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Abstract. The non-commutativity of the Clifford multiplication gives different as-

pects from the classical Fourier analysis. We establish main properties of convolution

theorems for the Clifford Fourier transform. Some properties of these generalized

convolutions are extensions of the corresponding convolution theorems of the clas-

sical Fourier transform.
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Abstrak. Tujuan tulisan ini adalah untuk membangun sifat-sifat penting dari teo-

rema konvolusi untuk transformasi Fourier Clifford (TFC). Karena perkalian Clif-

ford adalah tidak komutatif, maka diperoleh sifat-sifat konvolusi dari TFC ini adalah

perluasan dari konvolusi dari transformasi Fourier.

Kata kunci: Konvolusi Clifford, aljabar Clifford, transformasi Fourier Clifford.

1. Introduction

Recently, several attempts have been made to generalize the classical Fourier trans-
form in the framework of Clifford algebra, so-called the Clifford Fourier transform
(CFT). It was first introduced from the mathematical aspect by Brackx et al.
[5, 6]. The CFT was recently used in signal processing [9, 14] and in other fields of
mathematics and applications. Many generalized transforms, such as the Clifford
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wavelet transform, fractional Clifford Fourier transform, and Clifford windowed
Fourier transform (see, for example, [2, 7, 8, 10, 12, 15]) are closely related to the
CFT. One of the most fundamental and important properties of the CFT is the
convolution theorem.

Convolution is a mathematical operation with several applications in pure and
applied mathematics such as numerical analysis, numerical linear algebra and the
design and implementation of finite impulse response filters in signal processing. In
[3, 13], authors generalized convolution to the quaternion Fourier transform (QFT).
They found that the QFT of the real-valued signals are very similar to the classical
ones. In this paper, we establish convolution theorems for the CFT. Here we adopt
the definition of the CFT suggested by several authors [1, 4, 9]. Because the Clifford
multiplication is not commutative, we find important properties of the relationship
between the convolution theorems and the CFT. We finally establish the inverse
CFT of the product of two CFTs, which is very useful in solving partial differential
equations in the Clifford algebra.

This paper is organized as follows. In section 2, we provide some basic knowl-
edge of real Clifford algebra used in the paper. Subsequently, in section 3, we define
the CFT and discuss its important properties, which are used to construct the prop-
erties of generalized convolution. Next in section 4, we introduce convolution on
Clifford algebra Cln,0 and derive its useful properties. Finally, in section 5, we
investigate the important properties of the CFT of convolution of Clifford-valued
functions and derive the inverse CFT of the product of two CFTs.

2. Preliminaries

We shall be working with real Clifford algebras. Let {e1, e2, e3, · · · , en} be
an orthonormal vector basis of the n-dimensional Euclidean vector space Rn. The
real Clifford algebra over Rn, denoted by Cln,0, has the graded 2n-dimensional
basis

{1,e1, e2, · · · , en, e12, e31,e23, · · · , in = e1e2 · · · en}. (1)

Obviously, for n = 2(mod 4), the pseudoscalar in = e1e2 · · · en anti-commutes with
each basis of the Clifford algebra while i2n = −1. The noncommutative multiplica-
tion of the basis vectors satisfies the rules eiej +ejei = 2δij (δij denotes the Dirac
distribution whose support is {i, j}).

An element of the Clifford algebra is called amultivector and has the following
form

f =
∑
A

eAfA,

where fA ∈ R, A ⊂ {1, 2, · · · , n}. For convenience, we introduce ⟨f⟩k =
∑

A fAeA
to denote the k-vector part of f (k = 0, 1, 2, · · · , n). Then

f =
k=n∑
k=0

⟨f⟩k = ⟨f⟩+ ⟨f⟩1 + ⟨f⟩2 + · · ·+ ⟨f⟩n,

where ⟨. . .⟩ = ⟨. . .⟩0.
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A multivector f ∈ Cln,0, n = 2 (mod 4) can be decomposed as a sum of its
even grade part, feven, and its odd grade part, fodd. Thus, we have

f = feven ⊕ fodd, (2)

where

feven = ⟨f⟩+ ⟨f⟩2 + · · ·+ ⟨f⟩r, r = 2s, s ∈ N, s ≤ n

2
,

fodd = ⟨f⟩1 + ⟨f⟩3 + · · ·+ ⟨f⟩r, r = 2s+ 1, s ∈ N, s <
n

2
.

The reverse f̃ of a multivector f is an anti-automorphism given by

f̃ =
k=n∑
k=0

(−1)k(k−1)/2⟨f⟩k, (3)

and hence

f̃g = g̃f̃ for arbitrary f, g ∈ Cln,0. (4)

Decomposition (2) gives the following important proposition (see [4]).

Proposition 2.1. Given a multivector f ∈ Cln,0 with n = 2(mod 4). For λ ∈ R
we have

feinλ = e−inλfodd + einλfeven, (5)

f̄ einλ = e−inλf̃odd + einλf̃even. (6)

The Clifford product of two vectors splits up into a scalar part (the inner
product) and a so-called bivector part (the wedge product):

xy = x · y + x ∧ y,

where

x · y =

n∑
i=1

xiyi and x ∧ y =

n∑
i=1

n∑
j=i+1

eiej(xiyj − xjyi).

Observe that the square of a vector x is scalar-valued and x2 = x ·x+x∧x = |x|2.
We introduce a first order vector differential operator by

∂x =
m∑
i=1

∂xiei.

This operator is the so-called Dirac operator, which may be looked upon as the
square root of the Laplacian operator in Rn : △n = ∂2

x.

Let us consider L2(Rn;Cln,0) as a left module. For f , g ∈ L2(Rn;Cln,0), an
inner product is defined by

(f, g)L2(Rn;Cln,0) =

∫
Rn

f(x)g̃(x) dnx

=
∑
A,B

eAẽB

∫
Rn

fA(x)gB(x) d
nx. (7)
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In particular, if f = g, then the scalar part of the above inner product gives the
L2-norm

∥f∥2L2(Rn;Cln,0)
=

∫
Rn

∑
A

f2
A(x) d

nx. (8)

Hereinafter, if not otherwise stated, n is assumed to be n = 2 (mod 4).

3. Clifford Fourier Transform (CFT)

3.1. Fundamental Operators. Before we define the CFT, we need to introduce
some notation, which will be used in the next section. For f ∈ L2(Rn;Cln,0), we
define the translation and modulation as follows:

τaf(x) = f(x− a), Mω0f(x) = einω0·xf(x), (9)

and their composition, which is called the time-frequency shift,

Mω0τaf(x) = einω0·xf(x− a), a,ω0 ∈ Rn. (10)

Just as in the classical case, we obtain the canonical commutation relations

τaMω0f = e−inω0·aMω0τaf. (11)

The following lemma describes the behavior of translation, modulation, and
time-frequency shift in the Clifford algebra Cln,0.

Lemma 3.1. If a,ω0 ∈ Rn and f, g ∈ L2(Rn;Cln,0), then we have the following:

(i) (f, τag)L2(Rn;Cln,0) = (τ−af, g)L2(Rn;Cln,0).

(ii) For g ∈ L2(Rn;Cln,0), n = 3 (mod 4), we obtain

(f,Mω0
g)L2(Rn;Cln,0) = (Mω0

fodd +M−ω0
feven, g)L2(Rn;Cln,0).

(iii) For f ∈ L2(Rn;Cln,0), n = 3 (mod 4), we get

(Mω0f, g)L2(Rn;Cln,0) = (f,Mω0godd +M−ω0geven)L2(Rn;Cln,0).

(iv) Under the assumption stated in (iii), we obtain

(Mω0τaf, g)L2(Rn;Cln,0) = (f, τ−aMω0godd + τ−aM−ω0geven)L2(Rn;Cln,0).

Proof. Proof of (i). It follows from (7) that

(f, τag)L2(Rn;Cln,0) =

∫
Rn

f(x) ˜g(x− a) dnx

=

∫
Rn

f(x+ a)g̃(x) dnx

=

∫
Rn

τ−af(x)g̃(x) d
nx.

Proof of (ii). By equations (7) and (9), we easily obtain

(f,Mω0g)L2(Rn;Cln,0) =

∫
Rn

f(x){einω0·xg(x)}∼ dnx
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=

∫
Rn

f(x){g(x) einω0·x}∼ dnx

=

∫
Rn

f(x) e−inω0·xg̃(x) dnx

=

∫
Rn

(fodd(x) + feven(x)) e
−inω0·xg̃(x) dnx

=

∫
Rn

(einω0·xfodd(x) + e−inω0·xfeven(x))g̃(x) d
nx

=

∫
Rn

(Mω0fodd(x) +M−ω0feven(x))g̃(x) d
nx. (12)

Here, in the second equality of (12), we have used the assumption that ensures to
interchange the position.

Proof of (iii). The proof is similar to (ii) and is left to the reader.

Proof of (iv). By simple computations, we get

(Mω0τaf, g)L2(Rn;Cln,0)

=

∫
Rn

einω0·xf(x− a)g̃(x) dnx

=

∫
Rn

f(y)(einω0·(y+a)g̃odd(y + a) + einω0·(a+y)g̃even(y + a)) dny

=

∫
Rn

f(y){godd(y + a)e−inω0·(y+a}∼ dny

+

∫
Rn

f(y){geven(y + a)e−inω0·(y+a)}∼ dny

=

∫
Rn

f(y){einω0·(y+a)godd(y + a)}∼ dny

+

∫
Rn

f(y){e−inω0·(y+a)geven(y + a)}∼ dny

=

∫
Rn

f(y)({τ−aMω0godd(y)}∼ + {τ−aM−ω0geven(y)}∼) dny. (13)

Here, in the second and third equalities of (13), we have used the assumption and
properties of the decomposition of multivector g. �

3.2. Definition of CFT. The Cln,0 Clifford Fourier transform (CFT) is a gener-
alization of the FT in Clifford algebra obtained by replacing the FT kernel with
the Clifford Fourier kernel. For detailed discussions of the properties of the CFT
and their proofs, see, e.g., [4, 9].

Definition 3.2. The CFT of f ∈ L2(Rn;Cln,0) is the function F{f} ∈ L2(Rn;Cln,0)
given by

F{f}(ω) = f̂(ω) =

∫
Rn

f(x) e−inω·x dnx, (14)

with x,ω ∈ Rn.
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Decomposing the multivector f into feven and fodd, equation (14) can be
rewritten as

F{f}(ω) =

∫
Rn

einω·xfodd(x) d
nx+

∫
Rn

e−inω·xfeven(x) d
nx. (15)

The Clifford exponential e−inω·x is often called the Clifford Fourier kernel.
For dimension n = 3 (mod 4), this kernel commutes with all elements of the Clif-
ford algebra Cln,0, but for n = 2 (mod 4) it does not. Notice that the different
commutation rules of the pseudoscalar in play a crucial rule in establishing the
properties of the convolution theorems of the CFT.

In the following, we collect the fundamental properties of the CFT.

Lemma 3.3. If f ∈ L2(Rn;Cln,0), then the following results hold:

F{τaf}(ω) = F{f}(ω) e−inω·a

= einω·aF{fodd}(ω) + e−inω·a F{feven}(ω).

F{Mω0f}(ω) = F{fodd}(ω0 − ω) + F{feven}(ω + ω0).

F{Mω0τaf}(ω) = e−in(ω0−ω)·aF{fodd}(ω0 − ω)

+ e−in(ω0+ω)·aF{feven}(ω + ω0).

Theorem 3.4. Suppose that F{f} ∈ L2(Rn;Cln,0). Then F{f} is invertible and
its inverse is calculated by the formula

F−1[F{f}(ω)](x) = f(x) =
1

(2π)n

∫
Rn

F{f}(ω) einω·x dnω. (16)

Proof. Substituting (14) into (16) yields

F−1[F{f}ω](x) =
1

(2π)n

∫
Rn

∫
Rn

f(y) e−inω·y dny einω·x dnω

=

∫
Rn

f(y)
1

(2π)n

∫
Rn

ein(x−y)·ω dnω dny

=

∫
Rn

f(y) δ(x − y) dny

= f(x).

Equation (16) is called the Clifford Fourier integral theorem. It describes how to
get from the transform F{f} back to the original function f . �

It is straightforward to see that the inverse CFT and the CFT share the same
properties. One may check the properties of the inverse CFT analogous to those in
Lemma 3.3. For an example,

F−1[F{τaf}(ω)](x)

=
1

(2π)n

∫
Rn

F{τaf}(ω) einω·x dnω
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=
1

(2π)n

∫
Rn

(
einω·aF{fodd}(ω) + e−inω·a F{feven}(ω)

)
einω·x dnω

=
1

(2π)n

∫
Rn

einω·aF{fodd}(ω) einω·x dnω

+
1

(2π)n

∫
Rn

e−inω·a F{feven}(ω) einω·x dnω

= einω·a F−1[F{fodd}(ω)](x) + e−inω·a F−1[F{feven}(ω)](x).

4. Clifford Convolution And Its Properties

In this section, we introduce the Clifford convolution and establish its im-
portant properties. Ebling and Scheuermann [9] distinguish between right and left
Clifford convolutions due to the non-commutative property of the Clifford multipli-
cation. Here, we only consider one kind of Clifford convolution. Let us first define
the convolution of two Clifford-valued functions.

Definition 4.1. The Clifford convolution f ⋆ g of f and g belong to L2(Rn;Cln,0)
is defined by

(f ⋆ g)(x) =

∫
Rn

f(y)g(x− y) dny

=

∫
Rn

∑
A,B

eAeBfA(y)gB(x− y) dny. (17)

Since, in general, the basis vectors eAeB ̸= eBeA, the Clifford convolution
is not commutative, i.e., (f ⋆ g) ̸= (g ⋆ f). It is clear that the Clifford convolution
of f and g is a binary operation, which combines shifting, geometric product and
integration.

If we perform the change of variables z = x−y and relabel z back to y, then
equation (17) can be written as

(f ⋆ g)(x) =

∫
Rn

f(x− y)g(y) dny. (18)

Lemma 4.2 (Linearity). Let f , g, h ∈ L2(Rn;Cln,0) and α, β ∈ Cln,0. Then, we
have

(αf + βg) ⋆ h = α(f ⋆ h) + β(g ⋆ h).

h ⋆ (fα+ gβ) = (h ⋆ f)α+ (h ⋆ g)β. (19)

Lemma 4.3 (Shifting). Let f ∈ L2(Rn;Cln,0). Then we have

τa(f ⋆ g)(x) = (f ⋆ τag)(x) = (τaf ⋆ g)(x), (20)

τa(g ⋆ f)(x) = (g ⋆ τaf)(x) = (τag ⋆ f)(x), a ∈ Rn. (21)
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Proof. We only prove (20), the proof of (21) being similar. A direct calculation
yields

τa(f ⋆ g)(x) =

∫
Rn

f(y)g(x− y − a) dny

=

∫
Rn

f(y)τag(x− y) dny

= (f ⋆ τag)(x).

On the other hand, by the change of variables, z = x− y − a, we easily get

τa(f ⋆ g)(x) =

∫
Rn

f(x− z − a)g(z) dnz

=

∫
Rn

τaf(x− z)g(z) dnz

= (τaf ⋆ g)(x).

This completes the proof. �

Equations (20) and (21) tell us that the Clifford convolutions commute with
translations.

Remark 4.4. Due to the noncommutativity of the Clifford convolution, it is easy
to see that (f ⋆ τag)(x) ̸= (τag ⋆ f) and (τaf ⋆ g)(x) ̸= (g ⋆ τaf) in general.

Lemma 4.5 (Reversion). Let f , g ∈ L2(Rn;Cln,0). Then, we have

(̃f ⋆ g)(x) = (g̃ ⋆ f̃)(x). (22)

Proof. A straightforward computation gives

(̃f ⋆ g)(x) =

∫
Rn

{f(y)g(x− y)}∼ dny

(4)
=

∫
Rn

g̃(x− y)f̃(y) dny

=

∫
Rn

g̃(z)f̃(x− z) dnz

= (g̃ ⋆ f̃)(x),

which was to be proved. �

5. Main Results

In this section, we investigate some important properties of the CFT of con-
volution of two Clifford-valued functions. We find that most of these properties
are extensions of the classical case. The following theorem gives the relationship
between the reversion of Clifford convolution and its CFT.
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Theorem 5.1. Let f, g ∈ L2(Rn;Cln,0). Denote by godd (resp. geven), the odd
(resp. even) grade part of g. Then

F{f̃ ⋆ g}(ω) = ( ˜F{godd}(−ω) + ˜F{geven}(ω)) ˜F{fodd}(ω)

+ ( ˜F{godd}(ω) + ˜F{geven}(−ω)) ˜F{feven}(−ω). (23)

Proof. An application of the CFT definition combined with the Clifford convolution
property of Lemma 4.5 gives

F{f̃ ⋆ g}(ω) = F{g̃ ⋆ f̃}(ω)

(14)
=

∫
Rn

(g̃ ⋆ f̃) e−inω·x dnx

(17)
=

∫
Rn

∫
Rn

g̃(y) ˜f(x− y) dny e−inω·x dnx

=

∫
Rn

g̃(y)

[∫
Rn

˜f(x− y)e−inω·x dnx

]
dny

=

∫
Rn

g̃(y)

[∫
Rn

f̃(z)e−inω·(y+z) dnz

]
dny,

where the last equality follows from the change of variables z = x−y. By splitting
f into its even grade and odd grade parts, the above identity may be rewritten as

F{f̃ ⋆ g}(ω)

=

∫
Rn

g̃(y)

[∫
Rn

einω·y{einω·zfodd(z)}∼ dnz

+

∫
Rn

e−inω·y{einω·zfeven(z)}∼ dnz

]
dny

=

∫
Rn

g̃(y)

[∫
Rn

einω·y{fodd(z)e−inω·z}∼ dnz

+

∫
Rn

e−inω·y{feven(z)einω·z}∼ dnz

]
dny

=

∫
Rn

g̃(y) einω·y dny ˜F{fodd}(ω) +

∫
Rn

g̃(y) e−inω·y dny ˜F{feven}(−ω).

Again we decompose the multivector g into its even grade and odd grade parts to
get

F{f̃ ⋆ g}(ω)

=

∫
Rn

(g̃odd(y) + g̃even(y)) e
inω·y dny ˜F{fodd}(ω)

+

∫
Rn

(g̃odd(y) + g̃even(y)) e
−inω·y dny ˜F{feven}(−ω)

=

[∫
Rn

{godd(y)einω·y}∼ dny +

∫
Rn

{geven(y)e−inω·y}∼ dny

]
˜F{fodd}(ω)
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+

[∫
Rn

{godd(y)e−inω·y}∼ dny +

∫
Rn

{geven(y)einω·y}∼ dny

]
˜F{feven}(−ω)

= ( ˜F{godd}(−ω) + ˜F{geven}(ω)) ˜F{fodd}(ω)

+ ( ˜F{godd}(ω) + ˜F{geven}(−ω)) ˜F{feven}(−ω).

This concludes the proof. �

As an immediate consequence of Theorem 5.1, we get the following corollaries.

Corollary 5.2. Let g be as above. For f ∈ L2(Rn;Cln,0) with n = 3 (mod 4),
equation (23) reduces to

F{f̃ ⋆ g}(ω) = ( ˜F{godd}(ω) + ˜F{geven}(−ω)) ˜F{f}(−ω). (24)

Corollary 5.3. If f , g ∈ L2(Rn;Cln,0) with n = 3 (mod 4), then equation (23)
becomes

F{f̃ ⋆ g}(ω) = ˜F{g}(ω) ˜F{fodd}(ω) + ˜F{g}(−ω) ˜F{feven}(−ω). (25)

Proof. An alternative proof of Corollary 5.2 uses [4, (4.59) of Theorem 4.33], i.e.,

F{f̃ ⋆ g}(ω)

= F{g̃}(ω)F{f̃}(ω)

=

[∫
Rn

g̃(y) e−inω·y dny

] [∫
Rn

f̃(x) e−inω·x dnx

]
=

[∫
Rn

{godd(y) e−inω·y}∼ dny +

∫
Rn

{geven(y) einω·y}∼ dny

]
×
[∫

Rn

{g(x) einω·x}∼ dnx

]
= ( ˜F{godd}(ω) + ˜F{geven}(−ω)).

It is worth noting here that a similar argument cannot be applied to prove Corollary
5.3. Its proof follows directly from Theorem 5.1. �

We next establish the shift property of the convolution theorem of the CFT.
The proof of this property uses the shift property of the CFT and the decomposition
of a multivector f .

Theorem 5.4. Let f , g ∈ L2(Rn;Cln,0). Then

F{τaf ⋆ g}(ω) = F{f ⋆ τag}(ω) = F{f}(−ω) einω·aF{godd}(ω)

+ F{f}(ω) e−inω·aF{geven}(ω). (26)

Proof. By the definition of CFT, we easily get

F{τaf ⋆ g}(ω)

(14)
=

∫
Rn

∫
Rn

f(y − a) g(x− y) dny e−inω·x dnx
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=

∫
Rn

f(y − a)

[∫
Rn

g(x− y) e−inω·x dnx

]
dny

=

∫
Rn

f(y − a)

[∫
Rn

g(z)e−inω·(y+z) dnz

]
dny

=

∫
Rn

f(y − a)

[∫
Rn

einω·ygodd(z) +

∫
Rn

e−inω·ygeven(z)

]
e−inω·z dnz dny

=

∫
Rn

f(y − a) einω·y dnyF{godd}(ω)

+

∫
Rn

f(y − a) e−inω·y dnyF{geven}(ω)

= F{f}(−ω) einω·aF{godd}(ω) + F{f}(ω) e−inω·aF{geven}(ω).

For the third equality, we have used the substitution of variable z = x − y. For
the last equality, we have used the shift property of the CFT. This completes the
proof of (26). �

We have the following simple corollary to Theorem 5.4.

Corollary 5.5. When g ∈ L2(Rn;Cln,0) with n = 3 (mod 4), Theorem 5.4 takes
the form

F{τaf ⋆ g}(ω) = F{f}(ω) e−inω·aF{g}(ω). (27)

Or, equivalently,

F{τaf ⋆ g}(ω) = (einω·aF{fodd}(ω) + e−inω·a F{feven}(ω))F{g}(ω). (28)

Proof. Using a similar argument as the proof of equation (24), we immediately get

F{τaf ⋆ g}(ω)

= F{τaf}(ω)F{g}(ω)

= F{f}(ω) e−inω·aF{g}(ω)

= (einω·aF{fodd}(ω) + e−inω·a F{feven}(ω))F{g}(ω), (29)

where, in the last line of (29), we have used the first equation in Lemma 3.3. �

Now we establish the modulation property of the convolution theorem of the
CFT.

Theorem 5.6. Let f , g ∈ L2(Rn;Cln,0). Then

F{f ⋆Mω0g}(ω) = F{f}(−ω)F{godd}(ω + ω0)

+ F{f}(ω)F{geven}(ω − ω0), (30)

and

F{Mω0f ⋆ g}(ω) = (F{fodd}(ω0 − ω) + F{feven}(−ω − ω0))F{godd}(ω)

+ (F{fodd}(ω + ω0) + F{feven}(ω − ω0))F{geven}(ω). (31)
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Proof. We only sketch the proof of (30), the other being similar. A direct compu-
tation gives

F{f ⋆Mω0
g}(ω)

(14)
=

∫
Rn

∫
Rn

f(y) einω0·(x−y)g(x− y) dny e−inω·x dnx

=

∫
Rn

f(y)

[∫
Rn

einω0·(x−y)g(x− y) e−inω·x dnx

]
dny

=

∫
Rn

f(y)

[∫
Rn

einω0·zg(z) e−inω·(y+z) dnz

]
dny

=

∫
Rn

f(y)

[∫
Rn

einω0·zg(z) e−inω·z e−inω·y dnz

]
dny

=

∫
Rn

f(y)

[∫
Rn

einω·ygodd(z) e
−in(ω+ω0)·z dnz

+

∫
Rn

e−inω·ygeven(z) e
−in(ω−ω0)·z dnz

]
dny

=

∫
Rn

f(y) einω·y dnyF{godd}(ω + ω0) +

∫
Rn

e−inω·y dnyF{geven}(ω − ω0)

= F{f}(−ω)F{godd}(ω + ω0) + F{f}(ω)F{geven}(ω − ω0),

which was to be proved. �

Remark 5.7. Note that if g ∈ L2(Rn;Cln,0) with n = 3 (mod 4), then Theorem
5.6 has the form

F{f ⋆Mω0g) = F{f}(ω)F{g}(ω − ω0),

which is of the same form as the modulation property of the convolution of the FT
(see [11]).

We further establish the time-frequency shift of the convolution theorem of
the CFT.

Theorem 5.8. Let f , g ∈ L2(Rn;Cln,0). Then

F{Mω0τaf ⋆ g}(ω) = (einω·aF{fodd}(ω0 − ω)

+ e−inω·aF{feven}(−ω − ω0))F{godd}(ω) + (einω·aF{fodd}(ω + ω0)

= +e−inω·aF{feven}(ω − ω0))F{godd}(ω).

Proof. Applying equations (10) and (14), we immediately obtain

F{Mω0τaf ⋆ g}(ω)

=

∫
Rn

(Mω0τaf ⋆ g) e−inω·x dnx

=

∫
Rn

∫
Rn

einω0·yf(y − a) g(x− y) dny e−inω·x dnx
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=

∫
Rn

einω0·yf(y − a)

[∫
Rn

g(x− y) e−inω·x dnx

]
dny

=

∫
Rn

einω0·yf(y − a)

[∫
Rn

g(z) e−inω·(y+z) dnz

]
dny

=

∫
Rn

einω0·yf(y − a)

[∫
Rn

g(z) e−inω·y e−inω·z dnz

]
dny.

We decompose f and g into fodd + feven and godd + geven, respectively. Then, we
obtain

F{Mω0τaf ⋆ g}(ω)

=

∫
Rn

einω0·yf(y − a)

[∫
Rn

einω·ygodd(z) e
−inω·z dnz

+

∫
Rn

e−inω·ygeven(z) e
−inω·z dnz

]
dny

=

[∫
Rn

fodd(y − a) e−in(ω0−ω)·y dny

+

∫
Rn

feven(y − a) e−in(−ω−ω0)·y dny

]
F{godd}(ω)

+

[∫
Rn

fodd(y − a) e−in(ω+ω0)·y dny

+

∫
Rn

feven(y − a) e−in(ω−ω0)·y dny

]
F{geven}(ω).

which was to be proved. �

Corollary 5.9. If g ∈ L2(Rn;Cln,0) with n = 3 (mod 4). Then, Theorem 5.8
reduces to

F{Mω0τaf ⋆ g}(ω) = (ein(ω0−ω)·aF{fodd}(ω + ω0)

+ e−in(ω−ω0)·aF{feven}(ω − ω0))F{g}(ω). (32)

If f ∈ L2(Rn;Cln,0) with n = 3 (mod 4), then

F{Mω0τaf ⋆ g}(ω) = (ein(ω0+ω)·aF{f}(−ω − ω0)F{godd}(ω)

+ e−in(ω−ω0)·aF{f}(ω − ω0))F{geven}(ω). (33)

Theorem 5.10. Let f , g ∈ L2(Rn;Cln,0). Then

F{f}(−ω − ω0) e
in(ω−ω0)·aF{godd}(ω)

+ F{f}(ω − ω0) e
−in(ω+ω0)·aF{geven}(ω).

Proof. By the definition of the CFT (14) and Clifford convolution (17), we have

F{f ⋆ τaMω0g}(ω)
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(14)
=

∫
Rn

∫
Rn

f(y) einω0·(y−a) g(x− y − a) dny e−inω·x dnx

=

∫
Rn

f(y) einω0·(y−a)

[∫
Rn

g(x− y − a) e−inω·xdnx

]
dny

=

∫
Rn

f(y) einω0·(y−a)

[∫
Rn

g(z − a) e−inω·(y+z) dnz

]
dny

=

∫
Rn

f(y) einω0·(y−a)

[∫
Rn

g(z − a) e−inω·y e−inω·z dnz

]
dny

=

∫
Rn

f(y) einω0·(y−a)

[∫
Rn

einω·ygodd(z − a) e−inω·z dnz

+

∫
Rn

e−inω·ygeven(z − a) e−inω·z dnz

]
dny

=

∫
Rn

f(y) e−in(−ω−ω0)·y dny ein(ω−ω0)·aF{godd}(ω)

+

∫
Rn

f(y) e−in(ω−ω0)·y dnye−in(ω+ω0)·aF{geven}(ω)

= F{f}(−ω − ω0) e
in(ω−ω0)·aF{godd}(ω)

+ F{f}(ω − ω0) e
−in(ω+ω0)·aF{geven}(ω),

which was to be proved. �

Corollary 5.11. It is straightforward to check that for g ∈ L2(Rn;Cln,0) with
n = 3 (mod 4), Theorem 5.8 reduces to

F{f ⋆ τaMω0g}(ω) = F{f}(ω − ω0) e
−in(ω+ω0)·aF{g}(ω).

By applying the inverse CFT we get the following result, which is very im-
portant for solving partial differential equations in Clifford algebra.

Theorem 5.12. Let f , g ∈ L2(Rn;Cln,0). Then

F−1 [F{f}(ω)F{g}(ω)](x) = (f ⋆ godd)(−x) + (f ⋆ geven)(x). (34)

Or, equivalently,

F{f}(ω)F{g}(ω) = F{(f ⋆ godd)(−·)}(ω) + F{f ⋆ geven}(ω).
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Proof. According to the inverse CFT, the left hand-side of (34) leads to

F−1[F{f}(ω)F{g}(ω)](x)

(16)
=

1

(2π)n

∫
Rn

∫
Rn

F{f}(ω) g(y) e−inω·y dny einω·x dnω

=
1

(2π)n

∫
Rn

∫
Rn

F{f}(ω) (godd(y) + geven(y)) e
inω·(x−y) dnω dny

=
1

(2π)n

∫
Rn

∫
Rn

F{f}(ω) einω·(y−x) dnω godd(y) d
ny

+
1

(2π)n

∫
Rn

∫
Rn

F{f}(ω) einω·(x−y) dnω geven(y) d
ny

=

∫
Rn

f(y − x) godd(y) d
ny +

∫
Rn

f(x− y) geven(y) d
ny

(18)
= (f ⋆ godd)(−x) + (f ⋆ geven)(x),

which finishes the proof. �

The following corollary is a special case of Theorem 5.12.

Corollary 5.13. Let f ∈ L2(Rn;Cln,0). If we assume that g ∈ L2(Rn;Cln,0) for
n = 3 (mod 4), then

F{f}(ω)F{g}(ω) = F{f ⋆ g}(ω). (35)

Remark 5.14. According to (2), formula (35) also holds if only if g ∈ L2(Rn;Cln,0)
is an even grade multivector.
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