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Abstract. Graceful graphs were first studied by Rosa in 1966. The Kotzig-Ringel

graceful tree conjecture states that every tree has a graceful labeling. Aldred and

McKay and others [6, 15, 20] have used computer programs to show that trees of

order up to 35 are graceful. Bagga et al. investigated algorithms for generating

all graceful labelings of certain known classes of graceful graphs, including paths,

cycles, and certain other classes of unicyclic graphs. The data generated by such

algorithms has led to the discovery of new properties of such graceful labelings. In

this paper we present a survey of graceful graph labeling algorithms and related

complexity issues.
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Abstrak. Graf-graf graceful pertama kali dipelajari oleh Rosa pada tahun 1966.

Konjektur pohon graceful Kotzig-Ringel menyatakan bahwa setiap pohon memi-

liki suatu pelabelan graceful. Aldred dan McKay (1998), Fang (2011), dan Horton

(2003) telah menggunakan program komputer untuk menunjukkan bahwa pohon

dengan orde hingga 35 adalah graceful. Bagga dkk. (2007) telah menyelidiki algo-

ritma untuk menghasilkan semua pelabelan graceful dari graf-graf graceful untuk

kelas-kelas graf tertentu seperti lintasan, lingkaran, dan kelas tertentu lainnya dari

graf unicyclic. Data yang dihasilkan oleh algoritma tersebut menuntun pada pene-

muan sifat baru dari pelabelan graceful. Pada artikel ini kami menyajikan sebuah

survei dari algoritma pelabelan graf graceful dan isu-isu kompleksitas terkait.

Kata kunci: Pelabelan graf, pelabelan graceful, algoritma, kompleksitas.
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1. Introduction

For a graph G, we are interested in labeling the vertices and/or edges of G
with nonnegative integers. More formally, a labeling of a graph G = (V,E) is a one-
one mapping f : V → X, where X is a (finite) set of nonnegative integers. Such
a vertex labeling f induces an edge labeling, where an edge e = uv gets the label
|f(u) − f(v)|. Suppose that G has q edges. We are interested in labelings where
the set of possible labels X is {0, 1, 2, ..., q} or {0, 1, 2, ..., 2q}. Rosa [23] called such
a labeling a valuation. He considered four special types of valuations.

Let f be a valuation of a graph G with q edges.

(1) f is called an α-valuation if X ⊆ {0, 1, 2, ..., q}, the induced edge labels are
1, 2, ..., q and there exists an x ∈ {0, 1, 2, ..., q} such that for any edge uv of
G, either f(u) ≤ x < f(v) or f(v) ≤ x < f(u).

(2) f is called a β-valuation if X ⊆ {0, 1, 2, ..., q} and the induced edge labels
are 1, 2, ..., q.

(3) f is called a σ-valuation if X ⊆ {0, 1, 2, ..., 2q} and the induced edge labels
are 1, 2, ..., q.

(4) f is called a ρ-valuation if X ⊆ {0, 1, 2, ..., 2q} and the induced edge labels
are x1, x2, ..., xq where, xi = i or xi = 2q + 1− i for each 1 ≤ i ≤ q.

Observe that the above definitions are from the strongest to weakest in the
sense that every α-valuation is also a β-valuation, every β-valuation is also a σ-
valuation, and every σ-valuation is also a ρ-valuation. Golomb [18] introduced the
term graceful labeling for a β-valuation. A graceful graph is one that has a graceful
labeling. Rosa’s paper [23] generated much research activity in this area and led
to a large number of publications. A substantial part of this research effort has
been devoted to finding new families of graceful graphs. Several variations of the
concept have also been studied. We refer the reader to Gallian’s ongoing survey
[16] for an excellent account of research in this area. One of the foremost open
problems is the Ringel-Kotzig conjecture that every tree is graceful. As noted by
Gallian [16], Aldred and McKay proved, with the aid of a computer program, that
all trees with at most 27 vertices are graceful. This has been extended to trees of
order up to 35 [15, 20]. It is also known that paths, caterpillars and several other
subclasses of trees are graceful.

In this paper we present a survey of graceful graph labeling algorithms and
related complexity issues. In Section 2, we discuss computational efforts aimed at
verifying the graceful tree conjecture. In Section 3, we look at complexity issues in
graceful graphs. In Section 4, we survey recent results on generating all graceful
labelings of certain families of unicyclic graphs. In Section 4, we discuss other
computational and mathematical methods for determining gracefulness. Finally,
we conclude in Section 5 with a summary and some open problems.
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2. Graceful Tree Conjecture

Rosa considered the above valuations in order to investigate decompositions
of graphs into trees. For the sake of completeness, we include a brief discussion
here. A decomposition of a graph G = (V,E) can be considered to be a partition of
the edge set E into subsets E1, E2, ..., Er. If Hi is the subgraph of G induced by Ei,
then we also say the G decomposes into subgraphs {Hi}. If the subgraphs Hi are
all isomorphic to a single graph (say) H then we say that G is H − decomposable
and we write H|G. In 1963, Ringel [22] made the following conjecture.

Conjecture 2.1. If T is a tree with m edges, then K2m+1 decomposes into 2m+ 1
copies of T .

Rosa [23] proved the following theorem.

Theorem 2.2. If a tree T with m edges has a graceful labeling, then K2m+1 de-
composes into 2m+ 1 copies of T .

In fact, Rosa proved more. A decomposition of Kn by r copies of a subgraph
H is called a cyclic decomposition if, when Kn is drawn appropriately with its
vertices on a regular polygon, the r copies of H can be obtained by rotations of an
appropriate copy of H. Rosa [23] proved the following results.

Theorem 2.3. Let G be a graph with m edges. Then G has a ρ- valuation if and
only if K2m+1 has a cyclic decomposition into 2m+ 1 copies of G.

Theorem 2.4. Let G be a graph with m edges, and k ≥ 1 be an integer. If G has
an α- valuation then K2km+1 has a cyclic decomposition into k(2km+ 1) copies of
G.

Conjecture 2.1 was followed by the following stronger conjecture, which is
known as the Kotzig-Ringel graceful tree conjecture.

Conjecture 2.5. Every tree has a graceful labeling.

A substantial amount of research effort has been spent towards finding a
proof of this conjecture. A number of special classes of trees have been shown to be
graceful. These include paths, caterpillars, lobsters with perfect matchings [21, 23]
and several others. Rosa [23] showed that all trees with less than 16 edges are
graceful, and all trees of up to 4 leaves are graceful.

Theorem 2.6. [6, 15, 20] Every tree of order up to 35 is graceful.

Aldred and McKay used a computer search to prove the above result. They
described this search algorithm as a combination of hill climbing and tabu search.
In the same paper they also showed that all trees of at most 27 vertices are har-
monious ([19]). Horton [20] used a random backtracking algorithm to show that
trees of order up to 29 are graceful. To enumerate trees with a given number of
vertices, the algorithm proposed by Wright et al [26] is used. Fang [15] describes
a computational approach and shows that every tree of order up to 35 is graceful.
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Verification of gracefulness for trees with 33, 34 or 35 vertices is accomplished with
the help of a volunteer computing community, where the computational task is
divided into small fragments that are carried out on heterogeneous machines. It is
estimated that to verify the gracefulness on a single machine, it may take up to 7.7
years on a Core 2 Duo T7200 computer.

The following result of Erdös [18] is well-known. See [19] for a proof.

Theorem 2.7. Almost all graphs are not graceful.

However, the research on the Kotzig-Ringel graceful tree conjecture and on
finding other families of graceful graphs continues.

3. Generating and Enumerating Graceful Labelings

We now discuss bounds on the numbers of graceful labelings for some classes
of graphs. For paths, let G(n) denote the number of graceful labelings of Pn. Aldred
et al [7] proved the following result.

Theorem 3.1. G(n) = Ω((5/3)
n
).

Adamaszek [5] studied graceful labelings in the context of permutations. He
defined a graceful n-permutation as a permutation [σ(0), ..., σ(n − 1)] of the set
{0, 1, ..., n− 1} such that {|σ(1)− σ(0)|, |σ(2)− σ(1)|, ..., |σ(n− 1)− σ(n− 2)|} =
{1, ..., n− 1}. For example, [0, 6, 1, 5, 2, 4, 3] is a graceful n-permutation. Thus a
graceful n-permutation of the set {0, 1, ..., n − 1} can be identified with a graceful
labeling of Pn. Let G(n) denote the number of graceful n-permutations. According
to [5], the sequence G(n) has number A006967 in Sloane’s On-line Encyclopedia of
Integer Sequences [24] where the first 20 terms are listed. Adamaszek generated
and counted graceful n-permutations by a recursive search procedure, and improved
Theorem 3.1 as follows.

Theorem 3.2. G(n) = Ω((2.7)
n
).

Adamaszek [5] also states that the quotients G(n + 1)/G(n) tend to gather
between 3 and 4.5, suggesting that the lower bound (2.7)

n
could be improved

further.

Eshghi and Azimi [13, 14] investigated mathematical programming techniques
to solve a model of the graceful labeling problem. They used a branch-and-bound
algorithm to solve the corresponding integer programming problem. This technique
was applied to find graceful labelings of randomly generated samples of several
classes of graphs. Some of their computational results for trees are summarized in
the table below. The last column shows the average time to generate a graceful
labeling over a sample of thirty randomly generated trees. All computations were
run on a Pentium IV 2500 MHz computer with 256 MB RAM. See [13, 14] for
details.
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Number of Average time
vertices (Seconds)

20 149.12
25 2898.14
28 3827.11
30 4427.25
35 7625.69
40 11321.54

Table 3.1: Computation time for trees (30 samples of each order)

We next discuss graceful labelings of certain classes of unicyclic graphs. We
first look at cycles. Rosa [23] found necessary and sufficient conditions for cycles
to be graceful.

Theorem 3.3. The cycle Cn is graceful if and only if n ≡ 0 or 3 (mod 4).

Since a unicyclic graph G on n vertices has n edges, it follows that if G has
a graceful labeling, then exactly one of the integers from the set {0, 1, 2, · · · , n} is
missing from the set of vertex labels. We denote this missing label by m. Bagga
et al [8, 9, 10] designed algorithms for generating all graceful labelings of certain
classes of unicyclic graphs. We include here a brief description of the algorithm
that generates all graceful labelings of Cn, with n ≡ 0 or 3 (mod 4). We observe
that vertex labels 0 and n must appear on adjacent vertices in any graceful labeling
of Cn since this is the only way of obtaining edge label n. Our algorithm starts
by labeling two adjacent vertices of Cn as 0 and n. It then exhaustively checks all
possible ways of generating edge labels n − 1, n − 2,... in that order. We call the
edge label being generated as the “level”. This leads to a tree of computations.
Along each branch of this tree, a possible graceful labeling is explored. A branch
which reaches level 1 yields a graceful labeling. Table 3.2 shows how such branches
start out from level n.

Level n 0 n
Level n− 1 n− 1 0 n 0 n 1
Level n− 2 1 n− 1 0 n n− 1 0 n 2 n− 2 0 n 1 0 n 1 n− 1
Level n− 3 ...
... ...
Level n− k ...

Table 3.2: Tree of computations

Traversal along each branch can be thought of as building a set of disjoint
paths on the cycle, with the edges on the paths being those which have already
been labeled. At level k, the edges on the paths have labels n, n − 1, ..., k. De-
pending on the vertex labels on these paths, there are three possible cases in which
a new edge labeled k can be obtained. (i) Two end vertices on two existing paths
are adjacent on the cycle and have absolute difference k, or (ii) a new vertex label
adjacent to an end vertex of a path can be added or, (iii) two new vertex labels
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are added. Our algorithm systematically tries all these possibilities. If none of
the cases is possible along a branch, that branch of computation dies. For more
details of the algortihm and a proof of correctness, see [8, 9, 10]. The algorithm
is shown to be correct in the sense that every graceful labeling of Cn is obtained
precisely once. Table 3.3 shows the results for appropriat e values of n ≤ 24. The
last row labeled “Total” shows the total number of graceful labelings for each cor-
responding value of n in the first row. The other rows show the number of graceful
labelings for the corresponding missing label m in the left. Blank cells denote zeros.

n 3 4 7 8 11 12 15 16 19 20 23 24
0
1 1 1
2 1 3 3
3 1 3 6 26 26
4 3 6 42 80 299 299
5 3 6 36 80 789 1,476 5,932 5,932
6 3 36 120 1,301 3,190 22,210 39,692 162,634 162,634
7 42 80 1,493 3,494 49,714 104,688 787,218 1,393,740
8 26 80 1,493 3,646 61,758 162,606 2,218,596 4,813,618

m 9 26 1,301 3,494 72,778 191,238 3,690,788 9,785,048
10 789 3,190 72,778 196,228 4,633,029 13,567,488
11 299 1,476 61,758 191,238 5,252,774 15,837,020
12 299 49,714 162,606 5,253,774 16,280,304
13 22,210 104,688 4,633,029 15,837,020
14 5,932 39,692 3,690,788 13,567,488
15 5,932 2,218,596 9,785,048
16 787,218 4,813,618
17 162,634 1,393,740
18 162,634
19
20

Total 2 2 12 24 208 492 7,764 20,464 424,784 1,204,540 33,492,078 107,399,400

Table 3.2: Numbers of graceful labelings of Cn for n ≤ 24

Several properties of graceful labelings of cycles can be gleaned from Table
3.2. We mention two of these below. For proofs, see [9, 10].

Theorem 3.4. dn4 e ≤ m ≤ b
3n
4 c.

Theorem 3.5. Let n = 4t. For the missing label m = t, the number of graceful
labelings of Cn is equal to the number of graceful labelings of Cn−1.

Some of these results have been generalized to some other classes of unicyclic
graphs. See [8, 9, 10] for more details. Truszczyński [25] conjectured in 1984 that
all unicyclic graphs, except cycles Cn with n ≡ 1(mod 4) or n ≡ 2(mod 4), are
graceful. Doma [12] studied unicyclic graphs in which the cycle length is 3 through
9, and showed that all unicyclic graphs on up to nine edges (except C5, C6 and ,C9)
are graceful. Barrientos [11] studied graceful labelings of a special class of unicyclic
graphs. He defined a hairy cycle to be a unicyclic graph in which the deletion of
any edge in the cycle results in a caterpillar. Barrientos [11] showed that all hairy
cycles are graceful.

4. Complexity and Graph Embeddings

Acharya et al [2, 4] proved several results about graceful graph embeddings.
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Definition 4.1. Let G be a graph with graceful labeling f and let r = m − n + 1
be the cycle rank of G. Then the labeled graph G + Kr where the vertices of Kr

are assigned the labels of the set {0, 1, · · · ,m} − {f(v)|v ∈ V }, is called the full
augmentation of G and is denoted by Gf .

Theorem 4.2. [2] If G is a graceful graph with graceful labeling f , then the graph
H = Gf +Ks is also graceful for any s ≥ 1.

Proof. We assign to the vertices of Ks labels m+ i(m+ 1) for 1 ≤ i ≤ s. It can be
easily checked that this gives a graceful labeling of H. �

Definition 4.3. Let G be a graph without isolated vertices. The index of graceful-
ness of G, denoted by θ(G), is the smallest positive integer k for which it is possible
to label the vertices of G with distinct elements from the set {0, 1, 2, . . . , k} in such
a way that distinct edges receive distinct labels.

Such vertex labelings always exist [1, 3]. In fact, for any graph G of order n
and size q and with no isolated vertices, it is well known that θ(G) ∼ O(n2) (cf. P.
Erdös in [16]) and G is graceful if and only if θ(G) = q. Thus θ(G) is a measure of
how close G is to being graceful. Given a labeling f : V (G) → {0, 1, 2, . . . , θ(G)},
such that the edges of G receive distinct labels, it is easily seen that some vertex
of G must be labeled θ(G), but it is not known whether an edge of G must receive
the label θ(G).

Theorem 4.4. [2] Any graph G can be embedded as an induced subgraph of a
graceful graph.

Proof. Let f : V → {0, 1, 2, . . . , k} be a labeling of G such that the induced func-
tion gf : E(G) → N is also injective, where k = θ(G). Since k = θ(G), it follows
that there exist vertices u, v ∈ V such that f(v) = 0 and f(u) = k. Now, let
{i1, i2, . . . , ir} be the set of missing edge labels. We assume, without loss of gener-
ality, that i1, i2, . . . , is are not vertex labels and is+1, . . . , ir are vertex labels. For
each ij , 1 ≤ i ≤ s, we add a vertex vj , join vj and v by an edge vjv and define
f(vj) = ij , so that gf (vjv) = ij . Hence ij , 1 ≤ j ≤ s, are edge labels. Now we
add new vertices vj , for each j with s + 1 ≤ j ≤ r, join each vj to u and v and
define f(vj) = k+ ij . Then gf (vvj) = k+ ij and gf (uvj) = ij . We observe that at
this stage i1, i2, . . . , is are edge labels and none of the new missing edge labels are
vertex labels. For each of these new missing edge lab els t, we add a vertex vt, join
vt and v by an edge and define f(vt) = t. The resulting graph H is graceful and G
is an induced subgraph of H. �

Corollary 4.5. The problem of deciding whether the chromatic number χ is less
than or equal to k, where k ≥ 3 is NP -complete, even for graceful graphs.

Proof. Let G be a graph with χ(G) ≥ 3. Let H be the graceful graph constructed
in Theorem 4.4, which contains G as an induced subgraph. Since all the vertices of
V (H)− V (G) are adjacent to either u or v and is not adjacent to any other vertex
of G, we have χ(H) = χ(G).
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Since the problem of deciding whether the chromatic number χ is less than
or equal to k, where k ≥ 3 is NP -complete, ([17], page 190) it follows that the
problem of deciding whether the chromatic number χ is less than or equal to k,
where k ≥ 3 is NP-complete even for graceful graphs. �

Acharya et al [4] also proved the following complexity results. These follow
from the discussions above.

Theorem 4.6. [4] The problem of deciding whether the domination number (total
domination number) is less than or equal to k is NP -complete even when restricted
to graceful graphs.

Theorem 4.7. [4] The problem of deciding whether the clique number ω(G) is
greater than or equal to k is NP -complete even when restricted to graceful graphs.

5. Conclusion

In this paper we have described algorithmic results and complexity issues
related to graceful labeling problems. Efforts at proving the Ringel-Kotzig graceful
tree conjecture have led to the discovery of several new classes of graceful trees.
Generation and enumeration of graceful labelings is a relatively recent area of re-
search and much remains to be done. Open problems in this area include the
determination of better bounds for the number of graceful labelings of paths and
cycles. It would also be of interest to investigate the index of gracefulness of several
classes of graphs. Another interesting problem for further investigation is to find
graph theoretic decision problems which remain NP-complete when restricted to
the family of graceful graphs. Of course one can look at such problems for graphs
which admit other types of labelings as well.
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