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Abstract. This study investigates the theoretical and practical mathematical as-

pects of Tucker3 tensor decomposition from the three-way correspondence analysis

point of view. Since the standardized residual hypermatrix represents the associ-

ation of the three categorical variables, this study focused on (1) Tucker3 tensor

decomposition for the standardized residual hypermatrix, (2) some mathematical

properties of Tucker3 tensor decomposition, and (3) constructing the correspondence

plot via Tucker3 tensor decomposition. Some mathematical results are presented in

lemmas, theorems and algorithms, while a practical result is exhibited at the end of

the discussion.
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1. INTRODUCTION

Statistical and graphical analysis of associations between categorical variables
has a long and interesting history. The contributions of several statisticians, includ-
ing Karl Pearson and Ronald Aylmer Fisher, have left a trail on how the analysis
of categorical data is carried out, including its graphical representation. These ex-
perts have produced various statistical techniques to measure, model, examine and
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visualize how the variables are related. Some of these statistical techniques involve
contingency tables of categorical data in their analysis.

There are various techniques for measuring associations in categorical data,
as have been proposed in [1, 2, 3]. These techniques generally involve calculating
statistical measures that quantify the magnitude of interrelation among variables.
On the other side, obtaining a graphical representation of the data can help users
better visually understand this association’s nature.

Correspondence analysis (CA) is mostly used to explore associations between
categorical variables statistically and graphically. CA provides intuitive visual ob-
servations of the associations between variables at the category level. CA is ade-
quately flexible to be used on large data matrices since it only requires data input
in the contingency table [4, 5]. If a contingency table consists of two categorical
variables, the technique is well-known as two-way correspondence analysis (CA2)
or simple correspondence analysis (SCA).

The data in a two-way contingency table where consisting I rows and J
columns can be considered as a data matrix N of size I×J . By performing a sta-
tistical procedure that involves matrix operations, one could obtain: (1) Row or
column profiles that represent the marginal distribution for each row or column
category; (2) Principal coordinates which are linear combinations of the eigenvec-
tors and centered row or column profiles; and (3) CA plot resulting from principal
coordinate mapping on d-dimensional plot. However, the CA plots that can be
presented visually are limited to d = 1, 2, 3.

In practice, one can display the CA plot visualization in one, two or three di-
mensions according to the required data analysis needs. Nevertheless, this impacts
the absorption level of information generated through the plot [6]. Thus, the main
problem in CA is how the existing plot can represent the rows or columns in the con-
tingency table in a low-dimensional space (dimensional reduction) while optimally
absorbing as much information about their association structure as possible.

Beh & Lombardo [4] focused on solving dimension-reduction problems using
matrix decomposition since the essence of all decomposition methods is to reduce
dimensions. Several decomposition methods were developed for a two-way contin-
gency table where consisting of I row categories and J column categories, including
eigendecomposition [7], singular value decomposition [8], bivariate moment decom-
position [9], and hybrid decomposition [10]. In the CA context, the decomposition
is performed on the standard residual matrix S, representing the linear associations
between each row and column category.

In line with today’s advances in technology and information, various data
can be accessed easily by anyone at any time. It also influenced CA research and
development. Problems are even more complex when dealing with data consisting
of three categorical variables. When this problem is solved using CA2, it requires
an extensive matrix calculation process, as well as raises two significant question,
including: (1) how to present each separate plot in a whole plot comprehensively?
and (2) does the absorption level of information after merging in a whole plot
decrease?
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Another alternative to solving such a problem is using multiple correspon-
dence analysis (MCA). MCA’s main idea is to group data through coding techniques
to be arranged as a two-way contingency table. Thus, the procedure on CA2 can
be applied later. In the context of MCA, ”coding techniques” refer to the manners
in which categorical data are prepared, restructured, and represented as a numer-
ical matrix such that it can be analyzed mathematically. Since MCA involves the
analysis of associations among categorical variables, coding techniques is funda-
mental for transforming qualitative data into a form that allows for mathematical
operations [11, 12]. One of the coding techniques commonly used in MCA is the
Burt matrix [11]. Nevertheless, the use of MCA also has several limitations, as
stated by [13, 14], including (1) there is no information obtained regarding interac-
tions between multiple variables; (2) the absorption level of information on lower
dimensions is not optimal, and (3) impractical to use in big data. Therefore, Beh
& Lombardo [4] proposed solving problems related to three categorical variables
using three-way correspondence analysis (CA3) since it can provide a merge plot
display of each categorical variable in a whole plot with the same dimensions and
more optimal information absorption [4].

Analogous to CA2, to reveal the association between three categorical vari-
ables graphically, the determination of the principal coordinates and the seeking for
low-dimensional space in CA3 also be solved by matrix decomposition. Rather, the
decomposition method in CA2 is no longer appropriate when applied to CA3. As a
consequence, particular attention will be paid to the three-way generalization of the
singular value decomposition or, especially, the Tucker3 decomposition [15], which
De Lathauwer et al. [16] have mentioned as a higher-order SVD (HOSVD) [16].
The decomposition on CA3 was undertaken on the standard residual hypermatrix
S, which reflects the association between the three observed categorical variables.
In the process, this method involves algebraic calculations such as tensor operations
and hypermatrix properties. This research extends the field of CA3 by offering a
structured tensor-based approach that simplifies, improves interpretinability, and
allows for more effective visualization of three-way categorical data. Such approach
harnesses the Tucker3 decomposition to address persistent challenges in standard-
ized residual analysis within correspondence analysis and potentially expanding the
applicability of CA3 across multiple disciplines. Thus, this study will focus on (1)
Tucker3 tensor decomposition for S, (2) some mathematical properties of Tucker3
tensor decomposition, and (3) constructing the CA3 plot via Tucker3 tensor decom-
position. These three core problems become urgent in this research, which yield
theoretical and practical mathematical novelty.

2. THEORETICAL FRAMEWORK

2.1. Hypermatrix and related tensor operations.

The hypermatrix is a generalization of a matrix of order n1 × n2 × · · ·nd,
where n1, n2, · · ·, nd ∈ N. In data analysis, a hypermatrix can be viewed as a
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representation of a d-order tensor for d > 2. Formally, a hypermatrix is defined as
follows.

Definition 2.1. Let n1, · · ·nd ∈ N.
f : ⟨n1⟩×· · ·×⟨nd⟩ → F

is an order-d of hypermatrix or d-hypermatrix

Hypermatrix is denoted by boldface Euler’s letters, for example, S. The
element of S with order-d is denoted as sm1,···,md

representing a value of the function
f(m1, · · · ,md) with m1∈⟨n1⟩, · · · ,md∈⟨nd⟩.Thus, a d-hypermatrix can be written

as
[
Sm1,...,md

]n1,..,nd

m1,..,md=1
or S =

[
sm1,...,md

]
. The set of all d-hypermatrix with

domain ⟨n1⟩×· · ·×⟨nd⟩ is denoted by Fn1×···×nd . If n1 = n2 = ... = nd = n then
the hypermatrix S∈Fn×···×n is called hypercubical or cubical of dimension n [17].

A hypermatrix S =
[
sm1,...,md

]
can be transformed into matrix S(d). This

process is called matricization. In some references, it is also called unfolding or
flattening [18, 19]. The rearrangement of the S elements into columns in the matrix
S(d) is represented by mode-d fibers. Figure 1 illustrates the matricization process

of S∈R2×2×2 for generating S(1),S(2), and S(3). Moreover, a mode-1 fibers S(1) is
called a column fiber, mode-2 fiber S(2) is a row fiber, and mode-3 fiber S(3) is a
tube fiber.

Figure 1. Illustration of matricization for hypermatrix
S∈R2×2×2 the column, row, or tube fibers are aligned to
form S(1),S(2) or S(3) matrices

Several references use the rearranging of the columns for different mode-d
fibers. As a comparison, see [16, 20]. Basically, the permutation of a particular
column is not important as long as it is consistent in related calculations; for more
details, see [21]. The structure, operations, and properties inherent in a hyperma-
trix can be found in [17]. The following discussion will focus on the structure and
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operation of the hypermatrix required in the Tucker3 decomposition on CA3. The
tensor multiplication or the d-mode product of S∈Rn1×···×nd is defined as follows.

Definition 2.2. Suppose S∈Rn1×···×nd and U∈Rj×nd . The d-mode product of
hypermatrix S with a matrix U is denoted by S×dU, and is defined as

S×dU =

Nd∑
nd=1

sn1···nd
ujnd

where n1× · · ·×nd−1×J×nd+1× · · ·×nd is the size of S×dU.

Definition 2.2 asserts that each mode-d fiber is multiplied by a matrix U.
Kolda & Bader [18] apply this idea to S(d) such that it yields an equivalent,

χ = S×dU ⇔ X(d)= US(d). (1)

If V∈RQ×J for Q∈N, then

S ×n1
U×n2

V =

{
S ×n1

(VU) , for n1 = n2

S ×n2
V×n1

U, for n1 ̸= n2
(2)

The tensor product of matrices U and V is defined as the following Kronecker
product.

Definition 2.3. Given U∈RP×I and V∈RQ×J where I, J, P,Q∈N. The Kronecker
product of U and V is denoted by U⊗V∈RPQ×IJ and is defined as

U⊗V =


u11V u12V · · · u11V
u21V u22V u21V
...

. . .
...

uP1V up2V · · · uP1V

 (3)

2.2. Recognition and notation of three-way correspondence.

In the late 1990s, CA3 was first introduced by Carlier and Kroonenberg as a
generalization of CA2 [22]. CA3 has been proposed to analyze the I×J×K contin-
gency table using a three-mode principal component (Tucker3 model) or parallel
factor analysis model (PARAFAC), further studied in [15, 22, 23, 24, 25]. CA3 is
commonly used for categorical data or categorized numerical data. In 2017, Lom-
bardo & Beh have conducted a CA3 for ordinal-nominal variables [26]. CA3 can
also be used for nonlinear associations or as a data grouping and reduction tech-
nique. D’Ambra et al. used CA3 to reduce dimensions in an ordinal three-way
contingency table [27].

The CA3 input is a three-way contingency table consisting of I row, J column,
and K tube categories. The rows, columns, and tubes of such table represent
X,Y and Z categorical variable, respectively. Therefore, the I×J×K three-way
contingency table represents the three categorical variables, as shown in Table 1.

The elements of the data hypermatrix N =
[
nijk

]
are the frequencies for

each combination of i-th row, j-th column, and k-th tube (cell frequencies), where
nijk∈N for i = 1, · · · , I, j = 1, · · · , J, and k = 1, · · · ,K. The univariate mar-
ginal frequencies of the i-th row, j-th column, and k-th tube are reffered to as
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Table 1. The I×J×K three-way contingency table

XYZ
Z1 Z2 · · · ZK

Y1 Y2 · · · YJ Y1 Y2 · · · YJ · · · Y1 Y2 · · · YJ

X1 n111 n121 · · · n1J1 n112 n122 · · · n1J2 · · · n11K n12K · · · n1JK

X2 n211 n221 · · · n2J1 n212 n222 · · · n2J2 · · · n21K n22K · · · n2JK

...
...

...
. . .

...
...

...
. . .

... · · ·
...

...
. . .

...
XI nI11 nI21 · · · nIJ1 nI12 nI22 · · · nIJ2 · · · nI1K nI2K · · · nIJK

slices, respectively, ni.. =
∑J

j=1

∑K
k=1 nijk, n.j. =

∑I
i=1

∑K
k=1 nijk and n..k =∑I

i=1

∑J
j=1 nijk. Similarly, the bivariate marginal frequencies of the i-th row, j-th

column, and k-th tube are reffered to as fibers determined by ni.k =
∑J

j=1 nijk, n.jk =∑I
i=1 nijk, and nij. =

∑K
k=1 nijk. The frequency of all observations is the grand

total of N be N =
∑I

i=1

∑j
j=1

∑K
k=1 nijk.

Figure 2. Illustration of univariate and bivariate marginal fre-
quencies of data hypermatrix N from the three-way contingency
table

A three-way contingency table can be constructed from two categorical vari-
ables observed in different conditions, times or spaces [28]. The characteristics of
such data are in the form of arrays or data cubes, also called boxes, by Kroonenberg
[25].

The cell frequencies nijk in the contingency table can be converted to the

relative frequencies pijk by dividing with the grand total N , that is, pijk = nijk
N .

The relative frequency hypermatrix is called the correspondence hypermatrix and
is denoted by P ,

P =
[
pijk

]
=
[nijk

N

]
(4)
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Figure 3. The data structure derived from the I×J×K three-
way contingency table as an input on CA3 represented by data
hypermatrix N (modified from [4])

The total dependence of the I×J×K table with relative frequency pijk is

measured by inertia Φ2. An alogous to the CA2, Φ2 is based on derivation from
the three-way model of independence, such that

Φ2 =
∑
ijk

(pijk − pi..p.j.p..k)
2

pi..p.j.p..k

=
∑
i.j.k

pi..p.j.p..k

[
(pijk−pi..p.j.p..k

pi..p.j.p..k

]2
(5)

=
∑
i.j.k

pi..p.j.p..k (Πijk)
2

The total dependency of cell Πijk can be divided into the partial contribution
of the two-way interaction and the three-way interaction, such that

Πijk =
pij. − pi..p.j.

pi..p.j.
+

pi.k − pi..p..k
pi..p..k

+
p.jk − p.j.p..k

p.j.p..k
+

pijk − αpijk
pi..p.j.p..k

(6)

Here, αpijk = pij.p..k + pi.kp.j. + p.jkpi.. − 2pi..p.j.p..k, reflects the three-way inter-
action measure for the (i, j, k)-cell. The element Πijk describes the dependency or
association measure of the (i, j, k)-cell, which can be written as

Πijk =
P (ij | k)
P (ij)

· P (ij)

P (i)P (j)
− 1 (7)

If the conditional probabilities for each k are equal, then P (ij | k) = P (ij)
and the first ratio is 1. Consequently, Πijk = Πij and the three-way contingency
table can be analyzed by CA2. The element of the bivariate marginal total is
defined as the sum of the weights over the third index. Therefore, the elements of
I×J bivariate marginal to be
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Πij. =
∑
k

p..kΠijk =
∑
k

p..k
pijk − pi..p.j.p..k

pi..p.j.p..k
=

pij. − pi..p.j.
pi..p.j.

(8)

The elements of other bivariate marginals, Πi.k and Π.jk, are defined in the
same way. The univariate marginal total is defined as the sum of the weights of
the two indices, and the value is 0 (by definition Πijk). Thus, the row univariate
marginal is defined by

Πi.. =
∑
j

∑
k

p.j.p..kΠijk =
∑
j

p.j.
pij. − pi..p.j.

pi..p.j.
=
∑
j

pij.
pi..

−
∑
j

pi..p.j.
p.j.

= 1−1 = 0

The elements of other univariate marginals, Π.j. and Π..k, are defined simi-

larly. Furthermore, the inertia of Φ2, which measures the total dependencies of the
three-way contingency table, can be partitioned as

Φ2 =
∑
ij

pi..p.j

(
pij. − pi..p.j.

pi..p.j.

)2

+
∑
ik

pi..p..k

(
pi.k − pi..p..k

pi..p..k

)2

+
∑
jk

p.j.p..k

(
p.jk − p.j.p..k

p.j.p..k

)2

+
∑
ijk

pi..p.j.p..k

(
pijk − αpijk
pi..p.j.p..k

)2

(9)

= Φ2
IJ +Φ2

IK +Φ2
JK +Φ2

IJK

This partition helps present the appropriate measure for each interaction
such that its contribution to the total dependency can be known. Considering the
symmetrical association structure between the three categorical variables from the
three-way contingency table (under the assumption thatX,Y, and Z are completely
independent), the (i, j, k)-th elements of the table can be expressed in terms of
deviations from the three-way independence model using the three-way Pearson’s
ratio as follows.

S = [sijk] =

[
pijk − pi..p.j.p..k

pi..p.j.p..k

]
(10)

2.3. Tucker3 tensor decomposition.

Since the last six decades, Tucker3 tensor decomposition, also known as three-
mode principal component analysis (3MPCA), has been considered an ingenious
method to solve order-d tensor decomposition problems with d>2. The Tucker3
decomposition was first introduced by Tucker in 1963 and rewritten by Levin [29]
and Tucker [15]. Tucker’s 1966 article was more comprehensive than the early
literature and widely cited. The article discusses some of the mathematical notes on
three-mode factor analysis. Various analyzes in different fields have been carried out
using the Tucker3 decomposition [30, 31, 32, 33, 34]. The Tucker3 decomposition
has some terminology, as summarized in the table below.
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Table 2. Some terminology of the Tucker3 decomposition; some
specific for three-way and others for N -way

Terminology Proposed by
Three-mode factor analysis (3MFA/Tucker3) Tucker [15]
Three-mode principal component analysis (3MPCA) Kroonenberg and De Leeuw [35]
n-Mode component analysis Kapteyn et al. [36]
Higher-order singular value decomposition (HOSVD) De Lathauwer et al. [16]
N-mode singular value decomposition (N-mode SVD) Vasilescu and Terzopoulos [37]

Figure 4. Tucker3 tensor decomposition model for order-3 hypermatrix

In the Tucker3 tensor decomposition, a hypermatrix S is decomposed into
three matrices: U1,U2, and U3, representing row, column and tube profiles, and
one hypermatrix A as core, representing the interactions of row, column and tube.
Van Loan [38] elaborates on the HOSVD to represent the Tucker3 decomposition,
as asserted in Definition 2.4.

Definition 2.4. (Van Loan, 2015):
Let S∈RI×J×K . Suppose S(1) = U1D1V

T
1 , S(2) = U2D2V

T
2 , and S(3) = U3D3V

T
3 ,

respectively are the SVD of S(1),S(2),S(3), where U1∈RI×P ,U2∈RJ×Q,U3∈RK×R

and A = S ×1 U
T
1 ×2 U

T
2 ×3 U

T
3 ∈RP×Q×R. Then

i) S = A×1 U1 ×2 U2 ×3 U3 is the Tucker3 tensor decomposition of S,
ii) S(1) = U1A(1) (U3 ⊗U2)

T
, S(2) = U2A(2) (U3 ⊗U1)

T
and

S(3) = U3A(3) (U2 ⊗U1)
T
are unfolding matrix of S.

3. MAIN RESULTS

3.1. Tucker3 tensor decomposition for the standardized residual hyper-
matrix.

The standard residual hypermatrix S is calculated using Pearson’s three-way
ratio in Equation (10). This equation indicates the difference between the joint
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relative frequencies and the univariate marginal relative frequencies for each cate-
gory. Such calculation allows for an inefficient numerical process (much rounding
occurs) which can make the resulting CA3 plot inaccurate. In order to minimize
the numerical process, the hypermatrix S is calculated directly from the elements
of the data hypermatrix N as formulated in Lemma 3.1.

Lemma 3.1. If N =
[
nijk

]
is the I×J×K hypermatrix derive from a three-ways

contingency table. with ni.. =
∑J

j=1

∑K
K=1 nijk, n.j. =

∑I
i=1

∑K
K=1 nijk, n..k =∑I

i=1

∑J
j=1 nijk, and grand total N =

∑I
i=1

∑J
j=1

∑K
k=1 nijk , then the element

of S =
[
sijk

]
are

sijk =
n2·nijk − ni..n.j.n..k

ni..n.j.n..k

Proof. Consider S =
[
sijk

]
=
[
pijk−pi..p.j.p..k

pi..p.j.p..k

]
. Since sijk =

pijk−pi..p.j.p..k

pi..p.j.p..k

sijk =

nijk

N −
(∑J

j=1

∑K
k=1 pijk

)(∑I
i=1

∑K
k=1 pijk

)(∑I
i=1

∑J
j=1 pijk

)
(∑J

j=1

∑K
k=1 pijk

)(∑I
i=1

∑K
k=1 pijk

)(∑I
i=1

∑J
j=1 pijk

)
=

nijk

N −
(∑J

j=1

∑K
k=1

nijk

N

)(∑I
i=1

∑K
k=1

nijk

N

)(∑I
i=1

∑J
j=1

nijk

N

)
(∑J

j=1

∑K
k=1

nijk

N

)(∑I
i=1

∑K
k=1

nijk

N

)(∑I
i=1

∑J
j=1

nijk

N

)
=

nijk

N − 1
N3

(∑J
j=1

∑K
k=1 nijk

)(∑I
i=1

∑K
k=1 nijk

)(∑I
i=1

∑J
j=1 nijk

)
1

N3

(∑J
j=1

∑K
k=1 nijk

)(∑I
i=1

∑K
k=1 nijk

)(∑I
i=1

∑J
j=1 nijk

)
=

nijk

N − 1
N3 (ni..n.j.n..k)

1
N3 (ni..n.j.n..k)

=
N2nijk − ni..n.j.n..k

ni..n.j.n..k

□

The vectors aligned from the columns of the hypermatrix S are not always
orthogonal. Consequently, the association values of the row, column, and tube
categories cannot always be plotted to Cartesian coordinates where the coordinate
axes are mutually perpendicular [39, 40]. For this reason, new bases, which are lin-
ear combinations of the row, column, and tube components with the core elements,
called principal coordinates, are constructed. In order to find these new bases, the
standardized residual hypermatrix S is decomposed using Tucker3.

3.2. Some mathematical properties of Tucker3 tensor decomposition.

There is a huge amount of literature available on Tucker3 tensor decompo-
sition and its properties. In particular, one may refer to Van Loan [38] for an
extensive and excellent discussion on Tucker3. This study shall only touch on some
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of the more pertinent mathematical properties related to three-way correspondence
analysis.

Theorem 3.2. If S =
[
sijk

]
∈Rn×n×n is 3-hypercubical, such that

S = A×1U1×2U2×3U3 is the Tucker3 tensor decomposition of S, then

S(1) = U3U2U1A(1) and A(1) = (U3U2U1)
T
S(1)

Proof. Consider S =
[
sijk

]
∈Rn×n×n is 3-hypercubical. The matrices U1,U2 and

U3 are obtained by determining the SVD of S(1),S(2), and S(3), which are of size
n×m with m≥n such that U1,U2 and U3 are the symmetric matrices of size n×n.
Since S = A×1U1×2U2×3U3 , based on Equation 1 and Equation 2, such that
⇐⇒ S = A×1 (U3U2U1)
⇐⇒ S(1) = U3U2U1A(1)

Since U1,U2 and U3 are the orthogonal matrices, where U1U
T
1 = I = U2U

T
2 =

I = U3U
T
3 thus

⇐⇒ S(1) = U3U2U1A(1)

⇐⇒ UT
3 S(1) = UT

3 U3U2U1A(1)

⇐⇒ UT
2 U

T
3 S(1) = U2U1A(1)

⇐⇒ UT
1 U

T
2 U

T
3 S(1) = UT

1 U1A(1)

⇐⇒
(
UT

3 U
T
2 U

T
1

)
S(1) = A(1)

□

Based on Theorem 3.2, in the same way, it can also be proven that

i)S(2) = U1U3U2A(2) and A(2) = (U1U3U2)
T
S(2)

ii)S(3) = U2U1U3A(3) and A(3) = (U2U1U3)
T
S(3)

Core hypermatrix A is obtained by rearranging the columns of matrices A(1), A(2),
and A(3) into the elements in the corresponding core A. It implies that the core
hypermatrix A is not unique.

Theorem 3.3. Let S ∈RI×J×K where I, J,K ∈N. Given S(1) = U1D1V
T
1 ,S(2) =

U2D2V
T
2 and S(3) = U3D3V

T
3 are the SV D of S(1),S(2),S(3), respectively. Sup-

pose U1 ∈RI×P ,U2 ∈RJ×K ,U3 ∈RK×R,A1 ∈RP×Q×R. If S = A×1U1×2U2×3U3

is the Tucker3 tensor decomposition of S, then A is not unique.

Proof. Suppose S = A×1U1×2U2×3U3 is the Tucker3 tensor decomposition of
S. Based on Definition 2.4, then A = S×1U

T
1 ×2U

T
2 ×3U

T
3 . Let B∈RI×I is an

orthogonal matrix such that,

A = S×1U
T
1 ×2U

T
2 ×3U

T
3 = (S×1 B)×1 U

T
1 B

T×2U
T
2 ×3U

T
3 .
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By applying Definition 2.4, obtained

S(1) = U1A(1) (U3⊗U2)
T

= U1BBTA(1) (U3⊗U2)
T ⇐⇒ A(1) = UT

1 B
TBS(1) (U3⊗U2)

□

Finding a unique core hypermatrix A, such as a super diagonal hypermatrix,
is almost impossible, even for a symmetric hypermatrix [18]. Another alternative
that can be considered to increase this uniqueness is to make a lot of zero-value
core elements. Such simplifying the core structure in some way might be useful
in computation. By applying Theorem 3.2, it yields a core structure that has this
property. Moreover, the Tucker3 tensor decomposition procedure for the standard-
ized residual hypermatrix S is generated in Algorithm 1.

Algorithm 1 Tucker3 tensor decomposition for the standardized residual hyper-
matrix

Step 1 : Start
Step 2 : Read the I×J×K three-way contingency table
Step 3 : Create data hypermatrix, N
Step 4 : Compute the standardized residual hypermatrix S using Lemma 3.1
Step 5 : Compute univariate marginal frequencies
Step 6 : Compute bivariate marginal frequencies
Step 7 : Apply matricization process
Step 8 : Find mode-1, mode-2, and mode-3 fibers, S(1),S(2) and S(3)

Step 9 : Apply SVD on S(1),S(2) and S(3)

Step 10: Apply Tucker3 tensor decomposition
Step 11: Print U1, U2, U3, and core hypermatrix A
Step 12: End

Figure 5 illustrates the Tucker3 tensor decomposition process for the standard
residual hypermatrix formulated in Algorithm 1.

Figure 5. Tucker3 tensor decomposition for the standardized
residual hypermatrix on CA3
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3.3. Constructing the CA3 plot via Tucker3 tensor decomposition.

Considering Tucker3 decomposition, Beh & Lombardo [4] define the row prin-
cipal coordinates (F) as

F = U1A(P×QR)

(
= fi,qr =

P∑
p=1

u1ipapqr

)
(11)

Equation 11 confirmed that the row principal coordinates are a linear combination
of the row components (categories) and the core elements. Instead, the (j, k) pair
of the column-tube categories will be represented by a single-point coordinate [4].
Hence, the tube-column principal coordinates (H) are defined as

H = (U2⊗U3)AQR×P

(
= hjk,p =

Q∑
q=1

R∑
r=1

apqru2jqu3kr

)
(12)

Depicting the row (F) and column-tube (H) principal coordinates yields the corre-
spondence plot (CA3 plot). A coordinate point on the plot represents each row and
column-tube category in the contingency table. The construction of the principal
coordinates in CA3 is formulated in Algorithm 2.

Algorithm 2 Constructing the CA3 plot via Tucker3 tensor decomposition

Step 1 : Start
Step 2 : Read the I×J×K three-way contingency table
Step 3 : Create data hypermatrix, N
Step 4 : Compute the standardized residual hypermatrix S
Step 5 : Compute univariate marginal frequencies
Step 6 : Compute bivariate marginal frequencies
Step 7 : Apply matricization process
Step 8 : Find mode-1, mode-2, and mode-3 fibers, S(1),S(2) and S(3)

Step 9 : Apply SVD on S(1),S(2) and S(3)

Step 10: Apply Tucker3 tensor decomposition
Step 11: Print U1, U2, U3, and core hypermatrix A
Step 12: Compute the row principal coordinates, F
Step 13: Compute the column-tube principal coordinates, H
Step 14: Print the CA3 plot
Step 15: End

Another CA3 output is inertia which reflects the amount of information in
each dimension on the CA3 plot. The last two equations calculate the total inertia
(τnum) from the contingency table and the category contribution.

τnum =

J∑
j=1

K∑
k=1

P∑
p=1

p.j.p..kh
2
jk,p =

I∑
i=1

Q∑
q=1

R∑
r=1

f2
i,qr (13)
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The contribution percentage of the jk-th column-tube category to the p-dimensional
(Cjk,p) determined by:

Cjk,p = 100×
h2
jk,p

Itot
(14)

4. APPLICATION IN PRACTICAL DATA ANALYSIS

4.1. Data Description.

As an illustration of the application in data analysis, this study take into
consideration the olive data that was considered by Agresti [41] and rediscussed
by Beh & Lombardo [4], as summarized in the three-way contingency table of
Table 3. The row categorical variable is given by the preferences for black olives of
Armed Forces personnel with six levels in increasing order: A, B, C, D, E, and F.
The column categorical variable represents position with three categories: South-
West (SW), North-West (NW), and North-East (NE). The tube categorical variable
deputized the location consisting of Urban and Rural categories. Therefore, the
data provide a three-way cross-classification of a number of black olives of Armed
Forces personnel based on the its preference, geographical position and location.

Table 3. The three-way contingency table for olive data [41, 4]

—
Preferensi

Urban Rural
SW NW NE SW NW NE

A 12 20 18 11 30 23
B 9 15 17 9 22 18
C 23 12 18 26 21 20
D 21 17 18 19 17 18
E 19 16 6 17 8 10
F 30 28 25 24 12 15

Instead, seeking the asymmetric association structure as discussed by Beh &
Lombardo [4], this study interested is in the symmetrical association between the
preference for black olives of Armed Forces personnel with the geographical posi-
tion and location. Indeed, the dimensional approach of interpretation is valid for
both asymmetric and symmetric plots. However, the asymmetric plot work well
when total inertia is high, but are problematic when total inertia is low because
the profile points in principal coordinates occupy a small space around the origin
[14]. Since asymmetric plot interpret the distance between column and row points,
the column profiles must be presented in row space or vice-versa. Eaton & Tayler
[7] also described that it was ‘extremely dangerous’ to interpret the proximity of
principal coordinates from different variables (row-to-column). Rather than defin-
ing the column coordinates in row space or vice-versa, consider instead defining the
position of the row and column categories so that the strength of the association
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that exists between the variables is reflected [4]. In a symmetric plot the separate
configurations of row profiles and column profiles are overlaid in a joint display,
even though they emanate, strictly speaking, from different spaces [14]. Therefore,
both row and column points are displayed in principal coordinates. For this rea-
son, we chose to focus on symmetrical association rather than asymmetrical. The
association statistical tests using partitioning Pearson’s phi-squared as in Equation
9 are recorded in the following table.

Table 4. Partitioning of the Pearson’s phi-squared statistics for
olive data in Table 3

Preferences Φ2 Φ2
IJ Φ2

IK Φ2
JK Φ2

IJK

Index 0.078 0.048 0.019 0.000 0.011
Explained inertia 100% 61.49 24.12 0.60 13.79
df 27 10 5 2 10
p-value 0.004 0.001 0.032 0.859 0.728

Table 4 records the three-way association term from the partition of Pearson
phi-squared statistic is Φ2 = 0.078 with 27 degrees of freedom and p-value =0.004.
It implies that for a 95% confidence interval, there is strong evidence to suggest that
the preference for black olives of Armed Forces personnel is strongly symmetrically
associated with the geographical position and location.

When considering the two-way association, one can see that the associa-
tion between preference and geographical position is statistically significant since
the Φ2

IJ statistic of 0.048 has a p-value =0.001 is less than the significant level
α = 0.05. This association accounts for 61.49% of the association that exists in
the olive data table. Similarly, the association between preference and geographical
location is statistically significant since the p-value of Φ2

IK is less than α = 0.05.
Their association contributes to 24.12% of the association that exists among three
categorical variables. Meanwhile, the association between the geographical posi-
tion and location is not statistically significant since the statistic Φ2

JK has p-value
=0.859. Additionally, despite the residual three-way interaction Φ2

IJK contributing
13.79% to the total association, it is not statistically significant and will be ignored
along with the other non-significant marginal partitioning Φ2

JK .

4.2. Visualizing the association by the CA3 plot.

This subsection aims to visually display the associations that exist among
three categorical variables. By considering olive data in Table 3, the associations
among preference, position, and location are represented by the standardized resid-
ual hypermatrix S determined by Lemma 3.1. Furthermore, S is decomposed using
the Tucker3 tensor decomposition as formulated in Algorithm 1 and illustrated in
Figure 5. This decomposition involves a matricization process that is undertaken
by utilizing Theorem 3.2. Meanwhile, Theorem 3.3 asserted that despite the core
hypermatrix A obtained from Tucker3 is not unique, Theorem 3.2 guaranteed the
resulting core consists of many zero-value elements since it involves the SVD of
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Table 5. Total inertia τnum and contributions of the column-tube
categories to the τnum

Category Axis 1 Axis 2 Axis 3
SW-Urban 0.1217 0.0023 0.0013
NW-Urban 0.0051 0.2516 0.0941
NE-Urban 0.0077 0.0444 0.3591
SW-Rural 0.0899 0.1221 0.0001
NW-Rural 0.1824 0.0260 0.0214
NE-Rural 0.0505 0.0219 0.0072
τnum 75.48 16.11 8.14
Cumulative 75.48 91.58 99.72

each fiber matrix. The last step of Algorithm 1 produces three matrices repre-
senting row, column, and tube profiles and one core hypermatrix representing the
three-way interaction of the three. Finally, the CA3 plot is obtained by applying
Algorithm 2, as depicted in Figure 6.

Figure 6. Tucker3 tensor decomposition for the standardized
residual hypermatrix on CA3

Figure 6 shows the two-dimensional plot visually reflects 91.58% of the as-
sociation that exists among preference, position, and location in olive data. In
comparison, the three-dimensional plot visually reflects 99.72% of such associa-
tions. Therefore, using the two-dimensional plot has kept the visual display quality
high, making it even simpler and easier to interpret. In the two-dimensional plot,
the NW-Urban category is relatively far from the origin, meaning that this cate-
gory contributes the most to the association; their contribution value in Table 5 is
0.2516. On the other hand, in a three-dimensional plot, NE-Urban is the category
that contributes the most, with a contribution value of 0.3591. The contribution of
each column-tube category to the association depicted along the first three axes is
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summarized in Table 5. Moreover, a row category of preference E is strongly asso-
ciated with a column-tube category of SW-Urban since their coordinates are close
together. The complete association structure between three categorical variables is
visualized in Figure 7.

Figure 7. Column-tube interactive biplot from the CA3 for olive
data in Table 3

The interactive biplot in Figure 7 shows that the projection of a row point
coordinate of preference E on the arrow of SW-Urban is short. It indicates there
is a strong association between preference E and SW-Urban. Similarly, the point
projection of preference D on the SW-Rural arrow is shorter, which implies that
their association is stronger. The NW-Urban is the column-tube category that
contributes the most to the complete association structure since it has the most
extended vector length. Finally, it can conclude that the symmetric association
between the preference for black olives of Armed Forces personnel with the geo-
graphical position and location is statistically significant, which the preference for
black olives depends, in a statistically significant manner, both on position and
location, while the position does not statistically significant depending on the lo-
cation.

5. CONCLUDING REMARKS

This study investigates the decomposition of the Tucker3 tensor in the CA3
context. The decomposition is performed on a standardized residual hypermatrix
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S that deputizes the association between the three categorical variables. As a first
step, the study formulates how to get a more precise hypermatrix S by calculating
its elements directly from the data hypermatrix N as in Lemma 3.1. Further-
more, Algorithm 1 is applied to decompose the hypermatri S using Tucker3 tensor
decomposition. This decomposition requires a process matricization, which is the
rearrangement of the S elements into columns in the matrix S(d), referred to as
mode-d fibers. This process uses Theorem 3.2, which yields the three matrices, each
representing row, column, and tube profiles, and a core hypermatrix reflecting the
interactions between them. Considering the importance of the core hypermatrix
A in Tucker3, the study explores some of the properties of this core as formulated
in Theorem 3.3. Finally, Algorithm 2 is applied to obtain the row and column-
tubes principal coordinates plotted to the two- and three-dimensional CA3 plots.
As an illustration of the application in data analysis, it conducts the entire proce-
dure to the olive data in Table 3. The results show that for the 95% confidence
interval, there is strong evidence to suggest that the preference for black olives
of Armed Forces personnel is strongly symmetrically associated with geographical
position and location. Future research will examine the convergence of the Tucker3
algorithm and the reconstruction of three-way tables by three component matrices
and core hypermatrix, including their properties to find the core with more zero
elements.
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