f_q -DERIVATION OF BP -ALGEBRAS

Sri Gemawati^a, Mashadi, Musraini, and Elsi Fitria

Faculty of Mathematics and Natural Sciences, University of Riau, Jalan H. R. Soebrantas, Kel. Simpang Baru, Kec. Tampan, Pekanbaru, Riau,

Indonesia, ^asri.gemawati@lecturer.unri.ac.id

Abstract. First, this article presents the definition of left-right derivation and right-left derivation in BP-algebra, and their characteristic are explored. Then, we define the concept of inside and outside f_q -derivation of BP -algebras. Finally, their properties are explored. Furthermore, the notion of f_q -derivation within BPalgebra is synonymous with B-algebra; however, they do exhibit variations in their respective characteristics.

Key words and Phrases: left-right derivation, right-left derivation, inside f_q derivation, outside f_q -derivation, BP-algebra

1. INTRODUCTION

Negger and Kim [9] introduced the notion of B-algebra $(H; *, 0)$ in their research. This type of algebra adheres to the following principles : (I) $k * k = 0$. (II) $k * 0 = k$, and (III) $(k * l) * m = k * (m * (0 * l))$ for each $k, l, m \in H$. Then, Kim and Park $[10]$ explored a unique variation of B -algebra referred to as 0-commutative algebra. This type of algebra adheres to the axiom : $k*(0*l) = l*(0*k)$ for all $k, l \in$ H , where H represents a specific set. Furthermore, Ahn and Han [1] constructed a new algebra related to B-algebra called BP -algebra $(M; *, 0)$, which satisfies the axioms : (I) $k*k = 0$, (II) $k*(k'l) = l$, and (III) $(k*m)*(l*m) = k'l$, for every $k, l, m \in M$. The exists a connection between B-algebra and BP-algebra, where in every 0-commutative B -algebra can be classified as a BP -algebra. Additionally, a BP-algebra that fulfills the condition $(k * l) * m = k * (m * l)$ can be identified as a B-algebra. Various ideas have been explored within the realm of BP-algebra including the notions of the external direct product [4] and BP-space concepts [7].

The investigation of derivations initially originated in the study of rings and near rings [3]. Al-Shehrie [2] extended this concept to B-algebra. Subsequently, Muangkarn et al. [8], Gemawati et al. [5], and Yattaqi et al. [11] have introduced the notion of f_a -derivation in some algebras, which constitutes a distinct

²⁰²⁰ Mathematics Subject Classification: 06F35, 03G25. Received: 23-06-2023, accepted: 25-08-2023.

²³⁵

form of derivation. They explored the application of f_q -derivation by establishing a mapping that incorporates endomorphisms. Gemawati et al.[6] have also explored additional critical concepts within the realm of abstract algebra, including various classifications of ideals in a given algebra.

This article introduces the notion of derivation in BP-algebra and examines its properties. Subsequently, the idea of f_q -derivation within BP-algebra is thoroughly examined, and several associated properties are investigated.

2. PRELIMINARIES

The following provides the basic concepts needed in the construction of the concept of derivation and f_q -derivation in BP-algebras.

Definition 2.1. [9] Let H be a non-empty set representing a B-algebra $(H; *, 0)$ satisfying the following conditions:

(B1) $k * k = 0$, $(B2)$ $k * 0 = k$, (B3) $(k * l) * m = k * (m * (0 * l)),$ for every $k, l, m \in H$.

Lemma 2.2. [9] In B-algebra $(H; *, 0)$, the following properties hold:

(i) $0 * (0 * k) = k$, (ii) $(k * l) * (0 * l) = k$, (iii) $l * m = l * (0 * (0 * m)),$ (iv) $k * (l * m) = (k * (0 * m)) * l$, (v) If $k * m = l * m$, then $k = l$, (vi) If $k * l = 0$, then $k = l$,

for each $k, l, m \in H$.

Definition 2.3. [10] A B-algebra $(H; *, 0)$ is 0-commutative if fulfill $k * (0 * l)$ = $l * (0 * k)$ for every $k, l \in H$.

Example 2.4. Let $P = \{0, a, 1\}$ is a set defined in Table 1.

Based on Table 1, we can observe that the B-algebra $(B; *, 0)$ satisfies the property of 0-commutative.

To discuss the concept of derivation in B-algebra, lets consider $(H; *, 0)$ as a B-algebra. The operation " \wedge " is defined in B-algebra, that is, $k \wedge l = l * (l * k)$ for all $k, l \in H$.

Definition 2.5. [2] For a given B-algebra $(H; *, 0)$, a mapping δ from H to itself is considered a left-right derivation in H if it fulfills the condition:

$$
\delta(k * l) = (\delta(k) * l) \wedge (k * \delta(l))
$$

for every $k, l \in H$. Then, δ is referred to as a right-left derivation in H if it satisfies

 $\delta(k * l) = (k * \delta(l)) \wedge (\delta(k) * l).$

A mapping δ is called a derivation of H if it acts as both a left-right derivation and a right-left derivation in H simultaneously.

Definition 2.6. [1] BP -algebra is defined as a non-empty set $(D; *, 0)$ satisfying the following axioms:

(BP1) $k * k = 0$, (BP2) $k * (k * l) = l$, (BP3) $(k * m) * (l * m) = k * m,$

for all $k, l, m \in D$.

Example 2.7. Let $M = \{0, b, c, 1\}$ is a set defined in Table 2.

TABLE 2. Table for $(M; *, 0)$

\ast	0	b	с	
0	0	b	с	
\boldsymbol{b}	\boldsymbol{b}	$\boldsymbol{0}$	1	$\mathcal C$
\boldsymbol{c}	\overline{c}	1	0	\boldsymbol{b}
		с	h	0

The structure $(M; *, 0)$ represents a BP-algebra.

Theorem 2.8. [1] If $(H;*,0)$ is a BP-algebra, then for every $k, l \in H$:

(i) $0 * (0 * k) = k$, (ii) $0 * (l * k) = k * l$, (*iii*) $k * 0 = k$, (iv) If $k * l = 0$, then $l * k = 0$, (v) If $0 * k = 0 * l$, then $k = l$, (vi) If $0 * k = l$, then $0 * l = k$, (vii) If $0 * k = k$, then $k * l = l * k$. Muangkarn et al. [8] examines the concept of the f_a -derivation in B-algebra.

Definition 2.9. Let $(H; *, 0)$ be a B-algebra. A self-map f of H is called an endomorphism if $f(k+l) = f(k) * f(l)$ for all $k, l \in H$.

Let f be an endomorphism of B-algebra $(A; *, 0)$ and $q \in A$. The self-map δ_q^{\dagger} on A is defined by $\delta_q^{\dagger}(a) = \mathfrak{f}(a) * q$ for all $a \in A$.

Definition 2.10. [8] Let f be an endomorphism of B-algebra $(A; *, 0)$. A self-map δ_q^{\dagger} of A for all $q \in A$ is called an inside \mathfrak{f}_q -derivation of A if $\delta_q^{\dagger}(a*b) = \delta_q^{\dagger}(a) * \mathfrak{f}(b)$ for all $a, b \in A$. If $\delta_q^{\dagger}(a*b) = \mathfrak{f}(a)*\delta_q^{\dagger}(b)$, then we say that δ_q^{\dagger} is an outside \mathfrak{f}_q -derivation of A. An f_q -derivation of A if it is both an inside and outside f_q -derivation of A.

3. Derivation of BP-algebra

In this section, a left-right and a right-left derivation in BP-algebras are defined. Then, some of its properties are obtained.

Let $(M; *, 0)$ be a BP-algebra, we denote $k \wedge l = l * (l * k)$ for all $k, l \in M$.

Definition 3.1. Consider a BP-algebra $(M; *, 0)$. A left-right derivation of M is a self-map, denoted as δ , that satisfies the identity $\delta(k * l) = (\delta(k) * l) \wedge (k * \delta(l))$ for all $k, l \in M$. In addition, if M satisfies the identity $\delta(k * l) = (k * \delta(l)) \wedge (\delta(k) * l)$ for all $k, l \in M$, we refer to δ as a right-left derivation. Furthermore, if δ satisfies both the left-right and right-left derivation, we classify it as a derivation of M.

Example 3.2. Consider the set of integers $\mathbb Z$ equipped with the subtraction operation $(-)$ and the constant 0. It can be easily demonstrated that $\mathbb Z$ forms a BP-algebra. Let δ be a self-map of $\mathbb Z$ defined as $\delta(i) = i - 1$ for all $i \in \mathbb Z$. We can show that δ is a left-right derivation in \mathbb{Z} . However, if we examine the expression $(3-(1-1)) \wedge (3-1-1)$, it equals 3, whereas $\delta(3-1)$ evaluates to 1. Hence, we observe that δ is not a right-left derivation in \mathbb{Z} , as it fails to satisfy the right-left derivation identity.

Example 3.3. Let $A = \{0, a, 1, 2\}$ is a set defined in Table 3.

TABLE 3. Table for $(A;*,0)$

Thus, it can be readily demonstrated that A is a BP-algebras. Define a map $\delta: A \rightarrow A$ by

$$
\delta(k) = \begin{cases} 1 & \text{if } k = 0, \\ 2 & \text{if } k = a, \\ 0 & \text{if } k = 1, \\ a & \text{if } k = 2, \end{cases}
$$

We can demonstrate that δ is both a left-right and a right-left derivation of A, which allows us to classify δ as a derivation of A.

Definition 3.4. Let $(M; *, 0)$ be a BP-algebra. A self-map δ is said to be regular if $\delta(0) = 0$.

Theorem 3.5. Let $(M; *0)$ be a BP-algebra and δ be a left-right derivation in M, then

(i) $\delta(k * l) = \delta(k) * l$ for all $k, l \in M$,

(ii) $\delta(0) = \delta(k) * k$ for all $k \in M$.

(iii) $\delta(k * \delta(k)) = 0$ for all $k \in M$,

(iv) If δ is regular, then δ is an identity function.

PROOF. Let $(M; *, 0)$ be a BP-algebra and δ be a left-right derivation in M.

(i) Since δ is a left-right derivation in M, then by axiom $BP2$ we have

$$
\delta(k * l) = (\delta(k) * l) \land (k * \delta(l))
$$

= $(k * \delta(l)) * [(k * \delta(l)) * (\delta(k) * l)]$

$$
\delta(k * l) = \delta(k) * l.
$$

Hence, this shows that $\delta(k * l) = \delta(k) * l$ for all $k, l \in M$. The converse of (i) is held in general.

- (ii) By (i) It is obtained that $\delta(k * l) = \delta(k) * l$. By substitution $l = k$ then $\delta(k*k) = \delta(k) * k$, and by axiom $BP1$ we get $\delta(0) = \delta(k) * k$ for all $k \in M$.
- (iii) By (i) and axiom BP1 we have $\delta(k * \delta(k)) = \delta(k) * \delta(k) = 0$ for all $k \in M$.
- (iv) By (i) and Theorem 2.4 (i), and since δ is regular, then for all $k \in M$, we have

$$
\delta(k) = \delta(0*(0*k)) = \delta(0)*(0*k) = 0*(0*k) = k.
$$

Theorem 3.6. Let $(M; *, 0)$ be a BP-algebra and δ be a right-left derivation in M, then

- (i) $\delta(k * l) = k * \delta(l)$ for all $k, l \in M$,
- (ii) $\delta(0) = k * \delta(k)$ for all $k \in M$,

(iii) $\delta(\delta(k) * k) = 0$ for all $k \in M$,

(iv) If δ is regular, then δ is an identity function.

PROOF. Let $(M; *, 0)$ be a BP-algebra and δ be a right-left derivation in M.

(i) Since δ is a right-left derivation in M, then by axiom $BP2$ we get

$$
\delta(k * l) = (k * \delta(l)) \land (\delta(k) * l)
$$

= $(\delta(k) * l) * [(\delta(k) * l) * (k * \delta(l))]$
 $\delta(k * l) = k * \delta(l).$

Thus, we have $\delta(k * l) = k * \delta(l)$ for all $k, l \in M$. The converse of (i) is held in general.

- (ii) By (i) it is obtained that $\delta(k * l) = k * \delta(l)$. Substituting $l = k$ yields
- $\delta(k*k) = k*\delta(k)$, and by axiom $BP1$ we get $\delta(0) = k*\delta(k)$ for all $k \in M$.
- (iii) By (i) and axiom BP1 we have $\delta(\delta(k) * k) = \delta(k) * \delta(k) = 0$ for all $k \in M$.
- (iv) By (i) and Theorem 2.4 (iii), and since δ is regular, then for all $k \in M$ we have

$$
\delta(k) = \delta(k * 0) = k * \delta(0) = k * 0 = k.
$$

Theorem 3.7. Let $(M; *, 0)$ be a BP-algebra and δ be a derivation in M. δ is regular if and only if δ is an identity function.

PROOF. If we consider δ as a left-right derivation in M, Theorem 3.5 (iv) demonstrates that δ function as an identity. On the other hand, if δ is a right-left derivation in M, Theorem 3.6 (iv) establishes that δ also function as an identity. Conversely, if δ is an identity function, it is evident that $\delta(0) = 0$, indicating that δ is a regular.

4. f_q -DERIVATION OF BP -ALGEBRA

This section introduces the definitions of an inside f_q -derivation, an outside f_q derivation, and an f_q -derivation in BP-algebras. It further explores the associated properties of inside and outside f_q -derivations in BP-algebras.

Let $(H; *, 0)$ be a BP-algebra. A self-map f of H is called an endomorphism if $f(k * l) = f(k) * f(l)$ for all $k, l \in H$. Let f be an endomorphism of BP-algebra $(H;*,0)$ and $q \in H$. The self-map δ_q^{\dagger} on H is defined by $\delta_q^{\dagger}(k) = \mathfrak{f}(k) * q$ for all $k \in H$.

Definition 4.1. Consider an endomorphism f of the B-algebra $(H; *, 0)$. A selfmap δ_q^{\dagger} of H for all $q \in H$ is referred to as an inside \mathfrak{f}_q -derivation of H if for all $k, l \in H$, $\delta_q^{\dagger}(k+l) = \delta_q^{\dagger}(k) * \mathfrak{f}(l)$. Furthermore, if $\delta_q^{\dagger}(k+l) = \mathfrak{f}(k) * \delta_q^{\dagger}(l)$, we classify δ_q^{\dagger} as an outside \mathfrak{f}_q -derivation of H. An \mathfrak{f}_q -derivation of H satisfies both the inside and outside f_q -derivation conditions.

Example 4.2. Consider the BP-algebra $(\mathbb{Z}; -, 0)$. It can be easily demonstrated that a self-map $\delta_q^{\dagger}(k) = \mathfrak{f}(k) - q$ for all $k, q \in \mathbb{Z}$ is an inside \mathfrak{f}_q -derivation in \mathbb{Z} . However, it is not an outside f_q -derivation in \mathbb{Z} . This is evident when we examine the expression $\mathfrak{f}(k) - \delta_q^{\mathfrak{f}}(l)$. It simplifies to $\mathfrak{f}(k) - (\mathfrak{f}(l) - q)$, which further reduces to $\mathfrak{f}(k) - \mathfrak{f}(l) + q$. As a result, it does not coincide with $\delta_q^{\mathfrak{f}}(k-l) = \mathfrak{f}(k-l) - q =$ $f(k) - f(l) - q$ for all elements k and l belonging to \mathbb{Z} .

Theorem 4.3. Let $(H; *, 0)$ be a BP-algebra and f be an endomorphism of H, then δ_0^{\dagger} is an f₀-derivation of H.

PROOF. By Theorem 2.8 (iii) we have

$$
\delta_0^{\mathfrak{f}}(k * l) = \mathfrak{f}(k * l) * 0
$$

=
$$
\mathfrak{f}(k * l)
$$

=
$$
\mathfrak{f}(k) * \mathfrak{f}(l)
$$

=
$$
(\mathfrak{f}(k) * 0) * \mathfrak{f}(l)
$$

$$
\delta_0^{\mathfrak{f}}(k * l) = \delta_0^{\mathfrak{f}}(k) * (l),
$$

for all $k, l \in H$. Hence, δ_0^{\dagger} is an inside f₀-derivation of H. On the other side, we get

$$
\delta_0^{\mathfrak{f}}(k+l) = \mathfrak{f}(k+l) * 0
$$

$$
= \mathfrak{f}(k+l)
$$

$$
= \mathfrak{f}(k) * \mathfrak{f}(l)
$$

$$
= \mathfrak{f}(k) * (\mathfrak{f}(l) * 0)
$$

$$
\delta_0^{\mathfrak{f}}(k+l) = \mathfrak{f}(k) * \delta_0^{\mathfrak{f}}(l),
$$

for all $k, l \in H$. Hence, δ_0^{\dagger} is an outside \mathfrak{f}_0 -derivation of H. Thus, δ_0^{\dagger} is an \mathfrak{f}_0 derivation of H.

Theorem 4.4. Let $(H; *, 0)$ be a BP-algebra and f be an endomorphism of H.

- (i) If $(H;*,0)$ is associative, then δ_q^{\dagger} is an outside \mathfrak{f}_q -derivation of H for all $q \in H$,
- (ii) If $(H; *, 0)$ is associative and $0 * k = k$ for all $k \in H$, then δ_q^f is an inside \mathfrak{f}_q -derivation of H for all $q \in H$.

PROOF.

(i) Since $(H; *, 0)$ is associative, we get

$$
\delta_q^{\mathfrak{f}}(k * l) = \mathfrak{f}(k * l) * q
$$

=
$$
(\mathfrak{f}(k) * \mathfrak{f}(l)) * q
$$

=
$$
\mathfrak{f}(k) * (\mathfrak{f}(l) * q)
$$

$$
\delta_q^{\mathfrak{f}}(k * l) = \mathfrak{f}(k) * \delta_q^{\mathfrak{f}}(l),
$$

for all $k, l \in H$. Hence, δ_q^{\dagger} is an outside f_q -derivation of H.

(ii) If $0 * k = k$ for all $k \in H$, then by Theorem 2.8 (vii) we have $k * l = l * k$ for all $k, l \in H$. Since $(H; *, 0)$ is associative, we obtain

$$
\begin{aligned} \delta_q^{\mathsf{f}}(k * l) &= \delta_q^{\mathsf{f}}(l * k) \\ &= \mathfrak{f}(l * k) * q \\ &= (\mathfrak{f}(l) * \mathfrak{f}(k)) * q \\ &= \mathfrak{f}(l) * (\mathfrak{f}(k) * q) \\ &= \mathfrak{f}(l) * \delta_q^{\mathsf{f}}(k) \\ \delta_q^{\mathsf{f}}(k * l) &= \delta_q^{\mathsf{f}}(k) * \mathfrak{f}(l), \end{aligned}
$$

for all $k, l \in H$. Hence, δ_q^{\dagger} is an inside \mathfrak{f}_q -derivation of H.

Corollary 4.5. If $(H; *, 0)$ is an associative BP-algebra and $0 * k = k$ for all $k \in H$, then δ_q^{\dagger} is an ${\mathfrak f}_q$ -derivation of H for all $q \in H$.

PROOF. It is straightforward to Theorem 4.4.

Lemma 4.6. Let $(H; *, 0)$ be a BP-algebra and f be an endomorphism of H.

- (i) If δ_q^{\dagger} is an inside f_q -derivation of H for all $q \in H$, then $\delta_q^{\dagger}(0) = \delta_q^{\dagger}(k) * \mathfrak{f}(k)$ for all $k \in H$,
- (ii) If δ_q^{\dagger} is an outside \dagger_q -derivation of H for all $q \in H$, then $\delta_q^{\dagger}(0) = q$.

PROOF.

(i) Since δ_q^f is an inside f_q -derivation of H and by axiom BP1, for all $k \in H$ we have

$$
\delta_q^{\dagger}(k*k) = \delta_q^{\dagger} * \mathfrak{f}(k)
$$

$$
\delta_q^{\dagger}(0) = \delta_q^{\dagger}(k) * \mathfrak{f}(k).
$$

(ii) Since δ_q^{\dagger} is an outside f_q -derivation of H, by axiom BP1 and BP2, for all $k \in H$ we have

$$
\delta_q^{\dagger}(k * k) = \mathfrak{f}(k) * \delta_q^{\dagger}(k)
$$

$$
\delta_q^{\dagger}(0) = \mathfrak{f}(k) * (\mathfrak{f}(k) * q)
$$

$$
\delta_q^{\dagger}(0) = q.
$$

Theorem 4.7. Let $(H; *, 0)$ be a BP-algebra, and δ_q^{\dagger} is an \mathfrak{f}_q -derivation of H for all $q \in H$. If δ_q^{\dagger} regular, then $\delta_q^{\dagger} = f$.

PROOF. Since δ_q^{\dagger} is a regular, by Theorem 2.8 (i) for all $k \in H$ we obtain

$$
\delta_q^{\mathfrak{f}}(k) = \delta_q^{\mathfrak{f}}(0 * (0 * k))
$$

$$
= \delta_q^{\mathfrak{f}}(0) * \mathfrak{f}(0 * k)
$$

$$
= 0 * (0 * \mathfrak{f}(k))
$$

$$
\delta_q^{\mathfrak{f}}(k) = \mathfrak{f}(k).
$$

On the other side, by Theorem 2.8 (i), we have

$$
\delta_q^{\mathfrak{f}}(k) = \delta_q^{\mathfrak{f}}(k * 0)
$$

=
$$
\mathfrak{f}(k) * \delta_q^{\mathfrak{f}}(0)
$$

=
$$
\mathfrak{f}(k) * 0
$$

$$
\delta_q^{\mathfrak{f}}(k) = \mathfrak{f}(k).
$$

5. CONCLUSION

This paper introduces the concepts of left-right derivation, right-left derivation, and derivation in BP-algebra, and examines their properties. One significant finding is a property resembling the left-right derivation and right-left derivation: if δ is a regular in BP -algebra, then it is also an identity function. This implies that any derivation which is regular in BP -algebra is necessarily an identity function. Additionally, the definition of f_q -derivation in BP-algebra is equivalent to that in B-algebra, but in general, their properties are different.

REFERENCES

- [1] Ahn, S.S. and Han, J. S., On BP-algebras, Hacettepe Journal of Mathematics and Statistics, 42 (2013), 551-557.
- [2] Al-Shehrie, V., Derivations of B-algebras, Journal of King Abdulaziz University-Science, 22 (2010), 71-83.
- [3] Ashraf, M., Ali, S. and Haetinger, C., On derivations in rings and their applications, The Aligarh Bulletin of Mathematics, 25 (2006), 79-107.
- [4] Chanmanee, C., Prasertpong, R., Julatha, P., Kalyani, U. V., Eswarlal, T. and Iampan, A., A note on external direct products of BP-algebras, Mathematics and Statistics, 11 (2023), 206-212.
- [5] Gemawati, S., Sirait, A., Musraini, and Fitria, E., f_q -Derivations of BN1-algebras, International Journal of Mathematics Trends and Technology, 67 (2021), 1-13.
- [6] Gemawati, S., Musraini, M., Hadi, A., Zakaria, L. and Fitria, E., On r-ideals and m-k-ideals in BN-algebras, Axioms, 11 (2022).
- [7] Hussein, A. T. and Shallal, E. A., Some properties of BP-space, Mathematics and Statistics, 10 (2022), 195-200.
- [8] Muangkarn, P., Suanoom, C., Pengyim, P. and Iampan, A., fq-Derivations of B-algebras, Journal of Mathematical and Computational Science, 11 (2021), 2047-2057.
- [9] Neggers, J. and Kim, H. S., On B-algebras, Mate. Vesnik, 54 (2002), 21-29.
- [10] Sik Kim, H. and Goo Park, H., On 0-commutative B-algebras, Scientiae Mathematicae Japonicae Online, 18 (2005), 31-36.
- [11] Yattaqi, E. , Gemawati, S. and Hasbiyati, I., fq-Derivasi di BM-aljabar, Jambura Journal of Mathematics, 3 (2021), 155-166.