\mathfrak{f}_q -DERIVATION OF *BP*-ALGEBRAS

Sri Gemawati^a, Mashadi, Musraini, and Elsi Fitria

Faculty of Mathematics and Natural Sciences, University of Riau, Jalan H. R. Soebrantas, Kel. Simpang Baru, Kec. Tampan, Pekanbaru, Riau,

Indonesia, ^asri.gemawati@lecturer.unri.ac.id

Abstract. First, this article presents the definition of left-right derivation and right-left derivation in *BP*-algebra, and their characteristic are explored. Then, we define the concept of inside and outside \mathfrak{f}_q -derivation of *BP*-algebras. Finally, their properties are explored. Furthermore, the notion of \mathfrak{f}_q -derivation within *BP*-algebra is synonymous with *B*-algebra; however, they do exhibit variations in their respective characteristics.

Key words and Phrases: left-right derivation, right-left derivation, inside \mathfrak{f}_q -derivation, outside \mathfrak{f}_q -derivation, BP-algebra

1. INTRODUCTION

Negger and Kim [9] introduced the notion of *B*-algebra (H; *, 0) in their research. This type of algebra adheres to the following principles : (I) k * k = 0, (II) k * 0 = k, and (III) (k * l) * m = k * (m * (0 * l)) for each $k, l, m \in H$. Then, Kim and Park [10] explored a unique variation of *B*-algebra referred to as 0-commutative algebra. This type of algebra adheres to the axiom : k * (0 * l) = l * (0 * k) for all $k, l \in$ H, where H represents a specific set. Furthermore, Ahn and Han [1] constructed a new algebra related to *B*-algebra called *BP*-algebra (M; *, 0), which satisfies the axioms : (I) k * k = 0, (II) k * (k * l) = l, and (III) (k * m) * (l * m) = k * l, for every $k, l, m \in M$. The exists a connection between *B*-algebra and *BP*-algebra, where in every 0-commutative *B*-algebra can be classified as a *BP*-algebra. Additionally, a *BP*-algebra that fulfills the condition (k * l) * m = k * (m * l) can be identified as a *B*-algebra. Various ideas have been explored within the realm of *BP*-algebra including the notions of the external direct product [4] and *BP*-space concepts [7].

The investigation of derivations initially originated in the study of rings and near rings [3]. Al-Shehrie [2] extended this concept to *B*-algebra. Subsequently, Muangkarn et al. [8], Gemawati et al. [5], and Yattaqi et al. [11] have introduced the notion of f_q -derivation in some algebras, which constitutes a distinct

 $^{2020\} Mathematics\ Subject\ Classification:\ 06F35,\ 03G25.$

Received: 23-06-2023, accepted: 25-08-2023.

form of derivation. They explored the application of \mathfrak{f}_q -derivation by establishing a mapping that incorporates endomorphisms. Gemawati et al.[6] have also explored additional critical concepts within the realm of abstract algebra, including various classifications of ideals in a given algebra.

This article introduces the notion of derivation in BP-algebra and examines its properties. Subsequently, the idea of \mathfrak{f}_q -derivation within BP-algebra is thoroughly examined, and several associated properties are investigated.

2. PRELIMINARIES

The following provides the basic concepts needed in the construction of the concept of derivation and f_q -derivation in *BP*-algebras.

Definition 2.1. [9] Let H be a non-empty set representing a B-algebra (H; *, 0) satisfying the following conditions:

 $\begin{array}{ll} (B1) & k*k=0, \\ (B2) & k*0=k, \\ (B3) & (k*l)*m=k*(m*(0*l)), \\ for \ every \ k,l,m\in H. \end{array}$

Lemma 2.2. [9] In B-algebra (H; *, 0), the following properties hold:

 $\begin{array}{l} (i) \ 0 * (0 * k) = k, \\ (ii) \ (k * l) * (0 * l) = k, \\ (iii) \ l * m = l * (0 * (0 * m)), \\ (iv) \ k * (l * m) = (k * (0 * m)) * l, \\ (v) \ If \ k * m = l * m, \ then \ k = l, \\ (vi) \ If \ k * l = 0, \ then \ k = l, \end{array}$

for each $k, l, m \in H$.

Definition 2.3. [10] A B-algebra (H; *, 0) is 0-commutative if fulfill k * (0 * l) = l * (0 * k) for every $k, l \in H$.

Example 2.4. Let $P = \{0, a, 1\}$ is a set defined in Table 1.

TABLE 1. Table for (P; *, 0)

*	0	a	1
0	0	1	a
a	a	0	1
1	1	a	0

Based on Table 1, we can observe that the B-algebra (B; *, 0) satisfies the property of 0-commutative.

To discuss the concept of derivation in *B*-algebra, lets consider (H; *, 0) as a *B*-algebra. The operation " \wedge " is defined in *B*-algebra, that is, $k \wedge l = l * (l * k)$ for all $k, l \in H$.

Definition 2.5. [2] For a given B-algebra (H; *, 0), a mapping δ from H to itself is considered a left-right derivation in H if it fulfills the condition:

$$\delta(k * l) = (\delta(k) * l) \land (k * \delta(l))$$

for every $k, l \in H$. Then, δ is referred to as a right-left derivation in H if it satisfies $\delta(k * l) = (k * \delta(l)) \wedge (\delta(k) * l).$

A mapping δ is called a derivation of H if it acts as both a left-right derivation and a right-left derivation in H simultaneously.

Definition 2.6. [1] *BP*-algebra is defined as a non-empty set (D; *, 0) satisfying the following axioms:

 $\begin{array}{ll} (BP1) & k*k=0, \\ (BP2) & k*(k*l)=l, \\ (BP3) & (k*m)*(l*m)=k*m, \\ for \ all \ k, l, m \in D. \end{array}$

Example 2.7. Let $M = \{0, b, c, 1\}$ is a set defined in Table 2.

TABLE 2. Table for (M; *, 0)

*	0	b	c	1
0	0	b	с	1
b	b	0	1	c
c	c	1	0	b
1	1	c	b	0

The structure (M; *, 0) represents a BP-algebra.

Theorem 2.8. [1] If (H; *, 0) is a BP-algebra, then for every $k, l \in H$:

 $\begin{array}{l} (i) \ 0 * (0 * k) = k, \\ (ii) \ 0 * (l * k) = k * l, \\ (iii) \ k * 0 = k, \\ (iv) \ If \ k * l = 0, \ then \ l * k = 0, \\ (v) \ If \ 0 * k = 0 * l, \ then \ k = l, \\ (vi) \ If \ 0 * k = l, \ then \ 0 * l = k, \\ (vii) \ If \ 0 * k = k, \ then \ k * l = l * k. \end{array}$

Muangkarn et al. [8] examines the concept of the f_q -derivation in *B*-algebra.

Definition 2.9. Let (H; *, 0) be a *B*-algebra. A self-map \mathfrak{f} of *H* is called an endomorphism if $\mathfrak{f}(k * l) = \mathfrak{f}(k) * \mathfrak{f}(l)$ for all $k, l \in H$.

Let \mathfrak{f} be an endomorphism of *B*-algebra (A; *, 0) and $q \in A$. The self-map $\delta_q^{\mathfrak{f}}$ on *A* is defined by $\delta_q^{\mathfrak{f}}(a) = \mathfrak{f}(a) * q$ for all $a \in A$.

Definition 2.10. [8] Let \mathfrak{f} be an endomorphism of *B*-algebra (A; *, 0). A self-map $\delta_q^{\mathfrak{f}}$ of *A* for all $q \in A$ is called an inside \mathfrak{f}_q -derivation of *A* if $\delta_q^{\mathfrak{f}}(a*b) = \delta_q^{\mathfrak{f}}(a)*\mathfrak{f}(b)$ for all $a, b \in A$. If $\delta_q^{\mathfrak{f}}(a*b) = \mathfrak{f}(a)*\delta_q^{\mathfrak{f}}(b)$, then we say that $\delta_q^{\mathfrak{f}}$ is an outside \mathfrak{f}_q -derivation of *A*. An \mathfrak{f}_q -derivation of *A* if it is both an inside and outside \mathfrak{f}_q -derivation of *A*.

3. Derivation of BP-algebra

In this section, a left-right and a right-left derivation in BP-algebras are defined. Then, some of its properties are obtained.

Let (M; *, 0) be a *BP*-algebra, we denote $k \wedge l = l * (l * k)$ for all $k, l \in M$.

Definition 3.1. Consider a BP-algebra (M; *, 0). A left-right derivation of M is a self-map, denoted as δ , that satisfies the identity $\delta(k*l) = (\delta(k)*l) \wedge (k*\delta(l))$ for all $k, l \in M$. In addition, if M satisfies the identity $\delta(k*l) = (k*\delta(l)) \wedge (\delta(k)*l)$ for all $k, l \in M$, we refer to δ as a right-left derivation. Furthermore, if δ satisfies both the left-right and right-left derivation, we classify it as a derivation of M.

Example 3.2. Consider the set of integers \mathbb{Z} equipped with the subtraction operation (-) and the constant 0. It can be easily demonstrated that \mathbb{Z} forms a *BP*-algebra. Let δ be a self-map of \mathbb{Z} defined as $\delta(i) = i - 1$ for all $i \in \mathbb{Z}$. We can show that δ is a left-right derivation in \mathbb{Z} . However, if we examine the expression $(3 - (1 - 1)) \wedge (3 - 1 - 1)$, it equals 3, whereas $\delta(3 - 1)$ evaluates to 1. Hence, we observe that δ is not a right-left derivation in \mathbb{Z} , as it fails to satisfy the right-left derivation identity.

Example 3.3. Let $A = \{0, a, 1, 2\}$ is a set defined in Table 3.

TABI	LE 3	З. Т	abl	e fo	r (A	1 ; *, 0)
	*	0	a	1	2	
	0	0	2	1	a	
	a	a	0	2	1	
	1	1	a	0	2	
	2	2	1	a	0	

Thus, it can be readily demonstrated that A is a BP-algebras. Define a map $\delta: A \to A$ by

$$\delta(k) = \begin{cases} 1 & \text{if } k = 0, \\ 2 & \text{if } k = a, \\ 0 & \text{if } k = 1, \\ a & \text{if } k = 2, \end{cases}$$

We can demonstrate that δ is both a left-right and a right-left derivation of A, which allows us to classify δ as a derivation of A.

Definition 3.4. Let (M; *, 0) be a BP-algebra. A self-map δ is said to be regular if $\delta(0) = 0$.

Theorem 3.5. Let (M; *, 0) be a BP-algebra and δ be a left-right derivation in M, then

(i) $\delta(k * l) = \delta(k) * l$ for all $k, l \in M$,

(ii) $\delta(0) = \delta(k) * k$ for all $k \in M$,

(iii) $\delta(k * \delta(k)) = 0$ for all $k \in M$,

(iv) If δ is regular, then δ is an identity function.

PROOF. Let (M; *, 0) be a *BP*-algebra and δ be a left-right derivation in M.

(i) Since δ is a left-right derivation in M, then by axiom BP2 we have

$$\begin{split} \delta(k*l) &= (\delta(k)*l) \land (k*\delta(l)) \\ &= (k*\delta(l))*[(k*\delta(l))*(\delta(k)*l)] \\ \delta(k*l) &= \delta(k)*l. \end{split}$$

Hence, this shows that $\delta(k * l) = \delta(k) * l$ for all $k, l \in M$. The converse of (i) is held in general.

- (ii) By (i) It is obtained that $\delta(k * l) = \delta(k) * l$. By substitution l = k then $\delta(k * k) = \delta(k) * k$, and by axiom BP1 we get $\delta(0) = \delta(k) * k$ for all $k \in M$.
- (iii) By (i) and axiom BP1 we have $\delta(k * \delta(k)) = \delta(k) * \delta(k) = 0$ for all $k \in M$.
- (iv) By (i) and Theorem 2.4 (i), and since δ is regular, then for all $k \in M,$ we have

$$\delta(k) = \delta(0 * (0 * k)) = \delta(0) * (0 * k) = 0 * (0 * k) = k.$$

Theorem 3.6. Let (M; *, 0) be a BP-algebra and δ be a right-left derivation in M, then

- (i) $\delta(k * l) = k * \delta(l)$ for all $k, l \in M$,
- (ii) $\delta(0) = k * \delta(k)$ for all $k \in M$,

(iii) $\delta(\delta(k) * k) = 0$ for all $k \in M$,

(iv) If δ is regular, then δ is an identity function.

PROOF. Let (M; *, 0) be a *BP*-algebra and δ be a right-left derivation in *M*.

(i) Since δ is a right-left derivation in M, then by axiom BP2 we get

$$\begin{split} \delta(k*l) &= (k*\delta(l)) \wedge (\delta(k)*l) \\ &= (\delta(k)*l)*[(\delta(k)*l)*(k*\delta(l))] \\ \delta(k*l) &= k*\delta(l). \end{split}$$

Thus, we have $\delta(k * l) = k * \delta(l)$ for all $k, l \in M$. The converse of (i) is held in general.

- (ii) By (i) it is obtained that $\delta(k * l) = k * \delta(l)$. Substituting l = k yields $\delta(k * k) = k * \delta(k)$, and by axiom BP1 we get $\delta(0) = k * \delta(k)$ for all $k \in M$.
- (iii) By (i) and axiom BP1 we have $\delta(\delta(k) * k) = \delta(k) * \delta(k) = 0$ for all $k \in M$.
- (ii) By (i) and Theorem 2.4 (iii), and since δ is regular, then for all $k \in M$ we
- have

$$\delta(k) = \delta(k * 0) = k * \delta(0) = k * 0 = k.$$

Theorem 3.7. Let (M; *, 0) be a BP-algebra and δ be a derivation in M. δ is regular if and only if δ is an identity function.

PROOF. If we consider δ as a left-right derivation in M, Theorem 3.5 (iv) demonstrates that δ function as an identity. On the other hand, if δ is a right-left derivation in M, Theorem 3.6 (iv) establishes that δ also function as an identity. Conversely, if δ is an identity function, it is evident that $\delta(0) = 0$, indicating that δ is a regular.

4. \mathfrak{f}_q -Derivation of *BP*-Algebra

This section introduces the definitions of an inside \mathfrak{f}_q -derivation, an outside \mathfrak{f}_q derivation, and an \mathfrak{f}_q -derivation in *BP*-algebras. It further explores the associated properties of inside and outside \mathfrak{f}_q -derivations in *BP*-algebras.

Let (H; *, 0) be a *BP*-algebra. A self-map \mathfrak{f} of H is called an endomorphism if $\mathfrak{f}(k * l) = \mathfrak{f}(k) * \mathfrak{f}(l)$ for all $k, l \in H$. Let \mathfrak{f} be an endomorphism of *BP*-algebra (H; *, 0) and $q \in H$. The self-map $\delta_q^{\mathfrak{f}}$ on H is defined by $\delta_q^{\mathfrak{f}}(k) = \mathfrak{f}(k) * q$ for all $k \in H$.

Definition 4.1. Consider an endomorphism \mathfrak{f} of the B-algebra (H; *, 0). A selfmap $\delta_q^{\mathfrak{f}}$ of H for all $q \in H$ is referred to as an inside \mathfrak{f}_q -derivation of H if for all $k, l \in H, \, \delta_q^{\mathfrak{f}}(k * l) = \delta_q^{\mathfrak{f}}(k) * \mathfrak{f}(l)$. Furthermore, if $\delta_q^{\mathfrak{f}}(k * l) = \mathfrak{f}(k) * \delta_q^{\mathfrak{f}}(l)$, we classify $\delta_q^{\mathfrak{f}}$ as an outside \mathfrak{f}_q -derivation of H. An \mathfrak{f}_q -derivation of H satisfies both the inside and outside \mathfrak{f}_q -derivation conditions.

Example 4.2. Consider the BP-algebra $(\mathbb{Z}; -, 0)$. It can be easily demonstrated that a self-map $\delta_q^{\mathfrak{f}}(k) = \mathfrak{f}(k) - q$ for all $k, q \in \mathbb{Z}$ is an inside \mathfrak{f}_q -derivation in \mathbb{Z} . However, it is not an outside \mathfrak{f}_q -derivation in \mathbb{Z} . This is evident when we examine the expression $\mathfrak{f}(k) - \delta_q^{\mathfrak{f}}(l)$. It simplifies to $\mathfrak{f}(k) - (\mathfrak{f}(l) - q)$, which further reduces to $\mathfrak{f}(k) - \mathfrak{f}(l) + q$. As a result, it does not coincide with $\delta_q^{\mathfrak{f}}(k-l) = \mathfrak{f}(k-l) - q = \mathfrak{f}(k) - \mathfrak{f}(l) - q$ for all elements k and l belonging to \mathbb{Z} .

Theorem 4.3. Let (H; *, 0) be a BP-algebra and \mathfrak{f} be an endomorphism of H, then $\delta_0^{\mathfrak{f}}$ is an \mathfrak{f}_0 -derivation of H.

PROOF. By Theorem 2.8 (iii) we have

$$\begin{split} \delta_0^{\dagger}(k*l) &= \mathfrak{f}(k*l)*0 \\ &= \mathfrak{f}(k*l) \\ &= \mathfrak{f}(k)*\mathfrak{f}(l) \\ &= (\mathfrak{f}(k)*0)*\mathfrak{f}(l) \\ \delta_0^{\dagger}(k*l) &= \delta_0^{\dagger}(k)*(l), \end{split}$$

for all $k, l \in H$. Hence, $\delta_0^{\mathfrak{f}}$ is an inside \mathfrak{f}_0 -derivation of H. On the other side, we get

$$\delta_0^{\mathsf{f}}(k*l) = \mathfrak{f}(k*l)*0$$

$$= \mathfrak{f}(k*l)$$

$$= \mathfrak{f}(k)*\mathfrak{f}(l)$$

$$= \mathfrak{f}(k)*(\mathfrak{f}(l)*0)$$

$$\delta_0^{\mathsf{f}}(k*l) = \mathfrak{f}(k)*\delta_0^{\mathsf{f}}(l),$$

for all $k, l \in H$. Hence, $\delta_0^{\mathfrak{f}}$ is an outside \mathfrak{f}_0 -derivation of H. Thus, $\delta_0^{\mathfrak{f}}$ is an \mathfrak{f}_0 -derivation of H.

Theorem 4.4. Let (H; *, 0) be a BP-algebra and \mathfrak{f} be an endomorphism of H.

- (i) If (H; *, 0) is associative, then $\delta_q^{\mathfrak{f}}$ is an outside \mathfrak{f}_q -derivation of H for all $q \in H$,
- (ii) If (H; *, 0) is associative and 0 * k = k for all $k \in H$, then $\delta_q^{\mathfrak{f}}$ is an inside \mathfrak{f}_q -derivation of H for all $q \in H$.

Proof.

(i) Since (H; *, 0) is associative, we get

$$\begin{split} \delta^{\mathfrak{f}}_{q}(k*l) &= \mathfrak{f}(k*l)*q \\ &= (\mathfrak{f}(k)*\mathfrak{f}(l))*q \\ &= \mathfrak{f}(k)*(\mathfrak{f}(l)*q) \\ \delta^{\mathfrak{f}}_{a}(k*l) &= \mathfrak{f}(k)*\delta^{\mathfrak{f}}_{a}(l), \end{split}$$

for all $k, l \in H$. Hence, $\delta_q^{\mathfrak{f}}$ is an outside \mathfrak{f}_q -derivation of H.

(ii) If 0 * k = k for all $k \in H$, then by Theorem 2.8 (vii) we have k * l = l * k for all $k, l \in H$. Since (H; *, 0) is associative, we obtain

$$\begin{split} \delta_q^{\mathfrak{f}}(k*l) &= \delta_q^{\mathfrak{f}}(l*k) \\ &= \mathfrak{f}(l*k)*q \\ &= (\mathfrak{f}(l)*\mathfrak{f}(k))*q \\ &= \mathfrak{f}(l)*(\mathfrak{f}(k)*q) \\ &= \mathfrak{f}(l)*\delta_q^{\mathfrak{f}}(k) \\ \delta_q^{\mathfrak{f}}(k*l) &= \delta_q^{\mathfrak{f}}(k)*\mathfrak{f}(l), \end{split}$$

for all $k, l \in H$. Hence, $\delta_q^{\mathfrak{f}}$ is an inside \mathfrak{f}_q -derivation of H.

Corollary 4.5. If (H; *, 0) is an associative BP-algebra and 0 * k = k for all $k \in H$, then $\delta_q^{\mathfrak{f}}$ is an \mathfrak{f}_q -derivation of H for all $q \in H$.

PROOF. It is straightforward to Theorem 4.4.

Lemma 4.6. Let (H; *, 0) be a BP-algebra and f be an endomorphism of H.

- (i) If $\delta_q^{\mathfrak{f}}$ is an inside \mathfrak{f}_q -derivation of H for all $q \in H$, then $\delta_q^{\mathfrak{f}}(0) = \delta_q^{\mathfrak{f}}(k) * \mathfrak{f}(k)$ for all $k \in H$,
- (ii) If $\delta_q^{\mathfrak{f}}$ is an outside \mathfrak{f}_q -derivation of H for all $q \in H$, then $\delta_q^{\mathfrak{f}}(0) = q$.

Proof.

(i) Since $\delta_q^{\mathfrak{f}}$ is an inside \mathfrak{f}_q -derivation of H and by axiom BP1, for all $k \in H$ we have

$$\begin{split} \delta^{\mathfrak{f}}_q(k*k) &= \delta^{\mathfrak{f}}_q*\mathfrak{f}(k)\\ \delta^{\mathfrak{f}}_q(0) &= \delta^{\mathfrak{f}}_q(k)*\mathfrak{f}(k). \end{split}$$

(ii) Since $\delta_q^{\mathfrak{f}}$ is an outside \mathfrak{f}_q -derivation of H, by axiom BP1 and BP2, for all $k \in H$ we have

$$\begin{split} \delta^{\dagger}_{q}(k*k) &= \mathfrak{f}(k)*\delta^{\dagger}_{q}(k)\\ \delta^{\dagger}_{q}(0) &= \mathfrak{f}(k)*(\mathfrak{f}(k)*q)\\ \delta^{\dagger}_{q}(0) &= q. \end{split}$$

Theorem 4.7. Let (H; *, 0) be a BP-algebra, and $\delta_q^{\mathfrak{f}}$ is an \mathfrak{f}_q -derivation of H for all $q \in H$. If $\delta_q^{\mathfrak{f}}$ regular, then $\delta_q^{\mathfrak{f}} = f$.

PROOF. Since $\delta_q^{\mathfrak{f}}$ is a regular, by Theorem 2.8 (i) for all $k \in H$ we obtain

$$\begin{split} \delta^{\mathrm{f}}_q(k) &= \delta^{\mathrm{f}}_q(0*(0*k)) \\ &= \delta^{\mathrm{f}}_q(0)*\mathfrak{f}(0*k) \\ &= 0*(0*\mathfrak{f}(k)) \\ \delta^{\mathrm{f}}_q(k) &= \mathfrak{f}(k). \end{split}$$

On the other side, by Theorem 2.8 (i), we have

$$\begin{split} \delta^{\mathfrak{f}}_{q}(k) &= \delta^{\mathfrak{f}}_{q}(k*0) \\ &= \mathfrak{f}(k)*\delta^{\mathfrak{f}}_{q}(0) \\ &= \mathfrak{f}(k)*0 \\ \delta^{\mathfrak{f}}_{a}(k) &= \mathfrak{f}(k). \end{split}$$

5. CONCLUSION

This paper introduces the concepts of left-right derivation, right-left derivation, and derivation in *BP*-algebra, and examines their properties. One significant finding is a property resembling the left-right derivation and right-left derivation: if δ is a regular in *BP*-algebra, then it is also an identity function. This implies that any derivation which is regular in *BP*-algebra is necessarily an identity function. Additionally, the definition of \mathfrak{f}_q -derivation in *BP*-algebra is equivalent to that in *B*-algebra, but in general, their properties are different.

REFERENCES

- Ahn, S.S. and Han, J. S., On BP-algebras, Hacettepe Journal of Mathematics and Statistics, 42 (2013), 551-557.
- [2] Al-Shehrie, V., Derivations of B-algebras, Journal of King Abdulaziz University-Science, 22 (2010), 71-83.
- [3] Ashraf, M., Ali, S. and Haetinger, C., On derivations in rings and their applications, The Aligarh Bulletin of Mathematics, 25 (2006), 79-107.
- [4] Chanmanee, C., Prasertpong, R., Julatha, P., Kalyani, U. V., Eswarlal, T. and Iampan, A., A note on external direct products of *BP*-algebras, *Mathematics and Statistics*, **11** (2023), 206-212.
- [5] Gemawati, S., Sirait, A., Musraini, and Fitria, E., f_q-Derivations of BN1-algebras, International Journal of Mathematics Trends and Technology, 67 (2021), 1-13.
- [6] Gemawati, S., Musraini, M., Hadi, A., Zakaria, L. and Fitria, E., On r-ideals and m-k-ideals in BN-algebras, Axioms, 11 (2022).
- [7] Hussein, A. T. and Shallal, E. A., Some properties of *BP*-space, *Mathematics and Statistics*, 10 (2022), 195-200.
- [8] Muangkarn, P., Suanoom, C., Pengyim, P. and Iampan, A., f_q-Derivations of B-algebras, Journal of Mathematical and Computational Science, 11 (2021), 2047-2057.
- [9] Neggers, J. and Kim, H. S., On B-algebras, Mate. Vesnik, 54 (2002), 21-29.

- [10] Sik Kim, H. and Goo Park, H., On 0-commutative B-algebras, Scientiae Mathematicae Japonicae Online, 18 (2005), 31-36.
- [11] Yattaqi, E. , Gemawati, S. and Hasbiyati, I., f_q -Derivasi di BM-aljabar, Jambura Journal of Mathematics, ${\bf 3}$ (2021), 155-166.