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Abstract. Recently we introduced the concept of minimum dominating energy[19].
Motivated by this paper, we introduced the concept of minimum dominating dis-
tance energy Epy(G) of a graph G and computed minimum dominating distance
energies of a star graph, complete graph, crown graph and cocktail party graphs.
Upper and lower bounds for Epg(G) are also established.
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Abstrak. Pada paper sebelumnya pada tahun 2013, kami telah memperkenalkan
konsep energi pendominasi minimum. Kami melanjutkan konsep tersebut dengan
memperkenalkan konsep energi jarak pendominasi minimum Epg4(G) dari suatu
graf G dan menghitung energi jarak pendominasi minimum dari graf bintang, graf
lengkap, graf mahkota, dan graf cocktail party. Kami juga mendapatkan batas atas
dan bawah untuk Epq(G).

Kata kunci: Himpunan pendominasi minimum, matriks jarak pendominasi, nilai
eigen jarak pendominasi, energi jarak pendominasi.

1. INTRODUCTION

The concept of energy of a graph was introduced by I. Gutman [9] in the
year 1978. Let G be a graph with n vertices {v1,vs,...,v,} and m edges. Let
A = (a;;) be the adjacency matrix of the graph. The eigenvalues A1, Aa, -+, A, of
A, assumed in non increasing order, are the eigenvalues of the graph G. As A is
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real symmetric, the eigenvalues of G are real with sum equal to zero. The energy
E(G) of G is defined to be the sum of the absolute values of the eigenvalues of G.
ie.,

E(G) :ZIML

For details on the mathematical aspects of the theory of graph energy see
the reviews[10], paper [11] and the references cited there in. The basic properties
including various upper and lower bounds for energy of a graph have been estab-
lished in [16], and it has found remarkable chemical applications in the molecular
orbital theory of conjugated molecules [5, 6, 7, 12].

Further, studies on maximum degree energy, minimum dominating energy,
Laplacian minimum dominating energy, minimum covering distance energies can
be found in [18, 19, 20, 21] and the references cited there in.

The distance matrix of G is the square matrix of order n whose (¢, j) - entry
is the distance (= length of the shortest path) between the vertices v; and v;. Let
P1, P2, ---, Pn. be the eigenvalues of the distance matrix of G. The distance energy
DE is defined by

DE = DE(G) := > |pi.
i=1
Detailed studies on distance energy can be found in [3, 4, 8, 13, 14, 22].

2. THE MINIMUM DOMINATING DISTANCE ENERGY

Let G be a simple graph of order n with vertex set V = {v1,v2,...,v,} and
edge set . A subset D of V is called a dominating set of G if every vertex of V-D
is adjacent to some vertex in D. Any dominating set with minimum cardinality is
called a minimum dominating set. Let D be a minimum dominating set of a graph
G. The minimum dominating distance matrix of G is the n x n matrix defined by
Apa(G) := (di;), where

d“_{l ift=jandv; € D
*J d(vi,v;) otherwise

The characteristic polynomial ofApq(G) is denoted by f,.(G, p)= det(pl —
Apq(G)). The minimum dominating eigenvalues of the graph G are the eigenvalues
of Apq(G). Since Apy(G) is real and symmetric, its eigenvalues are real numbers
and we label them in non-increasing order p; > ps = --- = p,. The minimum
dominating energy of G is defined as

Epa(G): = |pil
=1

Note that the trace of Apqs(G) = Domination Number = k.
Example 1. The possible minimum dominating sets for the following graph G
in Figure 1 are i) Dy={vy1,v5}, il) Da={va,v5}, iil) D3={va,ve}
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V3 V4
U1 U2 Uk Ve
Figure 1
11 2 2 2 3
1 01 1 1 2
. 2 1 0 2 1 2
DApa, (@)= 5 1 5 o 1 9
2 1 1 1 1 1
32 2 2 10
6

Characteristic equation is p% — 2p° — 43p* — 114p® — 94p? — 8p +8 = 0. Minimum
dominating distance eigenvalues are p; ~ —3.0257,p2 =~ —2,p3 ~ —1.3386, py ~
—0.5067, p5 =~ 0.2255, pg ~ 8.6456. Minimum dominating distance energy, Epg, (G) =~
15.7420

012 2 2 3
11111 2
3 210 2 1 2
i) Apa,(G) = 5 1 9 ¢ 1 o
21111 1
322210

Characteristic equation is p® — 2p° — 43p* — 100p3 — 41p? + 36p — 4 = 0. Minimum
dominating distance eigen values are p; ~ —3.3028,p3 &~ —2,p3 =~ —1.6445, p4 ~
0.1431, p5 &~ 0.3028, pg ~ 8.5015. Minimum dominating distance energy, Epq, (G) =
15.8946. Therefore, minimum dominating distance energy depends on the domi-
nating set.
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3. MINIMUM DOMINATING DISTANCE ENERGY OF SOME STANDARD GRAPHS
Definition 3.1. The cocktail party graph, is denoted by K, x2, is a graph having the
n
vertex set V = U{ui,vi} and the edge set E = {uu;,v;v; = 1 # j | U{uiv;, viu; :

i=1
1<i<j<n}.
Theorem 3.2. The minimum dominating distance energy of cocktail party graph
K, o is 4n.

n

Proof. Let K, x2 be the cocktail party graph with vertex set V = U{uz, v; }. The
i=1

minimum dominating set of K, x2 is D = {uy,v1}. Then

1 2 1 1 1 1 1 1
2 1 1 1 1 1 1 1
1 1 0 2 1 1 1 1
1 1 2 0 1 1 1 1
Apa(Knx2) = | 1 1 1 o
1 1 1 1 0 2 1 1
1 1 1 1 2 011
1 1 1 1 1 1 0 2
1 1 1 1 1 1 2 0

Characteristic equation is p" 2(p+ 1)(p+2)" V[p? = 2n+1)p+ (2n —2)] =0

Minimum dominating distance eigenvalues are p = 0 [(n — 2)times|, p = —1 [one

(2n+1)+v4n?2 —4n+9

minimum dominating distance energy is Epg(K,x2) = 4n O

time], p = —2 [(n — 1) times], p = [one time each]. So,

Theorem 3.3. For any integer n > 3, the minimum dominating distance energy
of star graph Ky ,—1 is equal to 4n — 7.

Proof. Consider the star graph Kj ,—1 with vertex set V' = {vo,v1,v2, ..., 0n_1},
where deg(vp) = n — 1. Minimum dominating set D = {vy}. Then

1 1 1 1
1 0 2 2
Apa(K1n-1) = 20 2
1 2 2 0

nxn

Characteristic equation is (p 4 2)"2(p* — (2n —3)p+ (n —3)) =0
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The minimum dominating distance eigenvalues are p = —2 [(n-2) times], p =
2n — 3) £ v4n? — 16 21
(2n=3) 271 nt [one time each]. So, minimum dominating distance

energy is Epg(K1,,—-1) =4n — 7. O

Definition 3.4. The crown graph S° for an integer n > 2 is the graph with vertex
set {1, U, .oy U, V1, V2, ..., 0} and edge set {u;v; 1 <1i,j <n,i+#j}. HenceS°
coincides with the complete bipartite graph K, ,, with horizontal edges removed.

Theorem 3.5. For any integer n > 2, the minimum dominating distance energy
of the crown graph SO is equal to

7(n—1)4++v/n?—2n+5.

Proof. For the crown graph SY with vertex set V = {uq,uz, ..., Un, V1, V2, ..., Up },
minimum dominating set is D = {uy,v1}. Then

1 2 2 2 1 1 1

0 2 2 1 1 1

2 20 2 3 1

0y 2 2 2 0 1 1 1 3
Apa(Sn) =1 3 | 1 1 2 2 2
1 3 1 1 2 0 2 2

1 1 3 1 2 2 0 2

1 1 1 3 2 2 2 0

(2nx2n)

Characteristic equation is
PP p 4" 20 4+ (T=n)p + (11 =3n)][p* = Bn+1)p+ (3n—3)] =0

Minimum dominating distance eigenvalues are p = 0[(n — 2)times|, p = —4 [(n —

(n—7)+vn?2—-2n+5 (Bn+1)+v9n? —6n+ 13
2

2
[one time each]. So, minimum dominating distance energy is

2)times| p = , [one time each], p =

Epa(S2) =7(n— 1)+ V/n2 — 2n +5.

O

Theorem 3.6. For any integer n > 2, the minimum dominating distance energy

of complete graph K, is (n — 2) + v/n? — 2n + 5.

Proof. For complete graphs the minimum dominating distance matrix is same as
minimum dominating matrix [19], therefore the minimum dominating distance en-
ergy is equal to minimum dominating energy.

O
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4. PROPERTIES OF MINIMUM DOMINATING EIGENVALUES

Theorem 4.1. Let G be a simple graph with vertex set V.= {vy,va,...,v,}, edge
set E and D = {uq,ua,...,ux} be a minimum dominating set. If p1,pa, ..., pn are
the eigenvalues of minimum dominating distance matriz Apqa(G) then

n

(i) Zpi = |D|

n
(i1) pr =2m + 2M + |D| where M = Z d(vi,v;)* and m = |E|.
i=1 i<j, d(vi,v;)#1

Proof. i) We know that the sum of the eigenvalues of Apq(G) is the trace of
Apa(G). Therefore,

Zpi = de‘ =|D| = k.
i=1 i—1

(ii) Similarly, the sum of squares of the eigenvalues of Apg(G) is trace of [Apa(G)]?

Therefore,

1=1 1=1 j=1
= u + Z dzjd]z
i=1 i#]
= u +2Z ’Lj 2
1=1 1<J
=[ D | +2Zd v, v;)?
1<j
=k+2m+2M where M = Z d(v;,v;)?

i<j, d(vi,v;)#1

O

Corollary 4.2. Let G be a (n,m) simple graph with diameter 2 and D = {uy,ug, ..., u}
be a minimum dominating set. If p1, pa, ..., pn are the eigenvalues of minimum dom-
inating distance matriz Apq(G) then
n
pr =k +2(2n* — 2n — 3m).

i=1

Proof. We know that in Apq(G) there are 2m elements with 1 and n(n — 1) — 2m
elements with 2 and hence corollary follows from the above theorem. U
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5. BOUNDS FOR MINIMUM DOMINATING ENERGY

Similar to McClelland’s [17] bounds for energy of a graph, bounds for Epq(G)
are given in the following theorem.

Theorem 5.1. Let G be a simple (n,m) graph. If D is the minimum dominating
set and P = |detApq(G)| then

\/(2m +2M + k) +n(n — 1)P= < Epa(G) < /n(2m +2M + k)

where k is a domination number.

Proof.

Ms

Cauchy Schwarz inequality is ( b1>2 ( ; ) (z": b; )

=1 1=1

(=)

[Epa(G)]? < n(2m +2M + k) [Theorem 4.1]
— Epa(G) < v/n(2m+2M + k)

IN

n 2
If a; =1,b; =| p; | then (Z )

Since arithmetic mean is not smaller than geometric mean we have

1

g alles 1= ([T el (]~ D

Z?éj i#£]
1

[H|p |2(n 1)} (n—l)
~[1n]’
7‘1‘[,%%

= |d6tADd(G)

2 2
» = Pn

Y L pillpy | = nn - 1)P* (1)

i#]
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Now consider, [Epq(G)]* = (zn: | pi |>2

Z pi P+ Lpillos |

i#]
[Epa(G)]? > (k +2m 4+ 2M) + n(n — )P [From (1)]

e, Epa(G) > \/(k+2m +2M) + n(n — 1) P

O

Theorem 5.2. If p1(Q) is the largest minimum dominating distance eigenvalue of
Apa(G), then

where k is the domination number and W(G) is the Wiener index of G.

Proof. Let X be any nonzero vector. Then by [1], We have

X' ApaX
p1(Apa) = I;?%{ X'X }
Therefore,
22 d(’l)i, ’l)j) —+ k’
(Apa) > J Apad i<y . 2W(G) + k
PLiSDd) = JJ n N n
where J is a unit matrix. O

Lemma 5.3. Let G be a graph of diameter 2 and p1(G) is the largest minimum
dominating distance eigenvalue of Apq(G), then

on?—2m—2n+k
n

p1(G) >

where k is the domination number .

Proof. Let G be a connected graph of diameter 2 and d; denotes the degree of
vertex v;. Clearly i-th row of Ag4q consists of d; one’s and n—d; — 1 two’s. By using
Raleigh’s principle, for J = [1,1,1,---,1] we have

n

D ldix 1+ (n—di — 1)2] + k
J ApaJ = 22 —2m—2n+k
JJ n B n '

p1(Apa) > O

Similar to Koolen and Moulton’s [15] upper bound for energy of a graph,
upper bound for Fpg(G) is given in the following theorem.
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k+2n% —2n —2
Theorem 5.4. If G is a (m,n) graph with diameter 2 and +en DTS

n
then

k+2n2 —2n—2m
+

<
Epa(G) < i~

k + 2n2 —2n—2m)2}
- )

\/(n—l)[k+4n2—4n—6m—(

Proof. Cauchy-Schwartz inequality is

S < (S ) ().

1=2 1=2

Put a; = 1,b; =| p; |, then

(ilm I)Qéilip?

i=2 =2
Then,
[Epa(G) — p1]? < (n— 1)(k + 4n? — 4n — 6m — p?).
We have
Epa(G) < p1 + \/(n —1)(k+4n2 — 4n — 6m — p?).
Let

f@) =z ++/(n—1)(k+4n2 —4n — 6m — 2).

For decreasing function, f’(z) < 0 Then,

1—

x(n—1) “0
V(n—1)(k+4n% —4n — 6m — 22) ~

We have

2 Ay
xZ\/k+4n 4n 6m'
n

Therefore, f(x) is decreasing in

[\/k+4n2—4n—6m

,\/k+4n2—4n—6m]
n

Clearly,

\/k+2n22n2m c [\/k+4n24n6m

,\/k+4n274n76m}.
n

n

. 2 o o
Since HE2n-=2n-2m > 1 we have

\/k+2n22n2m - E+2n%2—2n—2m

< p1(by lema 5.3)
n n



28

M.R. RAJESH KANNA et al.

Therefore, f(p1) < f(@) Then,

Epq(G) < f(p1)
k+2n° —2n —2m
<s( )
n
- k+2n%—2n—2m

n

+\/(n—1)[k+4n2—4n—6m—(

+ 2 _ —
O

Bapat and S. Pati [2] proved that if the graph energy is a rational number

then it is an even integer. Similar result for minimum dominating energy is given
in the following theorem.

Lemma 5.5. Let G be a graph with a minimum dominating set D. If the minimum
dominating distance energy Epq(Q) is a rational number, then Epq(G) =| D |(mod

2),

Proof. Proof is similar to Theorem 5.4 of [19]. O
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