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Abstract. Surface wave on thin film is considered by involving surface tension.

The fluid flows on an inclined channel. The model is based on lubrication theory,

and presented in a single equation of the thickness of the fluid as wave movement,

and the equation is strongly nonlinear. In solving the model, scaling and linearized

processes are applied. So that three physical parameters play an important role

in the wave propagation: bottom inclination, length of the scaling and the surface

tension. Each of those parameters is represented as a term in the equation. Then,

the equation is solved numerically by an implicit finite difference method for the

linearized equation, so that the solution can be used to observe the effect of those

physical quantities. We found that the surface wave propagates with different speed

and reducing the amplitude. When the surface tension is involved, the profile of

the wave slightly changes, beside it also effect to the movement of the wave. This

is simulated in this paper.

Key words and Phrases: thin film flow, surface tension, implicit finite difference

method, Gauss-Seidel iteration

1. INTRODUCTION

A 2-D thin film flow is modeled from lubrication theory subject to the bound-
ary conditions. The fluid is on an inclined channel, so that the gravitational and
pressure forces play an important role in the formulation of the fluid flow, presented
in term of the fluid thickness h, depending on the position x and time t. Physically,
this thickness variable represents surface wave propagating satisfying the equation
deriving from the governing equation.
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As the reference of the lubrication theory, we can see such as in Pozrikidis
[1] and Bachelor [2]. Wiryanto and Febrianti [3] used that theory as the governing
equation of the thin film flow. Together with the boundary conditions, they formu-
lated the problem into an unsteady single equation of the fluid depth h. Similarly,
King, et. al. [4] formulated a steady thin viscous flow with air-blown above the
fluid. When the surface tension is considered, it can be expressed to the pressure
at the surface. The normal stress can be approximated with the negative of the
pressure, yielding the pressure jump condition. Therefore, the pressure at the sur-
face is the atmospheric, chosen as the reference, and the multiplication between
the surface tension and the curvature of the sloped free surface. The model in [3]
must be added a term containing a third derivative of fluid depth. This model is
our concern to study. The derivation of this equation can be seen in Wiryanto, et.
al. [5].

Since the model is strongly nonlinear. In this paper we propose to solve the
problem for linearized one, and solved numerically by an implicit finite difference.
This is developed from Putra, et. al. [6], who worked the similar problem without
involving surface tension. Putra, et. al. [6] analyzed the numerical method, and
found that the method is unconditional stable. An explicit method was applied for
the problem in Wiryanto, et. al. [5], and they found the method was conditional
stable. Similar explicit method and its stability had been studied by Wiryanto in
[7] and [8]. Moreover, the explicit method was unable to show the effect of the
surface tension, because of the numerical stability reason. To solve that problem,
here we introduce scaling to the variables before we solve the equation.

2. PROBLEM FORMULATION

A thin film flow is our concern. The sketch of the flow is shown in Figure 1.
The fluid depth is h, measured from the bottom of the channel, inclined with small
angle θ. So that we can see the effect of gravity to the pressure in both directions
of the coordinates. We choose the horizontal coordinate x along the channel and
the vertical one y is perpendicular to the other. So that, the gravitational force
is projected to each coordinate and related to the pressure satisfying momentum
conservation. Following Wiryanto, et. al. [5], the lubrication theory is mass con-
servation, presented as equation of the vertical and horizontal velocities, and its
momentum one.

Those governing equations subject to the bottom and surface boundaries are
then solved to get a single equation of h. At the surface, the pressure is

Pfs = Patm + γκ

where Patm is the atmospheric pressure, we choose as the reference; γ is the surface

tension and κ ≈ −∂2h
∂x2 is the curvature of sloped free surface. By this pressure,

model in [3] becomes

ht +
ρg

3µ

[
h3

(
sin θ − hx cos θ +

γ

ρg
hxxx

)]
x

= 0 (1)
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Figure 1. Sketch of the flow and the coordinates.

The last term in (1) is added as the effect of the surface tension. Here we use
conventional physical notations. The derivation of (1) can be seen in [5], and it was
solved numerically by explicit finite difference method forward time cental space.
The method was unable to calculate the problem for relatively large of the surface
tension γ, because of the stability reason. Meanwhile, in case of surface tension
neglected, the numerical scheme should be run with small time step, and the wave
movement was very slow. These difficulties bring us to work in this paper by scaling
the variables and to choose an implicit method but for linearized model.

In obtaining the linearized equation, suppose h0 is constant solution, i.e. fluid
depth without any disturbance. When we write

h = h0 + ϵη

for small parameter ϵ, the first order of (1) is linear equation

ηt +
ρg

µ
h2
0 sin θηx − ρg

3µ
h3
0 cos θηxx +

γh3
0

3µ
ηxxxx = 0.

Now, we scale the variables by

x̄ =
x

L
, η̄ =

η

h0
, t̄ =

t

τ
(2)

where L is wavelength, and τ = µL
ρgh2

0
. By this scaling, the simulation of η̄(x̄, t̄) is

fast motion of η(x, t), since τ is proportional to L >> 1, and the linear equation
above becomes, written without bar (̄.),

ηt + aηx + bηxx + cηxxxx = 0. (3)

The coefficient of each term is

a = sin θ, b = −1

3
r cos θ, c = δr.

We use r = h0/L and δ = γ/(3ρgL2). Physically, this process gives a model that
can handle the difficulties in movement and observing the surface tension expressing
in parameter δ.
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Now, we consider a monochromatic solution of (3). Suppose it is a wave
having wave-number k and frequency in complex form ω = ωr + iωi, so that the
solution is

η(x, t) = Aeωitei(kx−ωrt)

with amplitude depending on time Aeωit for constant A. Here, we use notation
i =

√
−1. Those parameters of the wave are our concern relating to (3). We

substitute that type of solution into (3). The real and imaginer parts are

ωi + ck4 − bk2 = 0
ωr − ak = 0.

Since b < 0 the real part gives ωi < 0 which means the wave travels to the right
by decreasing the amplitude. The second and fourth derivatives of η are influential
to the amplitude. For monochromatic wave, it travels with wave speed a, and the
decreasing of the amplitude is dominated by b of order k2 followed by c of order
k4. So, surface tension is less influential then gravitational.

3. NUMERICAL PROCEDURE

Numerical method for (3) is explained in this section. A finite difference
method is chosen based on forward time, average central space. We discritize time
and space by tn = ndt for n = 0, 1, 2, · · · and xj = jdx for j = 0, 1, 2, · · · , J , so
that we can use notation ηnj ∼ η(xj , tn). From this discitization, each derivative of
η is approximated by

ηt ∼
ηn+1
j −ηn

j

dt

ηx ∼ 1
2

[
ηn+1
j+1 −ηn+1

j−1

2dx +
ηn
j+1−ηn

j−1

2dx

]
ηxx ∼ 1

2

[
ηn+1
j+1 −2ηn+1

j +ηn+1
j−1

dx2 +
ηn
j+1−2ηn

j +ηn
j−1

dx2

]
ηxxxx ∼ 1

2

[
ηn+1
j+2 −4ηn+1

j+1 +6ηn+1
j −4ηn+1

j−1 +ηn+1
j−2

dx4 +
ηn
j+2−4ηn

j+1+6ηn
j −4ηn

j−1+ηn
j−2

dx4

]
,

and then applied to (3), giving a system of linear equations

A2η
n+1
j+2 +A1η

n+1
j+1 +A0η

n+1
j +A−1η

n+1
j−1 +A−2η

n+1
j−2 = R (4)

where

R = −
(
B2η

n
j+2 +B1η

n
j+1 +B0η

n
j +B−1η

n
j−1 +B−2η

n
j−2

)
and the coefficients

A2 = c
2dx4 , A1 = a

4dx + b
2dx2 − 2c

dx4 ,
A0 = 1

dt −
b

dx2 + 3c
dx4 , A−1 = − a

4dx + b
dx2 + 3c

dx4 , A−2 = c
2dx4 ,

B2 = A2, B1 = A1, B0 = − 1
dt −

b
dx2 + 3c

dx4 ,
B−1 = A−1, B−2 = A−2.

The equations can be solved by Gauss-Seidel iteration after giving the initial con-
dition η0j for j = 1, 2, · · · , J − 1, the left boundary condition at j = −1, 0 and the
right boundary condition at j = J, J + 1.
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Before running the numerical procedure, we analyze the stability of the nu-
merical method. To do so, we use von Neumann stability by writing

ηnj = ξneiβj .

This expression is then submitted into (4), and gives

ξn+1 = Gξn

where

G =
−
(
B2e

2iβ +B1e
iβ +B0 +B−1e

−iβ +B−2e
−2iβ

)
A2e2iβ +A1eiβ +A0 +A−1e−iβ +A−2e−2iβ

.

According to the coefficients of (4) we can express the numerator as

B2e
2iβ +B1e

iβ +B0 +B−1e
−iβ +B−2e

−2iβ

= A2e
2iβ +A1e

iβ +B0 +A−1e
−iβ +A−2e

−2iβ ,

and since B0 < A0 we obtain

B2e
2iβ +B1e

iβ +B0 +B−1e
−iβ +B−2e

−2iβ

< A2e
2iβ +A1e

iβ +A0 +A−1e
−iβ +A−2e

−2iβ .

The right side is the denominator ofG.Therefore, the absolute value ofG is less than
one for any β. As the conclusion, the numerical method is stable unconditional.

4. NUMERICAL SOLUTION

Now, we solve (3) numerically by the numerical procedure described above.
Most of our calculation uses homogeneous discretization space dx = 0.1, the same
value for step time dt = 0.1, and the error tolerance of Gauss-Seidel iteration is
upto 10−6. The observation domain is x ∈ (0, 100) divided into 1000 subintervals,
for j = 0, 1, · · · , JJ = 1000. Since this work mainly concerns with the surface
tension, expressed in δ, so most of our simulation presents how much the effect of
δ in reducing the amplitude and traveling the wave. In case δ = 0 the simulation
has been presented in [6]. However, the numerical method is also valid for the
previous problem. Here, the system of linear equations is pentadiagonal, rather
than tridiagonal in [6].

We start by solving (3) for θ = 50, r = 0.1 and δ = 0.1. In the observation
domain x ∈ (0, 100) the fluid surface is flat η(x, 0) = 0, and at the left side sinusoidal
waves enter the domain as the left boundary

η(x, t) = 0.1 sin
2π

25
(x− at)

for x = x−2 and x−1. We use this left boundary from the analytic solution for
(3) in case both b and c zero, followed by initial condition η(x, 0) = 0.1 sin 2π

25x,
see for example in [9]. The right boundary is absorbtion, i.e. we linearize two
points ηn+1

JJ and ηn+1
JJ−1 for ηn+1

JJ+1, also for ηn+1
JJ+2. Our numerical solution is given

in Figure 2. We show the animation, the waves travel by decreasing the amplitude,
as shown by plotting in 3-D. We calculate upto t = 800. This calculation can
be continued for larger t. Plot of η(x, 1200) is given in Figure 3 for curve with
solid line. We can see the waves with smaller amplitude at the right side, after
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Figure 2. The numerical solution of (3), initial value η(x, 0) = 0
and left boundary η(x, t) = 0.1 sin 2π

25 (x− at)

the incoming waves propagate to the right. The curve with dash-point (-.) is also
given in Figure 3 as the plot of η(x, 1200) calculated using δ = 0.7. Here, we show
the effect of the surface tension, larger value δ produces the incoming waves with
reducing amplitude faster. Moreover, larger value δ also gives larger wave-number.
This agrees with our analysis for monochromatic wave.

Wave deformation can also be observed from initial wave in form of solitary

η(x, 0) = sinh2 0.5(x− 25) (5)

with zero left boundary condition. So, in it’s propagating we can see the amplitude
and also the form of the wave. We present the animation of that propagation in
Figure 4. Here, we calculate (3) using θ = 50, r = 0.1 and δ = 0.1. After running
the numerical procedure upto t = 500, we show the last profile η(x, 500) in Figure
5 (solid line) together with the plot using different δ = 0.7, dash-point curve (-.),
and δ = 0.9, dash-dash curve (–). Smaller value δ produces slower declining the
amplitude. This can be seen in Figure 5, with δ = 0.1 giving curve with slightly
smallest amplitude after calculating upto the same time t = 500.

The simulation so far uses various value of δ, without changing r, as δ in-
volves only in the coefficient of fourth term in (3). It agrees to the analysis for
monochromatic wave, δ contributes in decreasing the amplitude. Meanwhile, for
various θ, it will effect to wave speed, as it is in the coefficient of the second term
of (3). Increasing θ the wave travels faster, but reducing the coefficient of the third
term in (3) resulting slower in decreasing the amplitude. This should be considered
for δ so that the changing of the amplitude does not change. For monochromatic
wave, it can be analyzed by the frequency omega and the wave number k. For



7

Figure 3. Plot of η(x, 1200) after the incoming waves η(x, t) =
0.1 sin 2π

25 (x−at) propagating to the right following (3) for different
δ, solid line corresponding to δ = 0.1 and dash-point for δ = 0.7

Figure 4. The numerical solution of (3), with initial value
η(x, 0) = sinh2 0.5(x− 25)

other type of wave, it can be analyzed by numerical solution. To confirm those, we
work for solitary wave. The initial wave (5) is used to determine the solution of
(3), with r = 0.1, δ = 0.1 and various θ. Plot of η(x, 100) is shown in Figure 6 for
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Figure 5. Plot of η(x, 500) from initial value η(x, 0) =
sinh2 0.5(x − 25) with different δ = 0.1 (solid curve) 0.7 (dash-
point curve) and 0.9 (dash-dash curve)

Figure 6. Plot of η(x, 100) for different θ, that is θ = 5, 10, 20
and 30 degree, from left to right. Enlargement is given at the top
right side
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Figure 7. Plot of η(x, 100) for θ = 10, δ = 0.1, and θ = 20, δ =
0.15 obtained from initial wave (5) and using r = 0.1

θ = 5, 10, 20 and 30 degree as indicated, where the wave travels faster for larger θ.
This can be seen by the position of the crest. It is followed by less reducing the
amplitude. To see the difference of the amplitude for each θ is given the enlarge-
ment at the top right side of Figure 6. The maximum value of η(x, 100) for θ = 300

is largest between the other θ. This is proportional to the value of b in (3).

Now, we perform our calculation to get the same profile of the surface wave for
different bottom inclination. We show in Figure 7, as the result of plot η(x, 100)
for θ = 10 and θ = 20. Both curves have the same profile with reducing the
amplitude from initial wave (5), the maximum value of η(x, 100) is 0.49977, but
different position at x = 42.2 corresponding to θ = 10 and at x = 59.0 for θ = 20.
To get those profiles, we need to adjust different value δ, that is 0.1 and 0.15 for
the same value r = 0.1. From this performance, we can get the same wave profile
from an initial wave by setting θ, r and δ, increase the inclination must be followed
by increasing r.

5. CONCLUDING REMARKS

A linear model of thin film flow has been solved numerically. The model was
developed from previous model by involving surface tension. Since the model was
very thin and the evolution was very slow, scaling was needed. An implicit finite
different method was chosen as it was unconditional stable, so that it could be
used to observe the effect of the surface tension, that was fail using explicit method
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as it was conditional stable. Moreover, this numerical work was able to observe
the model with general initial wave, not only monochromatic. We found that the
surface tension contributes in reducing the amplitude during the wave propagates.
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