is called normal if for every \(a, b, c ∈ B \), \(cabc = cbac \).

Theorem 2.4. A semigroup \(S \) is a normal band of groups if and only if
\[(∀a, b, c, d ∈ S) \quad abcd|abcd, \quad a|ab^2. \]

Proof. Suppose that a semigroup \(S \) is a normal band of groups and \(S = \bigcup S_α \).

If \(a ∈ S_α \), \(b ∈ S_β \), \(c ∈ S_γ \) and \(d ∈ S_δ \), then \(abcd ∈ S_αβγδ \). Since \(C \) is a normal band,
\(a(abcd) \), \(abcd ∈ S_αβγδ \). So, we have
\[(∀a, b, c, d ∈ S) \quad abcd ∈ abcdS ⊆ acbdS \quad and \quad abcd ∈ Sabcdacbd ⊆ Sacbd. \]

Conversely, we consider the relation \(η \). Similar to the proof of Theorem 2.2, we obtain \(H = η \). In order to prove \(H \) is a congruence relation, it is enough to show that \(R \) is a right congruence relation and \(L \) is a left congruence relation. Suppose
that \(aRb \). Then, there exists \(s ∈ S \) such that
\[ac = bsc ∈ bsc^2S ⊆ bsScS ⊆ bcS. \]

Similarly, \(bc ∈ acS. \) Suppose that \(aLb \). Then, there exists \(m ∈ S \) such that
\[ca = cmb ∈ Sc^2mb ⊆ Scmcb ⊆ Scb. \]

Similarly, \(cb ∈ Sca. \) Let \(a, b, c ∈ S \). By (3), \(abcaHcba \) and \(aHα^2 \). Therefore, \(H \) is a congruence normal band.

Now, suppose that \(aHb \). Then, \(aHb^2 \) and so \(aLb^2 \). Hence, there exists \(x ∈ S \)
such that \(a = xb^2 \). If \(\alpha, \beta \in \mathbb{C}, a, b \in S_\alpha \) and \(x \in S_\beta \), then \(\alpha = \beta \alpha \). By (3), for every \(a \in S \) there exists \(y \in S \) such that \(a = ya^2 \). If \(y \in S_\gamma \), then \(\alpha = \gamma \alpha \). Thus, we have

\[
a = ya^2 = yaa = yaxb^2 = yaxbb \in S_{\gamma \alpha \beta \alpha} b = S_\alpha b.
\]

Similarly, we can prove that \(b \in S_\alpha a \). Since \(aRb \), we conclude that \(a \in bS_\alpha \) and \(b \in aS_\alpha \). Therefore, \(S_\alpha \) is a group and \(S \) is a normal band of groups.

Definition 2.5. A semigroup \(S \) is called a rectangular band if for every \(a, b \in S \),

\[
aba = a.
\]

Theorem 2.6. A semigroup \(S \) is a rectangular band of groups if and only if

\[
(\forall a, b \in S) \ a|_1 aba.
\]

Proof. Suppose that a semigroup \(S \) is a rectangular band of groups and \(S = \bigcup_{\alpha \in C} S_\alpha \). Then, for every \(a, b \in S \), \(aba \in S \). Therefore,

\[
a \in aba S \text{ and } a \in Saba.
\]

Conversely, suppose that (4) holds. If \(a \mathcal{H} b \), then for every \(c \in S \) we have \(ac \in bSc \subseteq bcbSc \subseteq bcS \). Similarly, \(ec \in acS \) and so \(acRbe \). On the other hand, \(ca \in S \subseteq cSbcb \subseteq Sca \) and \(cb \in Sca \). Thus, \(ca \mathcal{L} b \). Therefore, \(\mathcal{R} \) is a right congruence relation and \(\mathcal{L} \) is a left congruence relation, and so \(\mathcal{H} \) is a congruence relation. Since for every \(a, b \in S \), \(a \in Saba \) and \(a \in abaS \), \(S \) is a congruence rectangular band.

Now, suppose that \(a \mathcal{H} b \). Then, \(a \mathcal{H} b^2 \) and there exists \(\alpha \in \mathcal{C} \) such that \(a, b \in S_\alpha \). So, there exist \(m, n \in S \) such that \(a = mb^2 \) and \(b = na \). If \(\beta, \gamma \in \mathcal{C}, m \in S_\gamma \) and \(n \in S_\beta \), then \(\alpha = \gamma \alpha \) and \(\alpha = \beta \alpha \). So, we have

\[
a = mb^2 = mnab \in S_{\gamma \beta \alpha} b = S_\alpha b.
\]

Similarly, we can prove that \(a \in bS_\alpha \) and \(b \in aS_\alpha \cap S_\alpha a \). Therefore, \(S_\alpha \) is a group.

Corollary 2.7. \(S \) is a left zero band of groups if and only if for every \(a, b \in S \),

\[
a|_1 ab.
\]

3. Concluding Remarks

In this article, we studied some aspects of band of semigroups and groups. Let \(H \) be a non-empty set and let \(\mathcal{P}^\ast(H) \) be the family of all non-empty subsets of \(H \). A hyperoperation on \(H \) is a map \(\star : H \times H \rightarrow \mathcal{P}^\ast(H) \) and the couple \((H, \star) \) is called a hypergroupoid. If \(A \) and \(B \) are non-empty subsets of \(H \), then we denote \(A \star B = \bigcup_{a \in A, b \in B} a \star b \). A hypergroupoid \((H, \star) \) is called a semihypergroup if for all \(x, y, z \) of \(H \), we have \((x \star y) \star z = x \star (y \star z) \) [5]. In future, we shall study the band of semihypergroups.
Acknowledgement. The authors are highly grateful to the referees for their valuable comments and suggestions for improving the paper.

REFERENCES