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Abstract. For a simple graph G = (V (G), E(G)), a total labeling ∂ is called an

edge irregular total k-labeling of G if ∂ : V (G) ∪E(G) → {1, 2, . . . , k} such that for

any two different edges uv and u′v′ in E(G), we have wt∂(uv) 6= wt∂(u′v′) where
wt∂(uv) = ∂(u) + ∂(v) + ∂(uv). The minimum k for which G has an edge irregular

total k-labeling is called the total edge irregularity strength, denoted by tes(G).

It is known that
⌈
|E(G)|+2

3

⌉
is a lower bound for the total edge irregularity strength

of a graph G. In this paper we prove that if G is a bipartite graph for which this

bound is tight then this is also true for Cartesian product of G with any path.

Key words and Phrases: total edge irregularity strength, Cartesian product, bipar-

tite graph, path

1. Introduction

The graphs considered in this paper are finite, undirected and simple. For a
graph G, we denote its vertex set by V (G) and its edge set by E(G). The Cartesian
product of two graphs G1 and G2, denoted by G1×G2, is a simple graph with vertex
set V (G1) × V (G2), in which (u1, v1) is adjacent to (u2, v2) if and only if either
u1 = u2 and v1v2 ∈ E(G2) or v1 = v2 and u1u2 ∈ E(G1) [8]. Figure 1 shows the
Cartesian product of two paths on 2 and 3 vertices.

A graph labeling, as introduced in [13], is a mapping that carries graph el-
ements to numbers (usually positive or non-negative integers), called labels. The
most common choices of domain are the vertex set (vertex labeling), the edge set
(edge labeling), and the union of the vertex set and edge set (total labeling). Over
the years, a large variety of different types of graph labelings have been studied,
see [10] for an extensive survey.

2020 Mathematics Subject Classification: 05C78

Received: 17-11-2022, accepted: 12-06-2023.
156



Total edge irregularity strength of the cartesian product of bipartite graphs and paths 157

(u1, v1) (u1, v2) (u1, v3)

(u1, v1) (u1, v2) (u1, v3)

Figure 1. P2 × P3

In 1988 Chartrand, Jacobson, Lehel, Oellermann, Ruiz and Saba [9] proposed
the problem of irregular labeling. For a graph G = (V (G), E(G)) with no isolated
vertices, the weight of a vertex v under an edge labeling f : E → {1, 2, . . . , k} is

wf (v) =
∑

u∈N(v)

f(uv),

where N(v) is the set of neighbours of a vertex v. The edge labeling f is called
irregular assignment of G if the weight of two different vertices u and v in V (G)
satisfies wf (u) 6= wf (v). The irregularity strength s(G) of G is the minimum k for
which the graph G has an irregular assignment.

In this paper, we consider total labelings. For a graph G the weight of an
edge uv under a total labeling ∂ is

wt∂(uv) = ∂(u) + ∂(v) + ∂(uv).

A total labeling ∂ : V (G) ∪ E(G) → {1, 2, . . . , k} is called edge irregular total
k-labeling of G if the weight of two distinct edges uv and u′v′ in E(G) satisfies
wt∂(uv) 6= wt∂(u′v′). The minimum k for which G has an edge irregular total
k-labeling is called the total edge irregularity strength of G denoted by tes(G).

The concept of the total edge irregularity strength was introduced by Bača,
Jendrǒl, Miller and Ryan [5]. In the same paper, they proved the total edge ir-
regularity strength for any graph G = (V (G), E(G)) with a non-empty set E(G)
is ⌈

|E(G)|+ 2

3

⌉
≤ tes(G) ≤ |E(G)|

and if the maximum degree ∆ = ∆(G) ≤ (|E(G)| − 1)/2, then⌈
∆ + 1

2

⌉
≤ tes(G) ≤ |E(G)| −∆.

They also proved the total edge irregularity strength of path, cycle, wheel, and
friendship graph.

In the following years, the exact value of total edge irregularity strength has
been proven for hexagonal grid graphs [4]; barbell graph for n ≥ 3 [1]; staircase
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graphs, double staircase graphs, and mirror-staircase graphs [16]; generalized arith-
metic staircase graphs and generalized double-staircase graphs [17].

Ivančo and Jendrol’ [11] conjecture that any graph G with maximum degree
∆(G) other than K5 satisfies

tes(G) = max

{⌈
∆ + 1

2

⌉
,

⌈
|E(G)|+ 2

3

⌉}
.

In the same paper, they proved that this conjecture is true for all trees.

This conjecture has been proven for complete graphs and complete bipartite
graphs [12], the categorical product of two paths [2], the categorical product of
a cycle and a path [14], the categorical product of two cycles [3], the Cartesian
product of a cycle and a path [7], the subdivision of a star [15], and the torodial
polyhexes [6].

2. Main Result

In this paper we consider any bipartite graph H with the total edge irregu-
larity strength

tes(H) =

⌈
|E(H)|+ 2

3

⌉
and prove that the Cartesian product of graph H with a path with n vertices Pn,
denoted by H × Pn for n ≥ 1 is

tes(H × Pn) =

⌈
|E(H × Pn)|+ 2

3

⌉
.

Before we proceed to our main theorem, we give some definitions as follows.

Definition 2.1. The extreme edge of an edge irregular total labeling is the unique
edge of maximum weight.

Remark 2.1. For any graph G with tes(G) =
⌈
|E(G)|+2

3

⌉
, the weight of the extreme

edge is |E(G)| + 2. Applying this to H and setting q =
⌈
|E(H)|+2

3

⌉
the possible

labelings for the extreme edge are as follows:

(1) |E(G)|+ 2 ≡ 0 (mod 3)

q q

q

(2) |E(G)|+ 2 ≡ 1 (mod 3)

q − 1 q

q − 1

q − 1 q − 1

q

q − 2 q

q

q q

q − 2

(3) |E(G)|+ 2 ≡ 2 (mod 3)
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q − 1 q

q

q q

q − 1

Let γ = |V (H)|+ |E(H)| = 3s+r with r ∈ {0, 1, 2}. Note that |E(H×Pn)| =
(n− 1)|V (H)|+ n|E(H)|. Set

qn =

⌈
|E(H × Pn)|+ 2

3

⌉
for n = 1, 2, . . . .

In other words, qn is the largest label we want to use in our labeling of H × Pn.

Recall that

γ = |V (H)|+ |E(H)| = 3s+ r,

qn =

⌈
|E(H × Pn)|+ 2

3

⌉
=

⌈
(n− 1)|V (H)|+ n|E(H)|+ 2

3

⌉
=

⌈
nγ − |V (H)|+ 2

3

⌉
.

Lemma 2.2. Let n ≥ 2 and m′ = (n− 1)γ − |V (H)|. Then

qn =



qn−1 + s if r = 0,

qn−1 + s if r = 1 and m′ ≡ 0 or 2 (mod 3),

qn−1 + s if r = 2 and m′ ≡ 2 (mod 3),

qn−1 + s+ 1 if r = 1 and m′ ≡ 1 (mod 3),

qn−1 + s+ 1 if r = 2 and m′ ≡ 0 or 1 (mod 3).

Proof. Writing m′ = 3s′ + r′ with r′ ∈ {0, 1, 2} we obtain

qn−1 =

⌈
m′ + 2

3

⌉
=

⌈
3s′ + r′ + 2

3

⌉
=

{
s′ + 1 if r′ ∈ {0, 1},
s′ + 2 if r′ = 2.

qn =

⌈
m′ + γ + 2

3

⌉
=

⌈
3(s′ + s) + r′ + r + 2

3

⌉
=

{
s′ + s+ 1 if r′ + r ∈ {0, 1},
s′ + s+ 2 if r′ + r ∈ {2, 3, 4}.

The result follows. �

Theorem 2.3. Let H be a bipartite graph with vertex set V (G) = A ∪ B and

tes(H) =
⌈
|E(H)|+2

3

⌉
. For the graph G = H × Pn, n ≥ 1 then

tes(G) =

⌈
|E(G)|+ 2

3

⌉
and there exists an optimal labeling of G such that the extreme edge has the form
{(i, n), (j, n)} for i ∈ A and j ∈ B.
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Proof. Recall that γ = |V (H)|+|E(H)| = 3s+r, r ∈ {0, 1, 2} and let Gn = H×Pn.
Next, we proceed by induction on n.

The base case n = 1.: Because G1 = H × P1 = H, we have tes(G1) =⌈
|E(G1)|+2

3

⌉
.

The induction step.: For n ≥ 2, we assume by induction that tes (Gn−1) =⌈
|E(Gn−1)|+2

3

⌉
, and that there is an optimal labeling f for Gn−1 with the

property that the extreme edge is in the (n − 1)-th copy of H (that is, it
has the form {(i, n− 1), (j, n− 1)}). From this we derive

tes(Gn) =

⌈
|E(Gn)|+ 2

3

⌉
and the existence of an optimal labeling F for Gn with the property that the
extreme edge is in the n-th copy ofH (that is, it has the form {(i, n), (j, n)}).
We construct F as an extension of f , that is, on V (Gn−1) ∪ E(Gn−1) the
labeling F agrees with f , and it remains to specify the values of F on the
n-th copy of H and on the edges connecting the (n − 1)-th copy with the
n-th copy.

Case 1.: r = 0, such that γ = 3s. We divide the labeling into several
cases of extreme edge. Since H is a bipartite graph, the vertex set can
be partitioned into two subsets A and B. For every extreme edge in
the following sub-cases, we assume the left and right vertex is in the
vertex set A and B respectively.

Case 1.1:

q − 2 q
q

We label the vertices and edges of layer n as follows

F (a, n) = f(a, n− 1) + s+ 1, for a ∈ A,
F (b, n) = f(b, n− 1) + s, for b ∈ B,
F (e, n) = f(e, n− 1) + s− 1, for e ∈ E(H),

such that the largest label is q + s.

Case 1.2:

q q
q − 2

We label the vertices and edges of layer n as follows

F (a, n) = f(a, n− 1) + s− 1, for a ∈ A,
F (b, n) = f(b, n− 1) + s, for b ∈ B,
F (e, n) = f(e, n− 1) + s+ 1, for e ∈ E(H),

such that the largest label is q + s.



Total edge irregularity strength of the cartesian product of bipartite graphs and paths 161

Case 1.3: For the other cases, we label the vertices dan the edges
of layer n as follows,

F (v, n) = f(v, n− 1) + s, for v ∈ V (H),

F (e, n) = f(e, n− 1) + s, for e ∈ E(H),

such that the largest label is q + s.
Case 2.: r = 1 (γ = 3s + 1). We divide the labeling into several cases

of extreme edge. For every extreme edge in the following sub-cases,
we assume the left and right vertex is in the vertex set A and B
respectively.

Case 2.1: For these four extreme edges,

q q

q

(i)
q − 1 q

q − 1

(ii)
q q

q − 2

(iii)
q q

q − 1

(iv)

we label the vertices and edges of layer n as follows

F (a, n) = f(a, n− 1) + s, for a ∈ A,
F (b, n) = f(b, n− 1) + s, for b ∈ B,
F (e, n) = f(e, n− 1) + s+ 1, for e ∈ E(H),

such that the largest label for (i), is q + s + 1 and for (ii)-(iv),
are q + s.

Case 2.2: For these three extreme edges,

q − 1 q − 1

q

q − 2 q

q

q − 1 q

q

we label the vertices and edges of layer n as follows

F (a, n) = f(a, n− 1) + s+ 1, for a ∈ A,
F (b, n) = f(b, n− 1) + s, for b ∈ B,
F (e, n) = f(e, n− 1) + s, for e ∈ E(H).

such that the largest label is q + s.
Case 3.: r = 2 (γ = 3s + 2). We divide the labeling into several cases

of extreme edge. For every extreme edge in the following sub-cases,
we assume the left and right vertex is in the vertex set A and B
respectively.

Case 3.1: For these extreme edges,

q q

q

(i)

q − 1 q

q − 1

(ii)

q q

q − 1

(iii)
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we label the vertices and edges of layer n as follows

F (a, n) = f(a, n− 1) + s+ 1, for a ∈ A,
F (b, n) = f(b, n− 1) + s, for b ∈ B,
F (e, n) = f(e, n− 1) + s+ 1, for e ∈ E(H),

such that the largest label for (i) and (iii), are q + s+ 1 and for
(ii), is q + s.

Case 3.2: For these extreme edges,

q − 1 q − 1

q

(i)

q − 1 q

q

(ii)

we label the vertices and edges of layer n as follows

F (a, n) = f(a, n− 1) + s+ 1, for a ∈ A,
F (b, n) = f(b, n− 1) + s+ 1, for b ∈ B,
F (e, n) = f(e, n− 1) + s, for e ∈ E(H),

such that the largest label for (i), is q+s and for (ii), is q+s+1.

Case 3.3:

q − 2 q
q

We label the vertices and edges of layer n as follows

F (a, n) = f(a, n− 1) + s+ 2, for a ∈ A,
F (b, n) = f(b, n− 1) + s, for b ∈ B,
F (e, n) = f(e, n− 1) + s, for e ∈ E(H),

such that the largest label is q + s.

Case 3.4:

q q
q − 2

We label the vertices and edges of layer n as follows

F (a, n) = f(a, n− 1) + s, for a ∈ A,
F (b, n) = f(b, n− 1) + s, for b ∈ B,
F (e, n) = f(e, n− 1) + s+ 2, for e ∈ E(H),

such that the largest label is q + s.
The largest label from Case 1.1 to 3.4 is the value of qn in Lemma 2.2 with
q = qn−1.

To label the connecting edge between layers n−1 and n, we used the following
rules. Let N = |V (H)|, and index the vertex set V (H) = {v1, . . . , vN} in such a
way that

f(v1, n− 1) + f(v1, n) ≤ f(v2, n− 1) + f(v2, n) ≤ . . . ≤ f(vN , n− 1) + f(vN , n).
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Then set for i = 1, . . . , N,

f((vi, n− 1), (vi, n)) = (n− 2)γ + |E(H)|+ 2 + i− |f(vi, n− 1) + f(vi, n)|,

so that the weight of this edge becomes

wt((vi, n− 1), (vi, n)) = (n− 2)γ + |E(H)|+ 2 + i.

Assume that the label of f(vN , n − 1) and f(vN , n) is tes(Gn−1) and tes(Gn) re-
spectively, such that the largest label of the connecting edges is

f((vN , n− 1), (vN , n)) = (n− 2)γ + |E(H)|+ 2 +N − [f(vN , n− 1) + f(vN , n)]

= (n− 2)γ + |E(H)|+ 2 + |V (H)|

−
[⌈
|E(G′)|+ 2

3

⌉
+

⌈
|E(G)|+ 2

3

⌉]
= (n− 2)γ + γ + 2

−
[⌈

(n− 2)γ + |E(H)|+ 2

3

⌉
+

⌈
(n− 1)γ + |E(H)|+ 2

3

⌉]
= (n− 1)γ + 2−

[⌈
(2n− 3)γ + 2(|E(H)|+ 2)

3

⌉]
=

⌈
3((n− 1)γ + 2)− (2n− 3)γ − 2(|E(H)|+ 2)

3

⌉
=

⌈
nγ − 2|E(H)|+ 2

3

⌉
=

⌈
n(|V (H)|+ |E(H)|)− 2|E(H)|+ 2

3

⌉
=

⌈
n|V (H)|+ (n− 2)|E(H)|+ 2

3

⌉
=

⌈
(n− 1)(|V (H)|+ |E(H)|) + |V (H)| − |E(H)|+ 2

3

⌉
=

⌈
(n− 1)γ + |V (H)| − |E(H)|+ 2

3

⌉
=

⌈
((n− 1)γ + |E(H)|+ 2) + |V (H)| − 2|E(H)|

3

⌉
=

⌈
(n− 1)γ + |E(H)|+ 2

3

⌉
+

⌈
|V (H)| − 2|E(H)|

3

⌉
.

For a connected bipartite graph H, |V (H)| ≤ 2|E(H)|, such that

f((vi, n− 1), (vi, n)) ≤ tes(G).

Since we have constructed an edge irregular total labeling with the largest label qn,
we conclude that tes(G) = qn. �
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Lemma 2.4 ([5]). The total edge irregularity strength of paths Pn, n ≥ 2 is

tes(Pn) =

⌈
n+ 1

3

⌉
.

Definition 2.5. For integers k 6 ` we denote the sets {1, 2, . . . , k} and {k, k +
1, . . . , `} by [k] and [k, `], respectively. For integers d > 2 and n1 ≥ n2 ≥ · · · ≥
nd > 2, let Grid(n1, . . . , nd) denote the n1 × · · · × nd-grid graph, i.e., the Carte-
sian product of d paths of lengths n1,. . . , nd. In other words, the vertex set of
G(n1, . . . , nd) is V = [n1]× · · · × [nd] and edge set

E =

{
{x,y} : x, y ∈ V and

d∑
i=1

|xi − yi| = 1

}
.

Corollary 2.6. Let G = Grid(n1, . . . , nd) be a d-dimensional grid, then

tes(G) =

⌈
|E(G)|+ 2

3

⌉
.
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[12] S. Jendrǒl, J.Mǐskuf and R. Soták, Total edge irregularity strength of complete and complete

bipartite graphs, Electron. Notes Discrete Math. 28 (2007), 281–285.
[13] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat.

Symposium), Rome (1966), 349–355.

[14] M. K. Siddiqui, On total edge irregularity strength of a categorical product of cycle and path,
AKCE J. Graphs. Combin 9 (2012), no. 1, 43–52.



Total edge irregularity strength of the cartesian product of bipartite graphs and paths 165

[15] M. K. Siddiqui, On edge irregularity strength of subdivision of star Sn, Int. J. Math. Soft

Comput 2 (2012), no. 2, 75–82.

[16] Y. Susanti, Y. I. Puspitasari and H. Khotimah, On total edge irregularity strength of Staircase
graphs and related graphs, Iranian Journal of Mathematical Sciences and Informatics 15(1)

(2020), no. 1, 1–13
[17] Y. Susanti, S. Wahyuni, A. Sutijijana, S. Sutopo, and I. Ernanto, Generalized Arithmetic

Staircase Graphs and Their Total Edge Irregularity Strengths, Symmetry 14(9) (2022), no.

9, 1853.


