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Abstract. Let G be a group and S be a subset of G in which e /∈ S and S−1 ⊆ S.

The Cayley graph of group G with respect to subset S, denoted by Cay(G,S), is

an undirected simple graph whose vertices are all elements of G, and two vertices

x and y are adjacent if and only if xy−1 ∈ S. If |S| = k, then Cay(G,S) is called

a Cayley graph of valency k. The aim of this paper is to determine the structure

of Cayley graph of dihedral groups D2n of order 2n when n = p or 2p2, where p

is an odd prime number. The graph structures are based on circulant graphs with

suitable jumps.
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1. Introduction

For any group G and subset S of G such that e ̸∈ S, S−1 ⊆ S, we can
associated a graph whose vertex set is the set of element in G and two distinct
vertices x, y are adjacent if and only if xy−1 ∈ S. This graph firstly was introduced
by Arthur Cayley in 1878 and is known as undirected Cayley graph. Later, Max
Dehn reintroduced Cayley graphs under the name Gruppenbild (group diagram)
in his unpublished lectures on group theory. It leds to the geometric group theory
and he used the set of generators for the new geometric representation of group.
This will translate groups into geometrical objects that can be considered from the
geometric view. For example, it provides a rich source of many symmetric graphs
which are known as transitive graphs and they play a serious work in many graph
theoretical problems such as hamiltonian path and cycles. One more importance of
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Cayley graphs is that these graphs are known as the oldest algebraic graphs. One
of the most important branches of mathematics is algebraic graph theory and it is
playing an essential role in other fields in which algebraic methods are applied to
some problems in graph theory. There are a series of papers in which many authors
defined graphs associated to special algebraic structures and found some relations
between graph properties and algebraic properties. For example, commuting and
non-commuting graphs of a group (see [1, 2]) or zero divisor graph of a ring(see
[3]). We have a similar work on Cayley graphs. Some authors found more graph
properties of this graph and they determined the graph structures for a given group
G and a subset S of G. To determine the structure of Cayley graph, the subset
S plays an important role. For instance, when S is a generating set of group G,
the Cayley graph is connected. Moreover, the size of S is also very important. If
|S| = k, then Cay(G,S) is usually denoted as Cayley graph of valency k. It is clear
that if k = 1, then S is a singleton set consisting an element of order 2 and so
Cay(G,S) of valency 1 must be the union of some edges. For the case k = 2, there
are two possibilities for subset S. First possibility is that S consists of two elements
of order 2 and the second possibility is the case that S contains an element having
order not equal to 2 and its inverse. For k ≥ 3 there will be more possibilities and
so to determine the structure of Cay(G,S) in terms of valency k, it is necessary to
consider all such possibilities and it is more complicated in general. Furthermore,
the structure of group G is also playing important role to find the graph structure
of Cay(G,S). Recently, in 2021, S. Alkaseabe and the second author (see [4])
found the graph structure of Cay(D2n, S) of valencies 1, 2 and 3, where D2n is the
dihedral group of order 2n and n ≥ 3. In this paper, we aim to give the structure
of cayley graphs Cay(D2p, S) and Cay(D2p2 , S) of valency 4, where p is an odd
prime number.

The results given in this paper are stated in two different sections according
to two Cayley graphs Cay(D2p, S) and Cay(D2p2 , S) of valency 4, respectively.
In the rest of this section, we recall some terminologies and notations which are
standard and can be found in (see[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]). For a positive
integer n, we use the notations Zn and D2n for the cyclic group of order n and
dihedral group of order 2n, respectively. The presentations of these two groups are
as Zn =< x | xn = e >= {e, x, x2, . . . , xn−1} and D2n =< a, b | an = b2 = e, bab =
a−1 >= {e, a, a2, . . . , an−1, b, ab, . . . , an−1b}. Let X be a graph, then the set of
vertices and edges are denoted by V (X) and E(X), respectively. For two vertices
x, y ∈ V (X), we denote x ∼ y or x − y if there is an edge between x and y. If in
a graph there is no edge then is called an empty graph. A graph with no loop and
multiple edges is called a simple graph. All graphs in this paper are assumed to
be simple and undirected. The complement of X, denoted by X, is a graph such
that V (X) = V (X) and two vertices are adjacent in X if and only if there are not
adjacent in X. The degree of vertex x ∈ V (X) denoted by deg(x), is the number
of adjacent vertices of x. A graph X is called connected if for any arbitrary two
vertices x, y ∈ V (X) there exists at least a path between x and y. Otherwise, it
is called a disconnected graph. The distance between two vertices x, y ∈ V (X),
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denoted by dX(x, y), is the length of the shortest path between x and y. We denote
by Kn, Pn, and Cn the complete graph, the path graph and the cycle graph with
n vertices, respectively. The union of two graphs X1 and X2, denoted by X1 ∪X2,
is a graph with V (X1 ∪X2) = V (X1)∪V (X2), and E(X1 ∪X2) = E(X1)∪E(X2).
If X1 = X2, then X1 ∪ X1 will be denoted by 2X1 and similarly nX stands for
the union of n copies of X. Let G be a group and H be a subset of G. Then the
number of right or left cosets of H in G denoted by [G : H].

As we mentioned earlier, for a given group G, the Cayley graph of G with
respect to S as a subset of G, denoted by Cay(G,S) is an undirected simple graph
with vertex set consists of all elements of G in which we have two conditions e /∈ S
and S−1 ⊆ S. Two vertices x and y are adjacent if and only if xy−1 ∈ S. The
valency of the Cayley graph is defined as the size of subset S. Three important
properties of Cay(G,S) are |S|- regular, vertex transitive (group of automorphisms
of the Cay(G,S) acts on V (G) transitively) and connected whenever subset S of
G is a generating set of group G. More background on graph theory and group
theory concepts not defined here can be found in [15] and [16].

2. Cayley Graphs of Dihedral Groups of Order 2p

In this section, we investigate and determine the structure of Cayley graph
Cay(G,S) on a dihedral group D2p of valency 4, where p is an odd prime number.
Before to state our results on the structure of Cay(D2p, S) for |S| = 4 and p is an
odd prime, we need to define and give some notations on the circulant graph. A
circulant graph, denoted by Cn(j1, j2, . . . , jm), with n vertices, labeled with integers
modulo n, and jumps j1, j2, . . ., jm, is an undirected graph in which each vertex
i, 0 ≤ i ≤ n− 1, is adjacent to all the vertices i± jk mod n, with 1 ≤ k ≤ m. It is
obvious that Cn(1) = Cn and

Cn(1, 2, . . . , ⌊n/2⌋) = Kn. For more details, some circulant graphs C4(2),
C5(1, 2) and C8(1, 2, 3) are shown in Figure 1. The circulant graph Cn(1, k) is
important for us here. Note that Cn(1, k) can be considered as a graph with n
vertices and jump k consisting a cycle of length n, namely”outer cycle”’ and cycle
(cycles) inside of outer cycle, namely ”inner cycle (cycles)”. Now, let G = Cn(1, k)
be a circulant graph with outer cycle Cn and jump k, then outer and inner cycles
will denote for shorten by ”O” and ”I”, respectively. For two vertices u and v, we
may display dIG(u, v) and dOG(u, v) as the distance between u and v through outer
and inner cycles, respectively. Let us explain more on these notations with the
following example.

Example 2.1. Let G = C7(1, 2) and H = C7(1, 3) be circulant graphs with 7
vertices and jumps 2 and 3, respectively (see F igure 2). Then we have dOG(u, v) = 2,
dIG(u, v) = 1, dOH(u, v) = 2 and dIH(u, v) = 3.
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Figure 1. C8(1, 2, 3), C4(2), C5(1, 2),

u

v
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v

Figure 2. H = C7(1, 3), G = C7(1, 2).

The following theorem gives the structure of Cay(D2p, S) when S consists
of two elements y, z of order 2 and two elements x and its inverse x−1 whenever
o(x) ̸= 2.

Theorem 2.2. Let Cay(D2p, S) be Caylay graph of dihedral group D2p with S =
{x, x−1, y, z} such that p is an odd prime number and x ̸= x−1, y2 = z2 = e. Let
k be the smallest positive integer in which (zy)k = x, then

Cay(D2p, S) = C2p(1, 2k).

Proof. Suppose that D2p =< a, b | ap = b2 = e, bab = a−1 >= {e, a, a2, ..., ap−1, b,
ab, ..., ap−1b}. Since o(aib) = 2 for i = 0, 1, 2, ..., p−1 and o(x) ̸= 2 it whould imply

that x = aj for some 1 ≤ j ≤ p− 1. Moreover, we have p = o(x) = o(aj) =
p

(p, j)
.

We show that the following is a cycle of length p:

e ∼ x ∼ x2 ∼ x3 ∼ x4 ∼ · · · ∼ xp−1 ∼ xp = e.

Note that (xt)(xt+1)−1 = aita−it−i = a−i = x−1 ∈ S , for t = 0, 1, 2, . . . , p.
Let H =< x >= {e, x, x2, x3, . . . , xp−1} be a cyclic subgroup of D2p of order p,

then we have [D2p : H] =
2p

p
= 2. Thus, there are two distinct left cosets H

and yH such that y ̸∈ H. For left coset yH = {y, yx, yx2, yx3, . . . , yxp−1}, we
have a cycle y ∼ yx ∼ yx2 ∼ yx3 ∼ yx4 ∼ · · · ∼ yxp−1 ∼ yxp = y, since
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(yxt)(yxt+1)−1 = yxtx−1−ty−1 = yx−1y−1 = xyy−1 = x ∈ S, for t = 0, 1, 2, . . . , p.
In addition, we can easily see that there is a cycle of length 2p as the following:

e ∼ y ∼ xp−h ∼ yxp−h ∼ xp−2h ∼ yxp−2h ∼ xp−3h ∼ yxp−3h ∼

. . . ∼ xp−(p−1)h ∼ yxp−(p−1)h ∼ xp−ph = e,

where xh = (zy)p−1 and xr = (zy)1, h = p − r. Because yxh−p = yx−r =
y(zy)−1 = yy−1z−1 = z ∈ S, xp−th(yxp−th)−1 = xp−thxth−py−1 = y ∈ S, (yxp−th)
(xp−(t+1))−1 = yxp−thx(t+1)h−p = y(x)h = y(zy)p−1 = y(zy)−1 = yy−1z−1 = z ∈
S.

Put cycle of length 2p as outer cycle and two cycles of length p as inner
cycles. Now we show that for any two adjacent vertices u and v in each inner
cycles dOG(u, v) = 2k. We know that D2p = H ∪ yH and each of cosets H and yH
produce an inner cycle of length p. Consider two adjacent vertices e and x in the
first inner cycle. Then we have xp−th = x and so it will be happend if p− th = 1 or
equivalently p− t(p−r) = p(1− t)+ tr = 1 or xp−th = xtr = (xr)t = (zy)t for some
0 ≤ t ≤ p − 1. Since (zy)k = x, so by putting t = k, we can see that xp−kh = x
and therefore, dOG(e, x) = 2k. Similarly, we may comput distance between any of
two other adjacent vertices in any inner cycle and find at distance 2k through outer
cycle. Hence, Cay(D2p, S) = C2p(1, 2k) and the proof is completed. □

Example 2.3. Let D14 be a dihedral group of order 14. Then we have D14 =<
a, b | a7 = b2 = e, bab = a−1 >= {e, a, a2, a3, a4, a5, a6, b, ab, a2b, a3b, a4b, a5b, a6b}.
If S = {a6, a, a2b, a4b} where x = a6, x−1 = a, y = a2b, z = a4b. Then by Theorem
2.2 we can see that Cay(D14, S) = C14(1, 6). (see Figure 3)

yx5

x5

y
eyx2

x2

yx4

x4

yx6

x6

yx x
yx3

x3

Figure 3. Cay(D14, S) = C14(1, 6).

Theorem 2.4. Let D2p be the dihedral group of order 2p. If S ⊆ D2p such that
S = {u, u−1, v, v−1}, where u ̸= u−1 , v ̸= v−1 and m be the smallest positive
integer such that um = v for some 2 ≤ m ≤ p− 1. Then we have

Cay(D2p, S) = 2Cp(1,m).
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Proof. Suppose that D2p = {e, x, x2, x3, x4, . . . xp−1, y, yx, yx2, . . . , yxp−1}. Since
u ̸= u−1 and v ̸= v−1, so u and v are as the form xi for some 1 ≤ i ≤ p − 1. Also
we can see that o(yxj) = 2 for j = 1, 2, . . . , p − 1. Let k be the smallest positive
integer such that u = xk, and we can let v = xmk for some 2 ≤ m ≤ p− 1. Now we
have an outer cycle of length p as the following:

e ∼ xk ∼ x2k ∼ x3k ∼ · · · ∼ x(p−1)k ∼ e.

Note that (xik)(x(i+1)k)−1 = x−k ∈ S , for i = 1, 2, . . . , p − 1. We have also the
inner cycle of length p as following:

e ∼ xmk ∼ x2mk ∼ x3mk ∼ · · · ∼ x(p−1)mk ∼ e

Because (ximk)(x(i+1)mk)−1 = x−mk ∈ S, for i = 1, 2, ..., p− 1. We show that these
outer and inner cycles produce a circulant graph Cp(1,m) with jump m. For this, it
is necessary to prove that every two adjacent vertices in the inner cycle has length
m on the outer cycle. It can be seen that

dOG(e, x
mk) = dOG(x

mk, x2mk) = dOG(x
2mk, x3mk) =

, . . . , dOG(x
(p−1)mk, e) = m.

Since the graph is 4−regular, we conclude that the rest of the other elements of the
graph, whose number is p, is in the form xiy such that 1 ≤ i ≤ p. So there will be
the following outer and inner cycles of length p, respectively

y ∼ xky ∼ x2ky ∼ x3ky ∼ · · · ∼ x(p−1)ky ∼ y

y ∼ xmky ∼ x2mky ∼ x3mky ∼ · · · ∼ x(p−1)mky ∼ y.

We can easily see that

dOG(y, x
mky) = dOG(x

mky, x2mky) = dOG(x
2mky, x3mky) =

, . . . , dOG(x
(p−1)mky, y) = m.

Hence Cay(D2p, S) is the disjoint union of two circulant graphs Cp(1,m) and so
we have

Cay(D2p, S) = 2Cp(1,m).

□

In the next theorem, we deal with the case that S = {x, y, z, w}, where
x2 = y2 = z2 = w2 = e.

Theorem 2.5. Let D2p =< a, b | ap = b2 = e, bab = a−1 > be a dihedral group,
p is an odd prime number and S = {aib, ajb, asb, atb} ⊆ D2p such that i, j, s and t
are distinct and 0 ⩽ i, j, s, t ⩽ p−1. Let i+j = s+ t (mod p) and k be the smallest
positive integer in which k(i− j) + i = s or t (mod p). Then we have

Cay(D2p, S) = C2p(1, 2k + 1).
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Proof. We may consider D2p as the following presentation:

D2p =< aj−i, aib | (aj−i)p = (aib)2 = e, aib(aj−i)aib = (aj−i)−1 > .

We have the following outer cycle of length 2p

e ∼ aib ∼aj−i ∼ aib(aj−i) ∼ (aj−i)2 ∼ aib(aj−i)2 ∼ (aj−i)3 ∼ aib(aj−i)3 ∼
(aj−i)4 ∼ aib(aj−i)4 ∼ · · · ∼ (aj−i)p−1 ∼ aib(aj−i)p−1 ∼ e. (1)

Notice that (aj−i)r(aib(aj−i)r)−1 = (aj−i)r(aj−i)−raib = aib ∈ S
and aib(aj−i)r(aib(aj−i)r+1)−1 = aibaj−i = ajb ∈ S, where 0 ≤ r ≤ p− 1. Each of
the element of order 2 in D2p is as the form aib(aj−i)r such that 0 ≤ r ≤ p − 1.
Since the set S contains 4 elelments of order 2 and i+ j = s+ t (mod p), so S can
be written as the following:

S = {aib, aib(aj−i)−1, aib(aj−i)k, aib(aj−i)−(1+k)}.

Now, since

aib(aj−i)k(aj−i)(r−1)2k+1((aj−i)r(2k+1))−1 = aib(aj−i)k(aj−i)−(2k+1)

= aib(aj−i)−(1+k) ∈ S

and (aj−i)r(2k+1)(aib(aj−i)k(aj−i)r(2k+1))−1 = (aj−i)−kaib = aib(aj−i)k ∈ S, we
have the following inner cycle of length 2p

e ∼ aib(aj−i)k ∼ (aj−i)(2k+1) ∼ aib(aj−i)k(aj−i)2k+1 ∼ (aj−i)2(2k+1) ∼

aib(aj−i)k(aj−i)2(2k+1) ∼ (aj−i)3(2k+1) ∼ aib(aj−i)k(aj−i)3(2k+1) ∼ · · · ∼

(aj−i)(p−1)(2k+1) ∼ aib(aj−i)k(aj−i)(p−1)(2k+1) ∼ e. (2)

Suppose that x = aib and y = aj−i. Then we can rewrite outer and inner cycles of
length 2p of (1) and (2) with these notations as the following:
outer cycle:

e ∼ x ∼ y ∼ xy ∼ y2 ∼ xy2 ∼ · · · ∼ yp−1 ∼ xyp−1 ∼ e

inner cycle:

e ∼xyk ∼ y2k+1 ∼ xy3k+1 ∼ y4k+2 ∼ xy5k+2 ∼ y6k+3 ∼

xy7k+3 ∼ · · · ∼ y(2p−2)k+(p−1) ∼ xy(2p−1)k+(p−1) ∼ e.

If we consider the inner cycle, then we can see that:

dOG(e, xy
k) = 2k + 1, dOG(xy

k, y2k+1) = 2k + 1, dOG(y
2k+1, xy3k+1) = 2k + 1,

dOG(xy
3k+1, y4k+2) = 2k+1, dOG(y

4k+2, xy5k+2) = 2k+1, dOG(xy
5k+2, y6k+3) = 2k+1,

dOG(y
6k+3, y7k+3) = 2k + 1, . . . , dOG(y

(2p−2)k+(p−1), xy(2p−1)k+(p−1)) = 2k + 1,

dOG(xy
(2p−1)k+(p−1), e) = 2k + 1.

So, it implies that we have a circulant C2p(1, 2k + 1) as required and the proof is
completed. □
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Remark 2.6. The condition i+ j = s+ t (mod p) is necessary in Theorem 2.4, to
have circulant graph. Because, we can see the following example which can not be
displayed as circulant graph.

Example 2.7. Let D14 be the dihedral group of order 14. Suppose S = {b, a2b, a3b,
a4b}. We can see that the condition of Theorem 2.5 is not satisfied and, it is not a
circulant graph (see Figure 4).

a4b

a3

b
ea3b

a4

a6b

a

a2b

a5

a5b a2
ab

a6

Figure 4. Cay(D14, S)

3. Cayley Graph of Dihedral Groups of order 2p2

In this section, we are going to find the structure graph of valency 4, for
dihedral group of order 2p2. Let D2p2 be dihedral group of order 2p2, where p
is prime. If p = 2, then we have dihedral group D8 of order 8. In the following
Theorem we can give the structure of Cay(D8, S), whenever |S| = 4.

Theorem 3.1. Let D8 be a dihedral group of order 8 with S = {x, y, z, w}such that
x2 = y2 = z2 = w2 = e, then we have

Cay(D8, S) = C8(1, 3).

Proof. It is clear that in this case S can be only presented as S = {b, ab, a2b, a3b}.
We have the following outer and inner cycle of length 8, respectively.
outer cycle:

e ∼ b ∼ a3 ∼ ab ∼ a2 ∼ a2b ∼ a ∼ a3b ∼ e

inner cycle:

e ∼ ab ∼ a ∼ b ∼ a2 ∼ a3b ∼ a3 ∼ a2b ∼ e.

Moreover, we have

dOG(e, ab) = 3 , dOG(ab, a) = 3, dOG(a, b) = 3, dOG(b, a
2) = 3,

dOG(a
2, a3b) = 3, dOG(a

3b, a3) = 3, dOG(a
3, a2b) = 3, dOG(a

2b, e) = 3.

Hence we will have a circulant graph C8(1, 3). □
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Now, if S = {x, x−1, y, z} ⊂ D8 such that x ̸= x−1, y2 = z2 = e, then each
element of S is the form S = {a, a3, y, z}. We may consider the following cases:

(i)zy = a (ii)zy = a2 (iii)zy = a3.

In the following theorem, we will discuss about the graph structure of Cay(D8, S)
in the above cases.

Theorem 3.2. Cay(D8, S) in cases (i) and (iii) is the circulant graph C8(1, 2).

Proof. We have the following outer cycle:

e ∼ y ∼ zy ∼ y(zy) ∼ (zy)2 ∼ y(zy)2 ∼ (zy)3 ∼ y(zy)3 ∼ e.

In case (i), since zy = a we have an outer cycle e ∼ y ∼ a ∼ ya ∼ a2 ∼ ya2 ∼ a3 ∼
ya3 ∼ e, and two inner cycles e ∼ a ∼ a2 ∼ a3 ∼ e and y ∼ ya ∼ ya2 ∼ ya3 ∼ y.
We can easily check that Cay(D8, S) = C8(1, 2). For case (iii) we can follow the
same method as above and again get circulant graph C8(1, 2). □

Theorem 3.3. Cay(D8, S) in case (ii) is the circulant graph C8(1, 3).

Proof. In case (ii), if S = {a, a3, b, a2b}, we have an outer cycle e ∼ a ∼ ab ∼ a3 ∼
a2 ∼ a2b ∼ a3b ∼ b ∼ e and an inner cycle e ∼ a3 ∼ a3b ∼ a ∼ a2 ∼ b ∼ ab ∼
a2b ∼ e. We have jump of length 3, because

dOG(e, a
3) = 3, dOG(a

3, a3b) = 3, dOG(a
3b, a) = 3, dOG(a, a

2) = 3,

dOG(a
2, b) = 3, dOG(b, ab) = 3, dOG(ab, a

2b) = 3, dOG(a
2b, e) = 3.

Hence we have Cay(D8, S) = C8(1, 3). If S = {a, a3, ab, a3b}, we have an outer
cycle e ∼ a ∼ a2b ∼ a3 ∼ a2 ∼ a3b ∼ b ∼ ab ∼ e and an inner cycle:

e ∼ a3 ∼ b ∼ a ∼ a2 ∼ ab ∼ a2b ∼ a3b ∼ e

which produce a circulant graph with jump of length 3. Because

dOG(e, a
3) = 3, dOG(a

3, b) = 3, dOG(b, a) = 3, dOG(a, a
2) = 3,

dOG(a
2, ab) = 3, dOG(ab, a

2b) = 3, dOG(a
2b, a3b) = 3, dOG(a

3b, e) = 3.

Thus we conclude that Cay(D8, S) = C8(1, 3), in case (ii). □

Now, assume That p is an odd prime number. We have D2p2 =< a, b | ap2

=

b2 = e, bab = a−1 >= {e, a, a2, . . . , ap2−1, b, ab, a2b, . . . , ap
2−1b}. Let S be a subset

of D2p2 of size 4. Then we have the following three possibilities:

(i) S = {x, x−1, y, z}, x ̸= x−1, y2 = z2 = e
(ii) S = {x, y, z, w}, x2 = y2 = z2 = w2 = e
(iii) S = {x, x−1, y, y−1}, x ̸= x−1, y ̸= y−1.

It is clear that if x, y, z ∈ D2p2 such that x ̸= x−1 and y2 = z2 = e, then x can
be only presented as ai and y, z can be presented as ajb and asb, respectively such
that 1 ⩽ i ⩽ p2 − 1 and 0 ⩽ j ̸= s ⩽ p2 − 1. If x = ai, y = ajb and z = asb, then we
can see that zy = asbajb = as−j and therefor zy can be presented as xr for some
1 ⩽ r ⩽ p2 − 1. Now, the following cases, will arise.

Case 1: o(x) = p2, o(zy) = p.
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In this case, we should have r = tp, where 1 ⩽ t ⩽ p− 1.

Case 2: o(x) = p2, o(zy) = p2.
Case 3: o(x) = p, o(zy) = p.
Case 4: o(x) = p, o(zy) = p2.

In cases 2, 3 and 4, r can not be a multiplication of p. Because, if for example

r = tp, o(x) = o(zy) = p, then we have p = o(zy) = o(xr) =
o(x)

(r, o(x))
=

p

(tp, p)
= 1

which is a contradiction. So, r ̸= p, 2p, . . . , (p−1)p. Now we can start investigation
of the structure of Cay(D2p2 , S), when S = {x, x−1, y, z}, x ̸= x−1, y2 = z2 = e
according to the above four cases. In the following theorem, we consider case 1.

Theorem 3.4. Cay(D2p2 , S) in case 1 is a graph consisting p disjoint cycles of
length 2p and a Hamiltonian cycle in which every two adjacent vertices are belong
to distinct cycles of length 2p.

Proof. Suppose thatD2p2 =< a, b | ap2

= b2 = e, bab = a−1 >= {e, a, a2, . . . , ap2−1,

b, ab, a2b, . . . , ap
2−1b} and S = {x, x−1, y, z} ⊂ D2p2 . Since x ̸= x−1 we have

o(x) = m > 2. Let o(x) = p2. In this case, since zy = xp we have the follow-
ing outer cycle of length 2p.

e ∼ y ∼ zy ∼ y(zy) ∼ (zy)2 ∼ y(zy)2 ∼ · · · ∼ (zy)p−1 ∼ y(zy)p−1 ∼ e.

So there is a dihedral subgroup K such that

K =< y, xp >= {e, y, xp, yxp, x2p, yx2p, . . . , x(p−1)p, yx(p−1)p}.

We have [D2p2 : K] =
2p2

2p
= p. Thus there are p distinct right cosets

K, Kx, Kx2, . . . , Kxp−1.

For each right coset Kxt, we have a cycle

xt ∼ yxt ∼ xp+t ∼ yxp+t ∼ . . . ∼ x(p−1)p+t ∼ yx(p−1)p+t

for t = 1, 2, . . . , p− 1. Therefore, we have p cycles of length 2p. Since x ∼ x2, x2 ∼
x3, x3 ∼ x4, . . . , xp−2 ∼ xp−1, xp−1 ∼ xp. So, K ∪Kx∪Kx2 ∪Kx3 ∪ . . .∪Kxp−1 =
D2p2 produces a graph consisting p disjoint cycles of length 2p and a Hamiltonian
cycle in which every two adjacent vertices are belong to distinct cycles of length
2p, as required. □

Theorem 3.5. Cay(D2p2 , S) in cases o(x) = p2, o(zy) = p2 and o(x) = p, o(zy) =
p2 is a circulant graph C2p2(1, 2k), where k is the smallest positive integer such that

x = (zy)k.

Proof. Suppose thatD2p2 =< a, b | ap2

= b2 = e, bab = a−1 >= {e, a, a2, . . . , ap2−1,

b, ab, a2b, . . . , ap
2−1b} and S = {x, x−1, y, z} ⊂ D2p2 . Then in case 2 we can follow

the same method as in Theorem 2.2 and again we get

Cay(D2p2 , S) = C2p2(1, 2k).
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Now, we consider the case o(x) = p, o(zy) = p2. Since o(zy) = p2 and o(x) = p, we
have the following outer cycle of length 2p2

e ∼ y ∼ zy ∼ y(zy) ∼ (zy)2 ∼ y(zy)2 ∼ (zy)3 ∼ y(zy)3 ∼ . . . ∼ y(zy)p
2−2

∼ (zy)p
2−1 ∼ y(zy)p

2−1 ∼ (zy)p
2

= e,

because [y(zy)t][(zy)t+1]−1 = y(zy)t(zy)−t−1 = y(zy)−1 = yy−1z−1 = z ∈ S and
(zy)t[y(zy)t]−1 = (zy)t(zy)−ty−1 = y−1 = y ∈ S , for t = 0, 1, . . . , p2 − 1. Assume
that H =< x > is a cyclic subgroup of order p, then H = {e, x, x2, . . . , xp−1}
consists a cycle of length p as the following

e ∼ x ∼ x2 ∼ x3 ∼ · · · ∼ xp−1 ∼ e.

We have [D2p2 : H] =
2p2

p
= 2p. Thus there are 2p distinct right cosets Hg1, Hg2,

. . . , Hg2p such that g1 = e ∈ H and g2, g3, . . . , g2p /∈ H. For each right coset
Hgj = {gj , xgj , x2gj , . . . , x

p−1gj}, we have an inner cycle gj ∼ xgj ∼ x2gj ∼ · · · ∼
xp−1gj ∼ xpgj = gj , for j = 1, 2, . . . , 2p. Therefore, there are 2p inner cycles of
length p and since (zy)k = x, we have

dOG(e, x) = 2k, dOG(x, x
2) = 2k, dOG(x

2, x3) = 2k,

dOG(x
3, x4) = 2k, . . . , dOG(x

p−1, e) = 2k

and similarly

dOG(gj , xgj) = 2k, dOG(xgj , x
2gj) = 2k, dOG(x

2gj , x
3gj) = 2k,

dOG(x
3gj , x

4gj) = 2k, . . . , dOG(x
p−1gj , gj) = 2k.

Hence we have

Cay(D2p2 , S) = C2p2(1, 2k).

□

Theorem 3.6. Cay(D2p2 , S) in case o(x) = p, o(zy) = p is the union of p circulant

graph C2p2(1, 2k), where k is the smallest positive integer such that x = (zy)k.

Proof. Assume that H =< x > is a cyclic subgroup of order p. Then H =
{e, x, x2, . . . , xp−1} consist of cycle graph of length p as the following

e ∼ x ∼ x2 ∼ x3 ∼ · · · ∼ xp−1 ∼ e.

We have [D2p2 : H] =
2p2

p
= 2p. Thus, there are 2p distinct right cosets and so we

have 2p inner cycles of length p as the following:

gj ∼ gj(zy)
k ∼ gj(zy)

2k ∼ · · · ∼ gj(zy)
p−1 ∼ gj . j = 1, 2, . . . , p.

Since o(zy) = p, we have a dihedral subgroup of order 2p as the following

D2p =< y, zy >= {e, y, zy, y(zy), (zy)2, y(zy)2, . . . , (zy)p−1, y(zy)p−1}.

Thus we have the following outer cycle of length 2p

e ∼ y ∼ zy ∼ y(zy) ∼ (zy)2 ∼ y(zy)2 ∼ · · · ∼ (zy)p−1 ∼ y(zy)p−1 ∼ e,
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because

[y(zy)t][(zy)t+1]−1 = y(zy)k(zy)−k−1 = y(zy)−1 = yy−1z−1 = z ∈ S

and
(zy)k[y(zy)k]−1 = (zy)k(zy)−ky−1 = y−1 = y ∈ S.

On other hand, [D2p2 : D2p] =
2p2

2p
= p, which implies that D2p2 = D2p ∪ g2D2p ∪

g3D2p∪. . .∪gpD2p, where each gjD2p consist of a cycle of length 2p as the following
for each j = 1, 2, . . . , p

gj ∼ gjy ∼ gj(zy) ∼ gjy(zy) ∼ gj(zy)
2 ∼ gjy(zy)

2 ∼

. . . ∼ gjy(zy)
p−1 ∼ gj(zy)

p = gj .

We also have
[D2p2 : H]

[D2p2 : D2p]
=

2p

p
= 2 which implies that there are two inner cycles

in every outer cycle. We have a jump of length 2k, because

dOG(gj , gj(zy)
k) = 2k, dOG(gj(zy)

k, gj(zy)
2k) = 2k,

dOG(gj(zy)
2k, gj(zy)

3k) = 2k, . . . , dOG(gj(zy)
p−1, gj) = 2k.

Hence, we have
Cay(D2p2 , S) = p C2p(1, 2k).

□

If S = {x, y, z, w} such that x2 = y2 = z2 = w2 = e, then each of element in
S has the form aib, for some 0 ≤ i ≤ p2−1. Suppose that x = aib, y = ajb, z = asb,
w = atb. Let i+ j = s+ t (mod p) and k be the smallest positive integer in which
k(i− j) + i = s or t (mod p). Then we may consider the following possibilities:

(i) o(yx) ̸= p, o(wz) ̸= p
(ii) o(yx) ̸= p, o(wz) = p
(iii) o(yx) = o(wz) = p.

Theorem 3.7. Cay(D2p2 , S) in cases o(yx) ̸= p, o(wz) ̸= p and o(yx) ̸= p, o(wz) =
p is circulant graph C2p2(1, 2k + 1), where k is the smallest positive integer such
that k(i− j) + i = s or t (mod p) and i+ j = s+ t (mod p).

Proof. The case o(yx) ̸= p, o(wz) ̸= p is similar to Theorem 2.5 and we omit the
proof. In case o(yx) ̸= p, o(wz) = p since o(yx) ̸= p, we have o(aj−i) = p2. Suppose
that x = aib and y = aj−i. Then by Theorem 2.5, we have outer cycle of length
2p2:

e ∼ x ∼ y ∼ xy ∼ y2 ∼ xy2 ∼ · · · ∼ yp
2−1 ∼ xyp

2−1 ∼ e.

We can rewrite the set S with the above notations as the following:

S = {x, xyp
2−1, xyk, xy(2p

2−1)k+(p2−1)},
such that k is the smallest positive integer such that xyk ∈ S. Now, since o(at−s) =
p, we have inner cycle of length 2p as the following:

e ∼ xyk ∼ y2k+1 ∼ xy3k+1 ∼ y4k+2 ∼ xy5k+2 ∼ y6k+3 ∼ xy7k+3 ∼
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∼ · · · ∼ y(2p−2)k+(p−1) ∼ xy(2p−1)k+(p−1) ∼ e.

We define subgroup D2p of D2p2 as follows:

D2p =< y2k+1, xyk|(y2k+1)p = (xyk)2 = e, xyk(y2k+1)xyk = (y2k+1)−1 >=

{e, y2k+1, y4k+2, y6k+3, . . . , y(2p−2)k+(p−1), xyk, xy3k+1, xy5k+2, . . . , xy(2p−1)k+(p−1)}.

We have [D2p2 : D2p] =
2p2

2p
= p. Thus there are p distinct right cosets which imply

that there are p inner cycles of length 2p as follows:
for each j = 1, 2, . . . , 2p,

gj ∼ gjxy
k ∼ gjy

2k+1 ∼ gjxy
3k+1 ∼ gjy

4k+2 ∼ gjxy
5k+2 ∼

∼ · · · ∼ gjy
(2p−2)k+(p−1) ∼ gjxy

(2p−1)k+(p−1) ∼ gj .

Moreover, for each j = 1, 2, . . . , 2p, we have

dOG(gj , gjxy
k) = 2k + 1, dOG(gjxy

k, gjy
2k+1) = 2k + 1,

dOG(gjy
2k+1, gjxy

3k+1) = 2k + 1, . . . , dOG(gjxy
(2p−1)k+(p−1), gj) = 2k + 1.

Hence, we conclude that Cay(D2p2 , S) = C2p2(1, 2k + 1). □

Theorem 3.8. Cay(D2p2 , S) in case (iii) is the union of p circulant graph C2p(1, 2k+
1), where k is the smallest positive integer such that k(i− j) + i = s or t (mod p)
and i+ j = s+ t (mod p).

Proof. Since we have o(aj−i) = p, similar to Theorem 2.5, we suppose that x = aib
and y = aj−i Thus we have an outer cycle as the following:

e ∼ x ∼ y ∼ xy ∼ y2 ∼ xy2 ∼ · · · ∼ yp−1 ∼ xyp−1 ∼ e.

Since o(at−s) = p, we have inner cycle

e ∼ xyk ∼ y2k+1 ∼ xy3k+1 ∼ y4k+2 ∼ xy5k+2 ∼ y6k+3 ∼ xy7k+3 ∼

∼ · · · ∼ y(2p−2)k+(p−1) ∼ xy(2p−1)k+(p−1) ∼ e.

Note that [D2p2 : D2p] =
2p2

2p
= p. Hence by Theorem 3.7, we have p outer cycles

and p inner cycles as following, respectively.

gj ∼ gjx ∼ gjy ∼ gjxy ∼ gjy
2 ∼ gjxy

2 ∼ . . . ∼ gjy
(p−1) ∼ gjxy

(p−1) ∼ gj ,

for j = 1, 2, . . . , p,
and

gj ∼ gjxy
k ∼ gjy

2k+1 ∼ gjxy
3k+1 ∼ gjy

4k+2 ∼ gjxy
5k+2 ∼

∼ · · · ∼ gjy
(2p−2)k+(p−1) ∼ gjxy

(2p−1)k+(p−1) ∼ gj ,

for j = 1, 2, . . . , p,
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such that every outer cycle consists of one inner cycle. If we consider all inner
cycles we have for j = 1, 2, . . . , p,

dOG(gj , gjxy
k) = 2k + 1, dOG(gjxy

k, gjy
2k+1) = 2k + 1,

dOG(gjy
2k+1, gjxy

3k+1) = 2k + 1, . . . , dOG(gjxy
(2p−1)k+(p−1), gj) = 2k + 1.

Hence, we have Cay(D2p2 , S) = p C2p(1, 2k + 1). □

Now, assume that S = {u, u−1, v, v−1} such that u ̸= u−1, v ̸= v−1 then we may
consider the following possibillities:

(i) o(u) ̸= p, o(v) ̸= p
(ii) o(u) ̸= p, o(v) = p
(iii) o(u) = o(v) = p.

Theorem 3.9. Cay(D2p2 , S) in cases o(u) ̸= p, o(v) ̸= p and o(u) ̸= p, o(v) = p is
the union of two circulant graph Cp2(1,m), where m is the smallest positive integer
such that um = v for some 2 ≤ m ≤ p2 − 1.

Proof. Case o(u) ̸= p, o(v) ̸= p is similar to Theorem 2.4 and we omit the proof.

Suppose thatD2p2 = {e, x, x2, . . . , xp2−1, y, yx, yx2, . . . , yxp2−1}, and k is the small-

est positive integer such that u = xk. In case (ii) since o(u) ̸= p we should have

o(u) = p2. Let H =< u >=< xk >, we have [D2p2 : H] =
2p2

p2
= 2. Thus we have

two outer cycle of length p2 as following:

e ∼ xk ∼ x2k ∼ x3k ∼ · · · ∼ x(p2−1)k ∼ e,

y ∼ yxk ∼ yx2k ∼ yx3k ∼ · · · ∼ yx(p2−1)k ∼ y.

Since o(v) = p we may suppose that L =< v >=< xmk > then we have [D2p2 :

L] =
2p2

p
= 2p and [H : L] =

p2

p
= p. Hence, we have 2p inner cycles of length p as

the following: gj ∼ gjx
mk ∼ gjx

2mk ∼ · · · ∼ gjx
(p−1)mk ∼ gj , for j = 1, 2, . . . , p.

and ygj ∼ ygjx
mk ∼ ygjx

2mk ∼ · · · ∼ ygjx
(p−1)mk ∼ ygj , for j = 1, 2, . . . , p.

every outer cycle conside p inner cycles, with jump m, because

dOG(gj , gjx
mk) = m, dOG(gjx

mk, gjx
2mk) = m, dOG(gjx

2mk, gjx
3mk) = m,

dOG(gjx
3mk, gjx

4mk) = m, . . . , dOG(gjx
(p−1)mk, gj) = m

for j = 1, 2, . . . , p
and in another outer cycle we also have

dOG(ygj , ygjx
mk) = m, dOG(ygjx

mk, ygjx
2mk) = m, dOG(ygjx

2mk, ygjx
3mk) = m,

dOG(ygjx
3mk, ygjx

4mk) = m, . . . , dOG(ygjx
(p−1)mk, ygj) = m.

Hence we have Cay(D2p2 , S) = 2 Cp2(1,m). □

Theorem 3.10. Cay(D2p2 , S) in case o(u) = o(v) = p. is the union of 2p circulant
graph Cp(1,m), where m be the smallest positive integer number such that um = v
for some 2 ≤ m ≤ p2 − 1.
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Proof. Suppose that D2p2 = {e, x, x2, . . . , xp2−1, y, yx, yx2, . . . , yxp2−1}, and k be

the smallest positive integer such that u = xk. Since o(u) = p, we can let v = xmk

such that 2 ≤ m ≤ p − 1. Similar to Theorem 2.4 we have outer cycle of length p
as following:

e ∼ xk ∼ x2k ∼ x3k ∼ · · · ∼ x(p−1)k ∼ e.

Since (xik)(x(i+1)k)−1 = x−k ∈ S for 1 ≤ i ≤ p − 1. Suppose that H =< xk >

then we have [D2p2 : H] =
2p2

p
= 2p. Thus there are 2p distinct right cosets

Hg1 = H,Hg2, . . . ,Hg2p, such that g1 = e ∈ H and g1, g2, . . . , g2p /∈ H. It tends

out for each right coset Hgj = {gj , xkgj , x
2kgj , . . . , x

(p−1)kgj}, we have outer cycle

gj ∼ xkgj ∼ x2kgj , . . . ,∼ x(p−1)kgj ∼ gj for j = 1, . . . , 2p. Therefor we have 2p

outer cycle of length p. Let L =< xmk > . Since [D2p2 : L] =
2p2

p
= 2p, the number

of inner cycles is 2p that are located in every outer cycle. Actually for every outer
cycle we have an inner cycle of length p as following:

gj ∼ xmkgj ∼ x2mkgj ∼ · · · ∼ x(p−1)mkgj ∼ gj , forj = 1, 2, . . . , 2p.

We conclude that every outer cycle has jump of length m, because we have for
j = 1, 2, . . . , 2p.

dOG(gj , x
mkgj) = m, dOG(x

mkgj , x
2mkgj) = m, dOG(x

2mkgj , x
3mkgj) = m,

dOG(x
3mkgj , x

4mkgj) = m, . . . , dOG(x
(p−1)mkgj , gj) = m.

Since the degree of each vertex is 4, we conclude that each vertex is connected
to two adjacent vertices and to two vertices with a distance of m. Hence we have
Cay(D2p2 , S) = 2p Cp(1,m) as required. □

We end the paper by giving an open problem which can be improved the
paper.

Open Problem. What is the structure of Cay(D2n, S) of valency 4 for every
n ≥ 3 (not necessary prime power)? For what values of n the graph is circulant?
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