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Abstract. In most cases, almost prime submodules are equivalent to prime sub-
modules, but in a finitely generated module, it is not necessarily equivalent. Based
on the fact that a finitely generated module over a principal ideal domain can be
decomposed into a free part and a torsion part, we give a new approach to the char-
acteristic of almost prime submodules in the finitely generated module, especially

we point out the cases when the submodules are almost prime but not prime.
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1. INTRODUCTION

Khashan introduced a generalization of prime submodules called almost prime
submodules and give some of its characteristics in multiplicative modules [I]. A
prime submodule by definition is an almost prime submodule, the converse is not
always true. In some cases, we found that an almost prime submodule is a prime
submodule, such as in a cyclic module over principal ideal domain or in a CSM
module over a principal ideal domain [2]. Even in a free module over a principal
ideal domain, when the rank of its submodule is less than its module, the almost
prime submodule is a prime submodule [3]. This makes the study of the almost
prime submodule are looking for the module where an almost prime is not a prime.
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In a finitely generated module over a principal ideal domain, we give a new
approach to the characterization of an almost prime submodule that is not a prime
submodule using some module decomposition, such as primary decomposition and
cyclic decomposition [4]. The main results of this study, whenever the module can
be decomposed into the free part and the torsion part, then the almost prime sub-
module must be the direct sum of submodules on each part with some conditions.

Definition 1.1. Let S be a proper submodule of M over a comutative ring R. The
set (S: M) :={r e R|rM C S} is called fraction of submodule S by its module M.

(1) Submodule S is a prime submodule if for any r € R and m € M such that
rm € S, then eitherr € (S: M) orm e S.

(2) Submodule S is an almost prime submodule if for any r € R and m € M
such that rm € S — (S : M)N, then either r € (S: M) orm € S.

A prime submodule must be almost prime, whereas the converse is not always

true. For example (9) is almost prime in Z-module Z3g, but (9) is not prime.

The prime submodules and the almost prime submodules are stacked sub-
modules. The definition of stacked submodules is given below:

Definition 1.2. Let N be a submodule of finitely generated module M over a
principal ideal domain R. Submodule N is stacked if there exists {by,...,bp} C M
such that

M = @i, ((bi))
and

N =@ ((ribi))
for nonzeror; € Rji=1,2,...,k and 1 <k <n.

2. PRIME SUBMODULES

It is well known that every finitely generated torsion module can be decom-
posed to its primary submodules [4], therefore we will consider describing almost
prime submodules in three cases. The first case is when the module is a primary
module, the second when the module is a torsion module, and the last when the
module is finitely generated.

First we will give the characterization of fraction of submodules.

Lemma 2.1. Let M be R-module and S its submodule. If
M=M ®My®..D M,

and
S=5185®..85,,
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with S; C M; fori=1,2,...,n, then we have
n
(S:M)=((Si: M.
i=1
PRrROOF. Given R-modul
M=M®My&...0 M, (1)
and nonzero x € R. Because is direct product, we have
aM =xM; ®xMs D ...DxM,.

Now let = € (N, (S; : M;) nonzero. Since z € (S; : M;) for i = 1,2,...,n,
by definition we have xM; C S; for i =1,2,...,n. Then

So we have z € (S : M), hence (;_, (S; : M;) C (S : M).
Conversely, let z € (S : M). We will show = € (S; : M;) for 1 = 1,2,...,n.
For any i € (1,2, ...,n) take a € xM;. Since x € (S : M) we have a € S. Hence

a=3581+..+8+..+8,
with s; € S; for i =1,2,...,n. Since a € M; then
$1=..=8_1=84+1=..=s,=0anda=s;

We have a € S;, hence zM; C S;. Since it is for all ¢ we conclude that (S : M) C
Mi_y (S; : M;). Then we have (S : M) =i, (S; : M;).

First, we will show that prime submodules are stacked.

Lemma 2.2. Let M be a module over a principal ideal domain R and N its sub-
module. If N C M, is prime then N is stacked in M.

PRrROOF. We need only to show that p™(N Np"M) =p™ N Np™t"M (see [4]). It is
obvious that p™(N Np"M) C p™N Np™+t M.

Let x € p™"N Np™*t"M, then x = p™N and z = p™*"M. We have z =
p™y = p"t™z for some y € N and 2 € M. And p™(y — p"z) = 0 € N implies
y—p'z € Nor p"M C N. If y—p"z € N then p"2 € N which result in
x = pm(p"z) € p(N Np"M). Suppose p™M C N. This implies p™z € N.
Applying N being prime we have pM C N or z € N. For both case we have
p"z € N resulting x = p™(p"z) € p(N Np"M).

By Lemma to characterize prime submodules of a module, it is enough
to investigate its stacked submodules.

The fact that primary modules can be decomposed to their cyclic submodules
[] is essential for the next lemma. Note that in this lemma we investigate (N : M)
only for a stacked submodule of M.
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Lemma 2.3. Let M be a primary module over a PID with order p® having direct
sum:

M = ((v1)) @ ... @ ((vn))
of cyclic submodule with annihilators ann({{v;))) = (p) which

e=e€e; >ey>..2>¢€,.
Let a submodule of M,
N = ((phv1)) @ . & ((p"vn))
which f; < e; for alli. If f = maz {f1, fo, ..., fn}, then
(N : M) =p’.

ProOOF. Let r € <pf>, then r = Bpf. We have rv; = Bpfv; € N for all i €
{1,2,...,n}. Then for all z € M with z = " | a;v; for a; € R,i = 1,2,...,n, we
have

rr = Zairvi = Zoqﬁpfvi €N,
i=1 i=1
since f is maximal, so r € (N : M). Therefore (p/) C (N : M).
Conversely, let r € (N : M), then rz € N for all z € M. Note that
NN {({vi)) = ({pfiv;)) for all i € {1,2,...,n}. Then we have rv; € N {{v;)) =
<<pf'ivi>>, therefore rv; = a;p’iv; for o € R. So we have r — a;pf € ann({{v;))) =
((p®)), and we can write r — a;pfi = B;p®. Therefore

r = OZipfi + B;p% = (OZi + Bipei*fi)pfi

then p/i|r for all i = {1,2,...,n}, hence lcm {pfi,...,pfn} |r. Then we have r €
((p?)). Therefore (N : M) C ((p/)).

As an example, let M be a Z-module and N be a submodule of M with
primary module decomposition M = Zyg ® Zg & Zy and N = 23716 © 22Zg @ 27Z,.
Then (N : M) = (23).

Lemma 2.4. Let M be R-primary module. Submodule N = {0} is a prime sub-
module if and only if the order M is prime.

PROOF. Let p be the order of M, p prime in R. We will show that N prime
submodule. Let 7 € R and v € M with rv = 0 € N. Clearly for v = 0 we have
v € N. Now let v € M nonzero. Supposed r ¢ ((p)), since p prime, we have
(r,p) = 1, hence 1 = ar + bp for a,b € R. Since rv = 0, we have arv = 0, hence
0=arv=(1—-bp)v=v—bpv =v (contradiction). So, we conclude that r € ({p)).
Hence N is prime submodule.

Conversely let N be a prime submodule. We have (N : M) = ((p)) for p € R,
hence order of M is p. Supposed p is not prime then there exist non unit a,b € R
such that p = ab. We have b is not the order of M. Choose nonzero v € M with
bv # 0. Then we have a(bv) = pv =0 € N with a ¢ (N : M) and bv ¢ N. This
contradicts the fact that N is a prime submodule, hence p must be prime in R.
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Now we characterize the prime submodule of primary module M by investi-
gating its stacked submodules.

Theorem 2.5. Let M be a primary module over a PID. Module M has the order
p¢ and can be decomposed into a direct sum:

M= ((v1)) @ ... & {{vn))
of cyclic submodules with annihilators ann({{v;))) = (p®) which
e=e >ey > ..2>¢€,.
A monzero submodule

N=({p"v)) & ... & ((p"vn))
with 0 < f; < e; for all i € {1,2,...,n} is prime if and only if f; < 1 for all
i €{1,2,...,n} and there is j such that f; = 1.

PROOF. Let f; <1 for all i € {1,2,...,n} and there exist j € {1,2,...,n} such
that f; = 1. By Lemma [2.3| we have (N : M) = (p). Let rm € N then we have
roqvy + ...+ ropv, = fiptoy + ...+ Bup/v,. Since f; =1, we have rajv; = Bjpv;,
then p|ra;. Therefore p|r or p|a;. Since (N : M) = (p), we conclude that r € (N :
M) or m € N. Therefore N is prime submodule.

Conversely, let N is a prime submodule. Since N is nonzero, then exist
j € {1,2,...,n} such that f; < e;. Assume there exists k such that f; > 1.
By Lemma we have (N : M) = (p/) such that f > 1. Choose r = p and
m = p/*~Lyy, then rm = p/*v, € N. But m ¢ N and r € (N : M), it contradicts
to N a prime submodule, therefore f; <1 for all i € {1,2,...,n}.

The first case gives us an idea that in the general case when the module is
finitely generated, the description of an almost prime submodule is correlated to
the decomposition of its primary submodules. But first, we must characterize the
(N : M), and by primary cyclic decomposition [5, p.154] and Lemma we have
this corollary:

Corollary 2.6. Let M be a torsion module over a principal ideal domain D. If M
has order

1= pi'pytpit
where the p;’s are distinct nonassociate primes in D, then M can be written as a
direct sum of cyclic submodules, so that

M = [({v1,1))) @ . & (10 ))] D oo @ [((05,1))) D o © (k)]

where ann({{v; ;))) = <pf”> and the terms in each cyclic decompotion can be

arranged so that,
€ = €1 2 €22 ... 2 Ein,.

If
N = (e 0010) @ . @ (" 01,0 )@ DU PE 011))) © o ® (™ Ok, )]
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then
(N : M) = (p*..pl*)
wzth fz = max {fi,l; veny fz,nl}
By Corollary [2.6] we have this theorem.

Theorem 2.7. Let M be a torsion module over a principal ideal domain D, with
its primary decomposition

M=M, &..&M,

and
N=N{&®..® N

such that N; = ((pfi’lvM)) ®..o <<pfc’ Ving))- Submodule N is prime if and only

if there exist a unique m such that
N=M, ®..®&N,D...0M,,

with Ny, is prim submodule of M), .

PROOF. Let N = Ny @ ... ® N be a prime submodule of M. Assume that N;
not prime and N; # M,,, then Ir € R, m; € M,, suuch that rm; € N; C N
but r ¢ (N; : Mp,) C (N : M) and m; ¢ N; C N. It contradicts to N a prime
submodule of M. Therefore N; must be prime or N; = Mp;.

Now assume there exist j,I € {1,2,...,k} with j # [ such that N;, N; is
prime. Then we have (N; : M,,) = (pfﬁ and (N; : Mp,) = <p{l>. By definition
of fi = max{fi1,..., fin,} then f; = [, and fi = fi; for some i;,i;. Choose

i

r=p; and m = p;” lvm-j —i—plfl’i’ v, then rm = p;cj’ij Vi —|—pjpl”’ vy, € N but
r ¢ (N :M)and m ¢ N. This contradicts N a prime submodule, therefore there
exist unique m € {1,2,...,k} such that N=M,, & .. & N,, & ... & M,,.

Conversely, let N = My, @ ... ® Ny @ ... @ M), with Ny, is prime submodule
of M, . According to Corollary we have (N,,, : M, ) = (p), and by Lemma
(N : M) = {(p). Let rw = r(w1 + ... + wg) € N, then we have rw,, € N,,.
Since Ny, prime submodule of M, then r € (N, : Mp, ) or w,, € N,,. Therefore
r€ (N :M)orwe N. Hence N is prime.

The finitely generated modules over PID have a torsion part and free part,
the characterization of prime submodules of a free module given by Wardhana et
all [3]. To characterize prime submodules of a finitely generated module we need
to find the fraction first.

Lemma 2.8. Let M = Mp & My is finitely generated module over D with Mp
is free part and My is torsion part. If N = Np & Np is submodule of M with
(Np: Mp)=p and (Np : Mp) = q, then (N : M) = lcd(p, q).

PrROOF. Let N = Np @& Np be submodule of M with (Np : Mp) = p and (N :
Mr) =q. If m = my +my € M with my € Mp and m; € My then lc(p,¢)m =
led(p, gymy + led(p, q)my € N. Therefore (N : M) D led(p, q).
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Conversely, let r € (N : M). For any ¢y € Mp and for any rz; € Mp we
have r(x; + ;) € N. Therefore fx; € Np for any x; € Mp and rz; € Ny for any
x¢ € Mp. We conclude that r € (Np : Mp) = (p) and r € (Np : MFp) = (g), hence
pq|r. Hence (N : M) = lcd(p, q).

The characterization of the prime submodule of a finitely generated module
is given by this theorem.

Theorem 2.9. Let M = Mp @& My is finitely generated module over D with Mg
is free part and Mt is torsion part. Let N = Np @& Np is submodule of M with
(Np: Mp)=p and (Ny : M7) =q.
N is prime if and only is submodule N is one of this:

(1) N =Ng ® My, N is a prime submodule of Mg

(2) N=Mp @ Nr, Nr is a prime submodule of Mrp

(8) N = Np & Npr, Nrp and N is prime submodule of Mpr and Mp with

(NF : MF) = (NT : MT)

PROOF. First if N = Ng @ My, N is prime submodule of Mg, then (N : M) =
(Nr : Mp). Let rm = r(my +m,) € N, then we have rm; € Np. Since Ng
is prime then we have r € (Np : Mp) or my € Np. Therefore R € (N : M) or
m € N, hence N is prime.

Second if N = Mg @ Nr, Np is prime submodule of My, then (N : M) =
(Nt : Mr). Let rm = r(my +m,) € N, then we have rm; € Np. Since Ny is
prime then we have r € (Np : Mp) or my € Np. Therefore r € (N : M) or m € N,
hence N is prime.

Third if N = Ngp & Ny, Nrg and Nr is prime submodule of Mz and Mr
with (NF : MF) = (NT : ]\4]“)7 then (N : M) = (NT : MT) = (NF : MF) Let
rm = r(mys+m,) € N, then we have rmy € Np and rm; € Nr. Since Ny and Np
is prime then we have r € (Np : Mp) or my € Np and r € (Np : Mrp) or my € Np.
Therefore r € (N : M) or m € N, hence N is prime.

Conversely, let N be prime. Assume that Ng not prime and Np # Mp, then
there exist ¢ (Np : Mp) and my ¢ Np such that rmy € Np. By Lemma [2.8 we
have r ¢ (N : M) and my ¢ N such that rmy € N. Therefore it contradict to N
prime submodule, hence N is prime or Np = Mp. In the same way we can show
that N is prime or Np = M.

Write (Np : Mp) = (p) and (Np : M) = (gq). Wardhana et all [3] prove that
since N is prime submodule then p is prime or 0 [6, Theorem 1], hence led(p, ¢) = ¢
if plq or led(p, q) = pq if p fq.

Assume that p [fq, then we have (N : M) = (pq), hence p and ¢ can not be
both zero. If p # 0, we can choose r = p and m = m, with my one of the bases of
M such that pm; is one of bases N (see [3]). Therefore rm € N but r ¢ (N : M)
and m € N, it contradict to N is prime submodule of M. If ¢ # 0 then we can
choose r = ¢ and m = my, my is one generator of cyclic submodule of My which is
not in Np. Therefore rm € N but r ¢ (N : M) and m ¢ N, it contradict to N is
prime submodule. Then we can conclude that p|q.
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If ¢ fp then since p|q we have ¢ = zp for  not an unit. Then we can choose
r =z and m = pm; with pm; € Mp but pm; ¢ N. Therefore rm = prm; = gm; €
N with r» ¢ (N : M) and m ¢ N. It contadict to N is prime, therefore x is unit
then we conclude that (Ng : Mp) = (Np : Mr).

3. ALMOST PRIME SUBMODULES

Like prime submodules, almost prime submodules are stacked submodules.

Theorem 3.1. Let N be a submodule of primary module M over a principal ideal
domain R. If N is an almost prime submodules then N is a stacked submodules.

PRrROOF. We only need to show that p" (N Np"M) = p™N Np™+t"M (see[4]). It is
obvious that p™ (N Np"M) C p™ N Np™*+" M. We will proved it by contraposition.

Let (N : M) = ((p°)), with p is prime and e > 2. Since N not stacked
submodules, then there are exist m > 0, r > 0so p™(NNp"M) G p™N Np™+t" M.
Let x € p™"N Np™t"M so z ¢ p™(N Np"M). We have z = p™y = p™"z with
y€N,ze M. Sincex ¢ p"™(NNp"M) then p"z ¢ N. Then we have p” ¢ (N : M),
hence r < e. Noted that p™(p"z) € Nbut p’2 ¢ N. Let 1 <a <msop*(p"z) € N
and p*~1(p"z2) ¢ N. We have u = p®~ 'z, then pu € N but u ¢ N. We will show
that pu ¢ (N : M)N. Supposed pu € (N : M)N, we have pu = p°w for w € N.
Since p®~ 17z ¢ N we have p®~'*" ¢ (N : M). So a—1+r < e, then we have
a < e —r. Then we have pu = p**"z € (N : M)N with pu = p®w for e € N, hence
pa+rz _ pew _ pa+rpef(a+r)w then = = perTZ — pm+rpef(a+r)w c pm (N N prM)
(contradiction). Then pu ¢ (N : M)N. Sopu € N — (N : M)N and p ¢ (N : M),
hence N is not an almost prime submodule.

Therefore all almost prime submodules are stacked submodules. Then to
characterize almost prime submodules, we only need to investigate the collection
of stacked submodules. Noted that the converse of the Theorem above is not
necessarily true. Consider that Z-module Zy ® Zg, submodule Zs ¢ 4Zsg is a stacked
submodule but not almost prime.

Theorem 3.2. Let M be a primary module over a PID, M has order p® and can
be decomposed into:

M= (1)) & .. & {(vn)
of cyclic submodules with annihilators ann({{v;))) = (p** which
e=e >€e3> .2 €n>Cntl =..=¢6, =1
A nonzero submodule
N = ((phv1)) ® .. ® {(p"vn))

is an almost prime submodule of M if and only if f; <1 for alli € {1,2,...,n} or

fi=e; forallie{1,2,...m} and f; <1 foralli € {m+1,m+2,...,n}.
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PROOF. First case, if f; <1 for all ¢ € {1,2,...,n}, we will show that N is prime
submodules. Let rm € N then we have raqvi+...+10mv, = B1pf v1+...4+ Bup’™vp.
We only consider j such that f; = 1, then rajv; = B;pv;, then p|re;. Therefore
p|r or pla;. Since Lemmagive (N : M) = (p), we conclude that r € (N : M) or
m € N. Therefore N is prime submodule and by default is almost prime submodule.

Second case, if f; = e; for all i« € {1,2,...,m} and f; < 1 for all ¢ €
{m+1,m+2,..,n}. Let J = {m+1,m+2,..,n}, since N nonzero, there is
a k € J such that fr = 0. We consider only for e > 1, since for e = 1 it is the
first case. We have N = ij’;]()((%)) Lemma H give us (N : M) = (p°¢) and
N—(N:M)N =N —{0}. Let rm € N — {0}, then we have rayvy + ... + ra,v, =
ijef_]()((%» and raq vy + ... +ragyv, # 0. Therefore p®|ra; for all i € {1,2,...,m},
p|(ra;) for all i € J such that f; =1 and p fray. Since p frag we have p fr, then
p%la; for all i € {1,2,...,m}. And for all 4 € J such that f; =1 we also have p|a;.
Therefore m € N, and N is an almost prime submodules.

Conversely, let N be an almost prime submodule. Assume there is j €
{1,2,...,n} such that f; > 1, we will show that f; = e; for all i € {1,2,...,m}
and f; < 1 for all i € {m+1,m+2,..,n}. Since there is exist j such that
fi > 1, we have (N : M) = (p”) with 1 < = < e. Noted that j ¢ J since
fi <lforalje {m+1m+2,..,n} Nowleti e {1,2,..,m} arbitrary and
assume that f; < e;, then we have pp/i~lv; = pfiv; € N — (N : M)N since
(N : M)N = ({(p®p"'v))) @ ... ® ((p®prv,)) and f; < e;. But p ¢ (N : M)
and pfi—lv; ¢ N, it contradict the fact that N is almost prime. Therefore for all
i€{1,2,....,n—1} we have f; = e; for all i € {1,2,...,m}. And since e; = 1 for all
ie{m+1,m+2 ..,n}, wehave fy <lforalli e {m+1,m+2,..,n}

Almost prime submodules must be prime submodules but not the other way,
next theorem will show in what case almost prime submodules are equivalent to
prime submodules.

Theorem 3.3. Let M primary modules over principal ideal domain R, and the
order of M p® with primary decomposition:

M = ((z1)) @ ... D ((zn))
of its cyclic submodules with annihilator ann({{x;))) = ((p®)) with
e=e; >ey>...>e, > 1.
Submodule N is an almost prime submodules if and only if N is a prime submodule.

PrOOF. We only need to prove that almost prime submodule is prime. And we
investigate it for N stacked submodules. Without loss of generality, let

N =((phz1) @ ... ® (p™zn)), (2)

with f; <e; for all ¢ € {1,2,...,n} are nonzero submodules.
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Let N in be an almost prime submodule. According to Theorem to
show that N is prime, we only need to show that

fi<lforallie{l,2,..,n}. (3)

Supposed there exists p € {1,2,...,n} that f, > 1. Then we have (N : M) =
((p®)) with e > 1, hence (N : M)N = p°N. We split into two cases, and for each
case we will show a contradiction.

First case for f,, < 1. Choose r =p ¢ (N : M) and m = p{[‘ilmu +z, ¢ N,
we have
™m zpi}‘xH + px, € N.
But since e,, > 1 we also have
m = p,’:“xH +px, ¢ p°N = (N : M)N.
So
rm :pﬁ*‘mu +pz, € N—(N:M)N.
This contradicts to N an almost prime submodules.

Second case for f,, > 1. Since N is a proper submodule, then there exists
p€{1,2,...,n} so f, < e,. Chooser =p¢ (N:M)and m = ple~lz, + ..+
pfe~tz, + p/»~lu, ¢ N, then we have

rm = pf“mﬂ + ... erf/’xp erf"vn € N.
Since e, > 1 then we also have
rm :pf“xu + ... +pfpmp + pfru, ¢ p°N = (N:M)N.
Hence
rm = plra, + ...+ plrx, + plrv, € N — (N : M)N.
This contradicts to N an almost prime submodule.

Based on those cases, we conclude that almost prime submodules must be
prime submodules.

Finally, the following conditions give an almost prime submodule that is not
prime given by the next theorem.

Theorem 3.4. Let M be a primary module over a principal ideal domain R and
the order of M is p¢ with primary decomposition:

M = {(z1)) @ ... & {(zn))
of its cyclic submodules with annihilator ann({{x;))) = ((p®)) with
e=e€12>€e2>..2€n>€ent] =..=E6, = 1.
Let
N ={((p"a1)) @ .. @ (p"zn))
a nonzero submodules of M.

Submodule N is an almost prime submodules of M that is not prime if and only if
fi=e; forallie{1,2,...,m} and f; <1 for alli € {m+1,....,n}.
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PROOF. Let f; = ¢; foralli € {1,2,....,m}and f; < 1foralli € {m+1,m+2,...,n}.
We will show that N is an almost prime submodule which is not prime. Since N
is nonzero, there exist p € {m+1,...,n} so f, = 0. Hence we can reweite N as

Theorem 2.4 give us (N : M) = ((p°)) then N — (N : M)N =N — {0}. Let r € R
and x = a1y + ... + apx, € M with rz € N — {0}, we have
S rame @l () (4)
and .
Zi:l a;z; # 0. (5)
Condition give us two things,

pilra; for all i € {1,2,...,m} (6)
pl(rey) for all i € {m +1,...,n} with f; =1 (7)

and condition give
p fra; for alli € {m+1,...,n} with f; = 0. (8)

Condition give p /[r. Then from condition (6) we have p®|a; for all i €
{1,2,...,m}. And from condition we also have p|a; for all i € {m +1,...,n}

with f; = 1. Hence
f;=0
xr = Z z; € N. (9)

then N is an almost prime submodule. From initial assumption N is not prime
submodule. Hence N is an almost prime submodules which is not prime.
Conversely, let N be an almost prime submodule of M which is not prime.
We will show that
fi=e; foralie{1,2,..,m} (10)
and
fi<lforallie{m+1,..,n}. (11)
Since N is not prime, condition f; < 1 for all ¢ € {1,2,...,n} is impossible.
Hence there exist p € {1,...,n} so f, > 1, then we have

(N M) = ({p*)) (12)
with 1 < < e. Noted that p ¢ {m + 1,...,n} because f; < 1 for all j €
{m+1,..,n}

Condition gives
(N : M)N = ((p°p"ta1)) @ ... & ((p"p/"zn)). (13)

Now let i € {1,2,...,m}, we will show condition true. Supposed f; < e,
we will show some contradiction.

Choose r =p & (N : M) and m = p/i~tx; ¢ N, then we have

1

rm = ppli~te; = phx; € N.
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Since f; < e; we also have
rm =pliz; ¢ (p°p'a1)) & ... @ ((p*pan)) = (N : M)N.
Hence
rm=pliz; ¢ (N: M)N.

This contradicts to N an almost prime submodule. Then we have condition
and true. The theorem is proved.

Theorem 3.5. Let M be a torsion module over a principal ideal domain R, with
its primary decomposition

M=M, &..&M,

and its submodule
N=N®..3® Ny
Submodule N is almost prime if and only if submodule N is one of the following:

(1) N=N1&...® Ny, with N; =0 or N; = M,,, or
(2) N=N1&..®&N;&...8 Ny, for N; is nonzero almost prime submodules of
M, and N; =0 or Ny = My, fori#j.

PrOOF. Let j € {1,2,...,k} such that N = Ny @ ... ® N; @ ... & N;, with N; is
nonzero prime submodule of M, , then we have

(N:M)= <p{1...pjf-j...p£’°>

with f; =0or f; =¢; ifi #j. If
rm =r(my,...,mj,...my) € N— (N : M)N

then we have

rm; € Nj — (N : M)NJ
Since Nj; is almost prime submodule of M; and

(N : M)N; = pf*..pl .p[*Nj = pl Nj = (N : M;)N,

then we have

re (N :M)orm; €Nj.
Therefore

r€(N:M)orméeN,
hence N is an almost prime submodule of M.

Conversely, let N be an almost prime submodule. Assume there exist j,1 €
{1,2,...,k}, j # 1, such that

O#Nj#ij andO#Nl;&Mpl
is almost prime. There exist i;, 4; such that

0< fjﬂ‘j < €54, and 0 < fi 4, <ey.-
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fiois fri,—1
Choose r = p; and m = ij Tmy +pll Y my,,, then we have

rm = plp;j'ij mji, —|—p{1’i’ my;, € N — (p{l...p{;’“)N =N—(N:M)N.
But
ré¢ (N:M)and m ¢ N,

it contradicts that N is almost prime.

By Theorem if the module M = Zg @& Zg is given, then its nonzero almost
prime submodules are (2) @ Zg, Zs & (3), (0) & Zg and Zg & (0). The last two are
almost prime submodules which is not prime.

If M = M,, ®M,,, ®M,,, and P, P, are almost prime submodules of M, , M,
respectively. Then by the Theorem P, @& P, ® My, is not an almost prime
submodule of M, ®M,, ®M,,, because we can choose p; ¢ (N : M) and 14+pa+1 ¢
N but p1(1+p2+1) € N.

The characterization of an almost prime submodule of a finitely generated
module is given in the next theorem.

39

Theorem 3.6. Let M = Mp & My be a finitely generated module over a principal
ideal domain R, let Mg be its free part and My be its torsion part. Let N = Np@Np
be submodule of M with Np C Mp, with (Ng : Mp) = p and (N : My) = q.
Submodule N is almost prime submodule of M if and only if N is of the form:

(1) N =Np ® My, Np is an almost prime submodule of Mg, or

(2) N =Mp ® Np, Np is an almost prime submodule of My, or

(8) N =Ng ® Nr, Nrp and Nt are an almost prime submodule of respectively
MF and MT with (NF : MF) = (NT : MT)

PRrROOF. First, let N = Np & My, Np be an almost prime submodule of M, then
(N : M) = (Np: Mp). Let rm =r(my +m,) € N — (N : M)N, then we have
rmy € Np — (Np : Mp)Np. Since Np is an almost prime submodule, we have
r € (Np: Mp)or my € Np. Hence r € (N : M) or m € N, then N almost prime.

Second, let N = Mg @ Nr, Nt be an almost prime submodule of M7, then
(N : M) = (Nr: Mr). Let rm = r(my+m,) € N — (N : M)N, then we have
rmy € Np — (Np : Mp)Np. Since Ny is an almost prime submodule, we have
r € (Np : Mp) or my € Np. Hencer € (N : M) or m € N, then N is almost prime.

Third, let N = Ngp® N1, Ng and N7 be almost prime submodule of Mz and
My with (Np : Mp) = (Np : Mr), then we have (N : M) = (Np : Mp) = (Np :
Mp). Let rm =r(my+my) € N — (N : M)N, then rmy € Np — (Nr : Mp)Np
and rmy € Ny — (Np : Mp)Np. Since Np and Np is almost prime, we have
r € (Np: Mp) or my € Np and r € (Np : Mr) or my € Np. Hence r € (N : M)
or m € N, then N almost prime.

Conversely, let N be almost prime submodule. Supposed Nr not an almost
prime submodule and Np # Mp, then we have r ¢ (Np : Mp) and my ¢ Np such
that rmy € Ng — (Np : Mp)Np. According to Lemma [2.8) we have r ¢ (N : M)
and my ¢ N such that rms € N — (Ng : Mp)Np. This contradict to NV an almost
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prime submodule, hence Nr almost prime or Np = Mp. With same technique we
will have Nt is an almost prime submodule or N7 = Mp. Base on this fact we will
show you that if Np # Mp and Np # Mg then (Ng : Mp) = (Np : My).

Write (Np : Mp) = (p) and (Np : Mp) = (¢). Since Np is an almost
prime submodule, we have p is prime or p = 0 according to Theorem Hence
led(p,q) = q if plq or led(p, q) = pq if p fq.

Suppose p fq, then we have (N : M) = (pq), note that both p and ¢ cannot
be zero. If p nonzero, we can choose » = p and m = my where my is one of basis
of Mp such that pmy is one of basis of Np. Hence rm € N — (N : M)N where
r ¢ (N:M)and m ¢ N, this contradicts to N an almost prime submodule. If ¢
nonzero we can choose r = ¢ and m = m; where m; one of cyclic generator of Mp
that not in Np. Hence rm € N — (N : M)N where r ¢ (N : M) and m ¢ N, this
contradicts to N an almost prime submodule. Then we can conclude that plg.

Suppose that ¢ /p, then ¢ = pzx for z not an unit element, then we can
choose r = x and m = pm; where pm; € My — Np since (Nr : Mr) = (px).
Hence rm = pzmy = gmy € N — (N : M)N where r ¢ (N : M) and m ¢ N, this
contradicts to IV an almost prime submodule. Then we can conclude that z is unit
element, hence (Np : Mp) = (Np : Mr).
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