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Abstract. We introduce the non-braid graph of a group G, denoted by

ζ(G), as a graph with vertex set G \B(G), where B(G) is the braider of G,

defined as the set {x ∈ G | (∀y ∈ G)xyx = yxy}, and two distinct vertices x

and y are joined by an edge if and only if xyx ̸= yxy. In this paper partic-

ularly we give the independent number, the vertex chromatic number,

the clique number, and the minimum vertex cover of non-braid graph of

dihedral group Dn.
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1. INTRODUCTION

Recently, there have been some interesting studies on algebraic graphs since
what had been done by Cayley in 1878 [2]. There are many ways to link algebraic
structures to graphs and vice versa. One of those works was done by Abdollahi et.al
[1] in 2006 on non-commuting graph of a group. The non-commuting graph given
by Abdollahi, et all is defined as a graph with the set of all non-center elements as
the vertex set, and two different vertices are connected by an edge if and only if
they are not commuting. Particularly, in 2008, Talebi [6] gave some properties of
non-commuting graphs of dihedral groups, including independent numbers, vertex
chromatic numbers, clique numbers, and minimum vertex cover. Based on the
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work of Abdollahi et al, e construct a set center-like called braider of the group for
any group. Moreover, we define a non-braid graph of any group using its braider.
Motivated by the work of Talebi [6] and Hubbi, et all [9], particularly we investigate
non-braid graph for dihedral group.

Throughout this paper, by graph, we mean a finite undirected simple graph.
Moreover, symbols V (ζ) and E(ζ) denote the vertex set and the edge set for any
graph ζ, respectively.

2. The Non-Braid Graph of Dihedral Group Dn

First, let us recall some definitions used in this section. Let G be a group.
The braider of G, denoted B(G) is the set B(G) = {x ∈ G|(∀y ∈ G)xyx = yxy}.
We define the non-braid graph ζG of G as a simple graph with G\B(G) as the
vertex set and any two distinct vertices x, y ∈ G\B(G) are adjacent if and only if
xyx ̸= yxy. The definition of non braid graph of ring can be seen in [8]

Let us recall also that a dihedral group Dn is a group of the form

Dn = ⟨r, s|rn = s2 = (sr)2 = I⟩

with I as the identity element of Dn. For this group, we have the following basic
property on its braider.

Theorem 2.1. For any natural number n ≥ 3, B(Dn) = ∅.

Proof. Note that if k ≡ p1 (mod n) then rk = rp1 , also if k ≡ p2 (mod 2)
then sk = sp2 . Furthermore, since B(G) = {x ∈ G| (∀y ∈ G)xyx = yxy} and
s2 = rn = I, rs = sr−1 ⇐⇒ sr = r−1s then we can consider the proofing with 3
cases.

(1) If x = I then for all y ∈ Dn, xyx = yxy, then IyI = yIy. On the other
hand, we can see if y = r, then implies IyI = r = yIy = r2. There is a
contradiction, since r ̸= r2.

(2) If x = rk, with 1 ≤ k ≤ n−1. Then by assumption, we have xyx = rkyrk =
yrky, ∀y ∈ Dn. Let y = I, then r2k = rk ⇐⇒ rk = I. Thus, k ≡ 0
(mod n). There is a contradiction, since k ̸≡ 0 (mod n), for 1 ≤ k ≤ n−1.

(3) If x = srk, with 1 ≤ k ≤ n. Then by assumption, we have xyx = srkysrk =
ysrky, ∀y ∈ Dn. Let y = I, then srksrk = srk ⇐⇒ srkr−ks = srk ⇐⇒
s2 = I = srk. Hence, there is a contradiction, since srk ̸= I, for 1 ≤ k ≤ n.

And we can conclude there is no x ∈ Dn such that xyx = yxy, ∀y ∈ Dn. Hence
B(Dn) = ∅. □
As a direct consequence of Theorem 2.1, we obtain Dn\B(Dn) = Dn.

Below are some examples of graph non-braid of dihedral groups.

Example 2.2. (1) Let D5 =
{
I, r, r2, r3, r4, s, sr, sr2, sr3, sr4

}
, ζ(D5) is a com-

plete graph.
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Figure 1. The Non-Braid Graph of Dihedral Group D5

(2) Let D6 = ⟨s, r|s2 = r6 = I, rs = sr−1 ⇐⇒ sr = r−1s⟩
Since
(i) ssr2s = sr2ssr2 = sr4

(ii) ssr4s = sr4ssr4 = sr2

(iii) srsr3sr = sr3srsr3 = sr5

(iv) srsr5sr = sr5srsr5 = sr3

(v) sr2sr4sr2 = sr4sr2sr4 = s
(vi) sr3sr5sr3 = sr5sr3sr5 = sr.
Then, we have the non-braid graph of D6 as given in Figure 2.

Figure 2. The Non-Braid Graph of Dihedral Group D6
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In the following results, we present some properties of vertex adjacency of
the non-braid graph of the dihedral group.

Theorem 2.3. Vertex I of ζ(Dn) is adjacent to every vertex in ζ(Dn).

Proof. Let x ̸= I ∈ V (ζ(Dn)) and suppose that x and I are not adjacent.
According to Theorem 2.1 we just need to check for y = rk, with 1 ≤ k ≤ n − 1
and y = srk, with 1 ≤ k ≤ n. Hence, it considers two cases as follows.

(i) Case 1: If y = rk, with 1 ≤ k ≤ n− 1. By assumption, we have xyx = yxy ⇒
IrkI = rkIrk ⇐⇒ rk = r2k ⇐⇒ I = rk. Hence, there is a contradiction
since rk ̸= I, for 1 ≤ k ≤ n− 1

(ii) Case 2: If y = srk, with 1 ≤ k ≤ n. By assumption, we have xyx = yxy ⇒
IsrkI = srkIsrk ⇐⇒ srk = srksrk ⇐⇒ srk = srkr(−k)s ⇐⇒ srk = I.
Hence, there is a contradiction since srk ̸= I, for 1 ≤ k ≤ n

□

Theorem 2.4. All vertices in ⟨r⟩ ⊆ V (ζ(Dn)) are adjacent to every vertex in
ζ(Dn).

Proof. Suppose there exist x ∈ V (ζ(Dn)) and y ∈ ⟨r⟩ such that x and y not
adjacent, so xyx = yxy. By Theorem 2.1, x and y respectively can be expressed as

x = skrl, 0 ≤ k ≤ 1, 0 ≤ l ≤ n− 1

y = rm, 0 ≤ m ≤ n− 1.

This problem can separated into 2 cases:

(i) Case 1: If k = 0.
Then, xyx = rlrmrl = r2l+m and yxy = rmrlrm = r2m+l, so that xyx =
yxy ⇐⇒ rl = rm. On the other hand, it is known that 0 ≤ l ≤ n − 1 and
0 ≤ m ≤ n−1. Therefore, xyx = yxy ⇐⇒ rl = rm ⇐⇒ l = m ⇐⇒ x = y.
This contradicts the statement that vertex x and y are adjacent. We conclude
that x ̸= y.

(ii) Case 2: If k = 1.
Then, xyx = srlrmsrl = ssr−l−m+l = rn−m and yxy = rmsrlrm = sr−m+l+m =
srl, so that xyx = yxy ⇐⇒ rn−m = srl. This implies a contradiction.
Therefore, vertices of ⟨r⟩ ⊆ V (ζ(Dn)) are adjacent to every vertex of ζ(Dn).

□

Theorem 2.5. Let ζ(Dn) be a non-braid graph of dihedral group with n ̸= 0(mod3).
Then every vertex of P = {sri|i = 0, 1, 2, 3, . . . , n − 1} ⊆ V (ζ(Dn)) is adjacent to
every vertex in V (ζ(Dn)).

Proof. Suppose there exist x ∈ V (ζ(Dn)), y ∈ P such that x and y are not
adjacent. Then, x and y satisfy x = skrl, 0 ≤ k ≤ 1, 0 ≤ l ≤ n − 1 and y = srm,
and xyx = yxy. We consider two cases:
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(i) Case 1: If k = 0
We have

rlsrmrl = srmrlsrm ⇐⇒ srm = r−l = rn−l.

A contradiction.
(ii) Case 2: If k = 1

We have

srlsrmsrl = srmsrlsrm ⇐⇒ rm−lsrl = rl−msrm

⇐⇒ sr2l−m = sr2m−l ⇐⇒ r3(l−m) = I

as l ̸= m and n ̸= 0(mod3). Thus r3(l−m) ̸= I, contradiction with r3(l−m) = I.
Hence, we have a contradiction.

So far we have proven that if ζ(Dn) is the non-braid graph of dihedral group with
n ̸= 0 (mod3), then each vertex in P = {sri|i = 0, 1, 2, 3, . . . , n− 1} ⊆ V (ζ(Dn)) is
adjacent to all vertices in V (ζ(Dn)). □

Corollary 2.6. Let ζ(Dn) be a non-braid graph of dihedral group ζ(Dn) with n ̸=
0 (mod3). Then ζ(Dn) is a complete graph.

Proof. We know that |Dn| = 2n and by Theorem 2.3, Theorem 2.4, and Theo-
rem 2.5, all vertices of ζ(Dn) are adjacent whenever n ̸= 0(mod3). Consequently,
ζ(Dn) = K2n is a complete graph. □

Theorem 2.7. Let ζ(Dn=3m) be a non-braid graph of dihedral group with n =
0(mod3). Then every two vertices in Hi = {sri, sri+m, sri+2m} where i = 0, 1, 2, . . . , n

3−
1 are not adjacent.

Proof. Let x, y ∈ Hi. Then x and y can be expressed as:

x = sri+p1m and y = sri+p2m.

Furthermore,

xyx = sri+p1msri+p2msri+p1m = rp2m−p1msri+p1m = sri+2p1m−p2m

= sri+2(p1−p2)m = sri+2(n−(p1−p2))m = sri+2(n+(p2−p1)m = sri+2(p2−p1)m

= sri+2p2m−p1m = rp1m−p2msri+p2m = s2ri−irp1m−p2msri+p2m

= sri+p2msri+p1msri+p2m = yxy.

□

Corollary 2.8. Let ζ(Dn=3m) be a non-braid graph of dihedral group with n =
0(mod3) and Hi = {sri, sri+m, sri+2m} where i = 0, 1, 2, . . . , n

3 −1. If H = {Hi|i =
0, 1, 2, . . . , n

3 −1} and |H| > 1 then every vertex in Hi is adjacent with every vertex
in Hj with i ̸= j.
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Proof. Suppose x ∈ Hi and y ∈ Hj with i ̸= j such that xyx = yxy. Since x ∈ Hi

and y ∈ Hj then x and y can be expressed as:

x = sri+p1m and y = srj+p2m.

Then we have

xyx = sri+p1msrj+p2msri+p1m = r(j−i)+(p2−p1)msri+p1m = sr(2i−j)+(2p1−p2)m

yxy = srj+p2msri+p1msrj+p2m = r(i−j)+(p1−p2)msrj+p2m = sr(2j−i)+(2p2−p1)m

xyx = yxy ⇐⇒ sr(2i−j)+(2p1−p2)m = sr(2j−i)+(2p2−p1)m ⇐⇒ r3(i+p1m) = r3(j+p2m).

Since
⋂
Hi = ∅, i = 0, 1, 2, . . . , n

3 − 1 then r3(j+p2m) cannot be expressed as

r3(i+p2m). Since p2 is an arbitary number 0 ≤ p2 ≤ 2 then equality r3(i+p1m) =
r3(j+p2m) cannot happen. This means that the supposition is failed. Hence, it is
proved that each vertices in Hi and Hj are adjacent for i ̸= j. □

In the following remaining discussion, we will give some results on the inde-
pendent number, vertex chromatic number, clique number, and minimum vertex
cover of non-braid graph of dihedral group

Recall that, for any graph ζ, subgraph H of ζ is called induced subgraph
if x, y ∈ V (H) and x and y are adjacent in ζ then x and y are adjacent in H.
Furthermore, ifX ⊆ V (ζ) then we defined the subgraph induced byX as an induced
subgraph H with V (H) = X. A subset X ⊆ V (ζ) is called an independent set if
there is no edge between any two vertices in X. Equivalently, a subset X ⊆ V (ζ)
is called an independent set if the subgraph induced by X has no edges. The
cardinality of a maximum independent set in a graph ζ is called the independent
number of ζ and denoted α(ζ).

Theorem 2.9. Let ζ(Dn) be non-braid graph of dihedral group Dn. If n ̸= 0(mod3)
then α(ζ(Dn)) = 1.

Proof. Let ζ(Dn) be a non-braid graph of dihedral group Dn. According to
Corollary 2.6, if n ̸= 0(mod3), then every two vertices in ζ(Dn) are adjacent. Thus
α(ζ(Dn)) = 1. □

Theorem 2.10. Let ζ(Dn) be a non-braid graph of dihedral group Dn. Then
α(ζ(Dn)) is 1 or 3.

Proof. Let ζ(Dn) be a non-braid graph of dihedral group Dn. If n ̸= 0(mod3),
then by Theorem 2.9 α(ζ(Dn)) = 1. If n = 3m for some positive integer m, then by
Theorem 2.7 every two vertices in Hi = {sri, sri+m, sri+2m}, i = 0, 1, 2, . . . , n

3 − 1
are not adjacent. Furthermore, according to Theorem 2.4 every vertices in ⟨r⟩ ⊆
V (ζ(Dn)) are adjacent to each vertices in ζ(Dn). However, by Corollary 2.8 every
vertices inHi adjacent to every vertices inHj for i ̸= j and ⟨r⟩∪Hi = V (ζ(Dn)), i =
0, 1, 2, . . . , n

3 − 1. Thus, the maximum number of vertices that can be selected to
be the induced subgraph has no edges is 3, that is α(ζ(Dn)) = 3. □
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Recall that the vertex chromatic number of graph ζ, denoted by χ(ζ), is the
minimum positive integer n such that we can assign n colors to the vertices of ζ in
such a way so that no adjacent vertices are having the same color. The following
examples give us a clue about the vertex chromatic number of the non-braid graph
of dihedral group.

(1) Vertex Chromatic Number of ζ(D3)
The vertex coloring on ζ(D3) is given in Figure 3 as follows:

Figure 3. The vertex coloring on ζ(D3)

According to Figure 3, the vertex chromatic number of ζ(D3) is 4 i.e
χ(ζ(D3)) = 4.

(2) Vertex Chromatic Number ζ(D4)
Since ζ(D4) is a complete graph K8, then its vertex chromatic number is
8, i.e χ(ζ(D4)) = 8.

(3) Vertex Chromatic Number ζ(D5)
Since ζ(D5) is a complete graph K10, then the vertex chromatic number is
10, i.e χ(ζ(D5)) = 10.

(4) Vertex Chromatic Number ζ(D6)
The vertex coloring on ζ(D6) is given in the Figure 4 as follows.
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Figure 4. The vertex coloring on ζ(D6)

According to Figure 4, we obtain the vertex chromatic number on ζ(D6)
is 8, i.e χ(ζ(D6)) = 8.

Below are given some vertex chromatic numbers of ζ(Dn).

Table 1. The Vertex Chromatic Numbers of ζ(Dn) for several n
ζ(Dn) χ(ζ(Dn))
D3 4
D4 8
D5 10
D6 8
D7 14
D8 16
D9 12

From Table 1, we prove the following theorem.

Theorem 2.11. Let ζ(Dn) be a non-braid graph of dihedral group Dn. If n =
0(mod3), then the vertex chromatic number of dihedral group Dn is χ(ζ(Dn)) =
n+ n

3 . If n ̸= 0(mod3), then the vertex chromatic number of dihedral group Dn is
χ(ζ(Dn)) = 2n.

Proof. Let Dn be the dihedral group

Dn = {I, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}, s2 = I, rn = I, rs = sr−1

⇐⇒ r−1s = sr.
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(i) Let n = 3m for some natural number m. Then,

D3m = {I, r, r2, . . . , r3m−1, s, sr, sr2, . . . , sr3m−1}.
Let V = ⟨r⟩ = {I, r, r2, . . . , r3m−1}. According to Theorem 2.5, every vertex
in V is adjacent to each vertex in ζ(Dn). Thus the minimum number of colors
to color the vertices in V is n. Let :
P1 = {s, srm, sr2m}
P2 = {sr, srm+1, sr2m+1}
P2 = {sr2, srm+2, sr2m+2}
...
Pk = {srk−1, srm+k−1, sr2m+k−1}.
Let color p1 represents the vertex color of s, srm, sr2m ∈ P1. Color p2 repre-
sents the vertex color of sr, srm+1, sr2m+1 ∈ P2,. . . . And lastly we have color
pk represents the vertex color of srk−1, srm+k−1, sr2m+k−1 ∈ Pk.
Furthermore, pi and pj are different color if and only if every vertex in Pi are
adjacent with every vertex in Pj . On the other hand, by Corollary 2.8 vertex
in Pi adjacent with vertex in Pj if i ̸= j. This means that color pi and pj
are different if and only if i ̸= j. From these facts, we can conclude that the
number of colors p1, p2, . . . , pk is n

3 .
Thus, the vertex chromatic number for ζ(Dn=3m) is n+ n

3 .
(ii) Let n ̸= 0(mod3).

Let Dn = {I, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}, with n ̸= 3m,m ∈ N. Then
by Corollary 2.6 graph ζ(Dn ̸=3m) is complete graph, hence the vertex chro-
matic number of ζ(Dn ̸=3m) is 2n.

□
A subset X of the vertex set of graph ζ is called clique if the subgraph induced

by X is a complete graph. The maximum clique size in graph ζ is called the clique
number of Gζ, denoted by ω(ζ). We now give the clique number of the non-braid
graph of Dn in general.

Theorem 2.12. Let ζ(Dn) be a non-braid graph of dihedral group Dn.

(1.) If n = 0(mod3), then the clique number of ζ(Dn) is n+ n
3 .

(2.) If n ̸= 0(mod3), then the clique number of ζ(Dn) is 2n.

Proof. Let Dn = {I, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}, s2 = I, rn = I, rs =
sr−1 ⇐⇒ r−1s = sr.

(1.) Let ζ(Dn) be the non-braid graph ofDn, with n = 0(mod3). From Theorem
2.4 we know that every vertex in ⟨r⟩ is adjacent to all vertices in ζ(Dn).
Clearly, the cardinality of ⟨r⟩ is n. From Theorem 2.7 we have Hi, i =
1, 2, . . . , n

3 − 1 which all vertices in Hi are not adjacent and there are as
many as n

3 Hi in ζ(Dn). Since ⟨r⟩ ∪Hi = V (ζ(D3m)), the maximum size
of clique in ζ(Dn) is n+ n

3 .
(2.) From Corollary 2.6 we know that ζ(Dn) is a complete graph. Hence, the

maximum size of clique in ζ(Dn) is 2n. In other word, ω(ζ(Dn)) = 2n.
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□
Recall that the vertex cover of graph ζ is a subset of V (ζ) that contains at

least one endpoint of every edge in ζ. The minimum size of vertex covers of ζ is
denoted by β(ζ). Recall also the following property on vertex cover.

Lemma 2.13. [6] For any graph ζ, β(ζ) = |V (ζ)| − α(ζ).

Now, we have the following result.

Theorem 2.14. Let ζ(Dn) be the non-braid graph of dihedral group Dn. Then
β(ζ(Dn)) = 2n− 1 if n ̸= 0(mod3) and β(ζ(Dn)) = 2n− 3 for otherwise.

Proof. Let m = 0(mod3). By Theorem 2.9, α(ζ(Dn)) is equal to 1 . Us-
ing Lemma 2.13, we have β(ζ(Dn)) = |V (ζ(Dn))| − α(ζ(Dn)) = 2n − 1. Now,
let n = 3m for some natural number m. Then by Theorem 2.7, we have Hi =
{sri, sri+m, sri+2m}, i = 0, 1, 2, . . . , n

3 − 1 and all vertices in Hi are not adjacent.
We know that all vertices of ⟨r⟩ ⊆ V (ζ(Dn)) are adjacent to V (ζ(Dn)). Since all
vertices in Hi are adjacent to every vertex in Hj for i ̸= j, the minimum vertex
cover of ζ(Dn) is β(ζ(Dn)) = 2n− 3. □

3. CONCLUDING REMARKS

Based on the discussion, we found that the non-braid graph of the dihedral
group has the following properties:

Let ζ(Dn) be the non braid graph of dihedral group. Then

(1) For n ̸= 0(mod3), ζ(Dn) is a complete graph.
(2) Every vertex in ⟨r⟩ = {ri|i = 0, 1, 2, 3, . . . , n−1, n} ⊆ V (ζ(Dn)) is adjacent

to all of vertices in ζ(Dn).
(3) For n ̸= 0(mod3), every vertex in P = {sri|i = 0, 1, 2, 3, . . . , n − 1} ⊆

V (ζ(Dn)) is adjacent to every vertex in V (ζ(Dn)).
(4) The independent number of ζ(Dn) is 1 or 3.
(5) The chromatic number and the clique number of ζ(Dn) is n + n

3 for n ̸=
0(mod3) and is 2n for n ̸= 0(mod3).

(6) The minimum vertex cover of ζ(Dn) is 2n−3 for n ̸= 0(mod3) and is 2n−1
for n ̸= 0(mod3).

Open Problem Determine the structure of non-braid graph of any group in
general.
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