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Abstract. Cellulose is one of the natural bio-polymers which have been extensively

used in various fields due to their valuable and remarkable chemical and physical

properties. Due to a key ingredients of cellulose in various product, it’s applications

have widely been recognized in many industries like pharmaceutical, bio-fuel, tex-

tiles, etc. The study of graphs using chemistry attracts a lot of researchers globally

because of its enormous application. One such application is studying topological

indices of a chemical graph associated to a molecular structure. In this this work we

have obtained the exact value of szeged, Padmakar-Ivan(PI), additively weighted PI

index, multiplicatively weighted PI index, additively weighted szeged index, multi-

plicatively weighted szeged index and its polynomial for cellulose chemical structure.

Moreover we derived the relation between these indices for the cellulose.

Key words and Phrases: Cellulose, Szeged index, Padamakar-Ivan index, Padmakar-

Ivan polynomial, Szeged polynomial

1. INTRODUCTION

Most of the chemical compounds under consideration are carbon-based. Of-
ten one uses the term chemical graphs (molecular structure) of a compound is
presented with a graph, where the edges indicate the links and the vertices repre-
sent the atoms. Both in the context of complex networks and in more traditional
applications of chemical graph theory, it garnered a great deal of interest. It aids in
the modeling of a wide range of systems, the structure and operation of which are
influenced by the connection patterns of its constituent parts. Modern materials
science needs have encouraged the creation of a wide range of bio-based materials,
in which cellulose and its derivatives play a significant part, as a reaction to envi-
ronmental concerns in[3, 8, 11, 18, 21, 29]. Because of cellulose’s exceptional and
one-of-a-kind chemical and physical properties, it has received wide recognition in a
number of industries. The main cause of this is because cellulose is extremely rigid
due to the tight link between its molecules. It is the most prevalent organic sub-
stance on the planet in terms of chemistry. The molecules of cellulose are strongly
bonded by hydrogen bonds as a result of their intricate intra- and extra molecular
interactions. As a result, they are insoluble in typical polar solvents like water,
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Figure 1. The molecular
structure of Cellulose.
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Figure 2. The chemical graph of
Cellulose.

alcohols, and amines, which makes it challenging to process into the proper shape.
The three-dimensional structure of the cellulose network (C6H10O5)d is denoted
by CLd, where d is the countable of cellulose units, Figure 1. is the molecular
structure, represented of cellulose network and Figure 2. represented the chemical
graph of cellulose on d = 1, d = 2 and d = 3 units.

Over the last two decades, a lot of different of numerical values have been
suggested and investigated, referred to variably as structural invariants, topologi-
cal indices, or molecular descriptors. A molecule’s topology is expressed numeri-
cally as a topological description. In Quantitative Structure-Property Relationship
(QSPR) and Quantitative Structure-Activity Relationship (QSAR) investigations,
these topological descriptors are utilized to estimate the physicochemical and/or
biological characteristics of molecules[20, 41]. Several degree, spectrum, match-
ing, and distance-based topological descriptors have been suggested and explored
in the literature [37, 42, 5], some of the interesting indices are Sombor index,
Steiner Gutman Index, Estrada index and Laplacian Estrada index of a graphs,
see [43, 38, 39, 44]. One of the oldest topological indices and most investigated is
the Wiener index, after the successful of this index, Gutman et al.[16] introduced
the generalization of the Wiener index for a acyclic graph known as szeged(Sz)
index. Consequentially, another szeged like index called Padmakar-Ivan index(PI)
proposed by Kahadikar et al.[31].

Recently Došlić et al. [13], introduced a distance based topological index
called Mostar index, which measure of the global peripherality of a molecular struc-
ture. PI, szeged, and Mostar indices are the interesting bond-additive type indices
which quantities the degree of peripherality of particular edge and of the graph
as a whole. Very recently Kandan et al., derived some bond-additive topologi-
cal indices and their polynomial see [22, 23, 24, 25, 26, 27, 28]. For a connected
G = (V (G), E(G)), the Padmakar-Ivan and szeged indices of G defined as

Sz(G) =
∑

e=abϵE(G)

ℵa(ab|G)ℵb(ab|G)

and

PI(G) =
∑

e=abϵE(G)

(ℵa(ab|G) + ℵb(ab|G))

respectively, where ℵa(ab|G) denotes the number of vertices of G closer to a than to
b and ℵb(ab|G) denotes the number of vertices of G closer to b than to a. Note that
in this definitions the equidistant vertices not counted for any edge of G. In the
literature, many researchers found the applications and were extensively studied
for various molecular structure to these indices see[17, 30, 32, 35] and for some
recent investigation see[1, 12, 36, 40]. Inspired by this extension of szeged and

the PI index, Iĺic and Milosavljevíc [19] proposed weighted version named as the
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additively weighted szeged and the additively weighted PI index, respectively which
are defined as

SzA(G) =
∑

e=abϵE(G)

(∧a(ab|G) + ∧b(ab|G))ℵa(ab|G)ℵb(ab|G)

and

PIA(G) =
∑

e=abϵE(G)

(∧a(ab|G) + ∧b(ab|G)) (ℵa(ab|G) + ℵb(ab|G)) .

Laterly, Arockiaraj et al.[6] introduced the multiplicatively weighted szeged
and PI index respectively which are defined as

SzM (G) =
∑

e=abϵE(G)

(∧a(ab|G). ∧b (ab|G))ℵa(ab|G)ℵb(ab|G)

and

PIM (G) =
∑

e=abϵE(G)

(∧a(ab|G). ∧b (ab|G)) (ℵa(ab|G) + ℵb(ab|G))

where ∧a(ab|G),∧b(ab|G) denotes the degree of vertex a, b respectively. For more
works on these weighted indices, see[4, 6, 9].

Non-isomorphic graphs can be distinguished using a graph polynomial. Many
graph polynomials have been created for quantifying the structural information of
molecular graphs related for quantifying the structural information of molecular
graphs. Graph polynomials were utilized in chemistry in conjunction with the
molecular orbital theory of unsaturated compounds, and they were also a valuable
source of structural descriptors used in constructing structure property models.
[7, 14, 15, 33, 42]. Distance-based and degree-based graph polynomials are useful
because they contain a wealth of information about topological indices. In [14]
Szeged and PI polynomial of a graph G respectively defined as

Sz(G, x) =
∑

e=abϵE(G)

xℵa(ab|G)ℵb(ab|G)

and

PI(G, x) =
∑

e=abϵE(G)

xℵa(ab|G)+ℵb(ab|G).

Since many graph parameter are derived from the graph polynomial, it is interesting
to study new graph polynomial, which are used to model a the behavior of physical,
chemical or biological system. Various topological indices can be derived from
polynomials by taking their value at some point directly, or by taking integrals or
derivatives. In light of the preceding condition and the newly proposed weighted
version, very recently, Kandan et al.[28] introduced the weighted version polynomial
of szeged and PI of a graph and derived it for some graphs. The Additively weighted
szeged polynomial of a graph G is defined as

SzA(G, x) =
∑

e=abϵE(G)

x(∧a(ab|G)+∧b(ab|G))ℵa(ab|G)ℵb(ab|G).

The Multiplicatively weighted szeged polynomial of G is defined as

SzM (G, x) =
∑

e=abϵE(G)

x(∧a(ab|G).∧b(ab|G))ℵa(ab|G)ℵb(ab|G).

The Additively weighted Padmakar-Ivan polynomial of G is defined as

PIA(G, x) =
∑

e=abϵE(G)

x(∧a(ab|G)+∧b(ab|G))ℵa(ab|G)+ℵb(ab|G).
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The Multiplicatively weighted padmakar-Ivan polynomial of G is defined as

PIM (G, x) =
∑

e=abϵE(G)

x(∧a(ab|G).∧b(ab|G))ℵa(ab|G)+ℵb(ab|G).

Recently, Kahalaf et al.[21] derived several graph polynomials of cellulose and for
more results on polynomials see [2, 10, 34]. As the main result of this paper is
to compute the exact form of szeged, PI, weighted szeged, weighted PI and their
polynomial of cellulose. As a main result, in Section 3, we obtain the exact value of
szeged index, additively weighted szeged index , Multiplicatively weighted szeged
index and its polynomial. Moreover using these results we derived their relation
and bounds for cellulose. In Section 4, similar results obtained for the Padmakar-
Ivan index, additively weighted Padmakar-Ivan index, Multiplicatively weighted
Padmakar-Ivan index and its polynomial. Further we obtained their relations and
boundness of cellulose.

2. MAIN RESULT

By chemical graph structure analysis and observation on CLd, we note that
the edge set E(CLd) can be divided into five groups based on degree, which are
summarized as follows see Figure 2.

E1(CLd) = {e = abϵE(CLd) : ∧a(ab|CLd) = 1,∧b(ab|CLd) = 2}, |E1| = 2d
E2(CLd) = {e = abϵE(CLd) : ∧a(ab|CLd) = 1,∧b(ab|CLd) = 3}, |E2| = 4d+ 2
E3(CLd) = {e = abϵE(CLd) : ∧a(ab|CLd) = 2,∧b(ab|CLd) = 3}, |E3| = 10d− 2
E4(CLd) = {e = abϵE(CLd) : ∧a(ab|CLd) = 3,∧b(ab|CLd) = 3}, |E4| = 8d

It can be observed that in general, |V (CLd)| = 22d+1, |E(CLd)| = 24d. As a
part of the main proof we use the above classification of edge partition of cellulose,
now we summarize the value of ℵa(ab|CLd), ℵb(ab|CLd) in the Table 1.

3. SZEGED INDEX AND ITS POLYNOMIAL

Using the Table 1, we have the following results on szeged related indices of
cellulose.

Theorem 3.1. Let CLd be the chemical graph of the cellulose,

Sz(CLd) = 2d(22d) + (4d+ 2)22d+ 4d(22d− 1) + (d2 + d)

(
1452

d− 1

3
+ 1001

)
+ 935(d− d2)− 1332d+ 22d(d− 1)

(
22d+ 25

3

)
+

(
d2 + d

)
(
1936

(
d− 1

3

)
+ 990

)
+ 902(d− d2)− 1166d.

Proof. To obtain the Szeged index of cellulose, by the definition of szeged index
and from the Table 1. we have

Sz(CLd) =
∑

e=ab∈E(CLd)

ℵa(ab|CLd)ℵb(ab|CLd)

=
∑

e=ab∈E1(CLd)

ℵa(ab|CLd)ℵb(ab|CLd) +
∑

e=ab∈E2(CLd)

ℵa(ab|CLd)ℵb(ab|CLd)

+
∑

e=ab∈E3(CLd)

ℵa(ab|CLd)ℵb(ab|CLd) +
∑

e=ab∈E4(CLd)

ℵa(ab|CLd)ℵb(ab|CLd)
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Table 1. Edge partitions and ℵa,ℵb value of cellulose

Cellulose CLi=1,2,...,d,
E (∧a,∧b) |E| ℵa(ab|CLd) ℵb(ab|CLd)

∑
i

ℵa(ab|CLd)ℵb(ab|CLd)

E1 (1,2) 2d 1 22d 2d(22d)
E2 (1,3) 4d+2 1 22d (4d+2)22d
E3 (2,3) 2d 2 22d-1 (2d)44d-2

(3,2) d 22i-15 22d+16-22i (d2 + d)(242d−1
3 + 176) +

165(d− d2)− 240d
(2,3) d 22i-16 22d+17-22i (d2 + d)(242d−1

3 + 187) +

176(d− d2)− 272d
(3,2) d 22i-11 22d+12-22i (d2 + d)(242d−1

3 + 132) +

121(d− d2)− 132d
(2,3) d 22i-10 22d+11-22i (d2 + d)(242d−1

3 + 121) +

110(d− d2)− 110d
(3,2) d 22d+18-22i 22i-17 (d2 + d)(242d−1

3 + 198) +

187(d− d2)− 306d

Cellulose CLi=1,2,...,d,
E (∧a,∧b) |E| ℵa(ab|CLd) ℵb(ab|CLd)

∑
i

ℵa(ab|CLd)ℵb(ab|CLd)

(2,3) d 22d+17-22i 22i-16 (d2 + d)(242d−1
3 + 187) +

176(d− d2)− 272d
(2,3) d-1 22(i-1) 22d+1-22(i-1) 11d(d− 1)( 22d+25

3 )
(3,2) d-1 22(i-1)+1 22d-22(i-1) 11d(d− 1)( 22d+25

3 )

E4 (3,3) 3d 22d+17-22i 22i-16 (d2 + d)(242d−1
3 + 187) +

176(d− d2)− 272d
(3,3) d 22i-15 22d+16-22i (d2 + d)(242d−1

3 + 176) +

165(d− d2)− 240d
(3,3) 3d 22i-5 22d+6-22i (d2+d)(242d−1

3 +66)+55(d−
d2)− 30d

(3,3) d 22i-4 22d+5-22i (d2+d)(242d−1
3 +55)+44(d−

d2)− 20d

For convenient, we have calculated each summation separately to the corre-
sponding edge partition as mentioned early.
For the edge partition E1:∑

e=ab∈E1(CLd)

ℵa(ab|CLd)ℵb(ab|CLd) = 2d(22d)

For the edge partition E2:∑
e=ab∈E2(CLd)

ℵa(ab|CLd)ℵb(ab|CLd) = (4d+ 2)22d

For the edge partition E3:

∑
e=ab∈E3(CLd)

ℵa(ab|CLd)ℵb(ab|CLd) = 2d(44d− 2)
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+

d∑
i=1

(22i− 15)(22d+ 16− 22i) +

d∑
i=1

(22i− 16)(22d+ 17− 22i)

+

d∑
i=1

(22i− 11)(22d+ 12− 22i) +

d∑
i=1

(22i− 10)(22d+ 11− 22i)

+

d∑
i=1

(22i+ 18− 22i)(22i− 17) +

d∑
i=1

(22i− 16)(22d+ 17− 22i)

+

d−1∑
i=1

22(i− 1)(22d+ 1− 22(i− 1)) +

d−1∑
i=1

(22(i− 1) + 1)(22d− 22(i− 1))

= 2d(44d− 2) + (d2 + d)

(
242

d− 1

3
+ 176

)
+ 165(d− d2)

− 240d+ (d2 + d)

(
242

d− 1

3
+ 187

)
+ 176(d− d2)− 272d+ (d2 + d)

(
242

d− 1

3
+ 132

)
+ 121(d− d2)− 132d+ (d2 + d)

(
242

d− 1

3
+ 121

)
+ 110(d− d2)− 110d

+ (d2 + d)

(
242

d− 1

3
+ 198

)
+ 187(d− d2)− 306d+ (d2 + d)

(
242

d− 1

3
+ 187

)
+ 176(d− d2)− 272d+ 11d(d− 1)

(
22d+ 25

3

)
+ 11d(d− 1)

(
22d+ 25

3

)
= 4d(22d− 1) + (d2 + d)

(
1452

d− 1

3
+ 1001

)
+ 935(d− d2)− 1332d+ 22d(d− 1)

(
22d+ 25

3

)
For the edge partition E4:

∑
e=ab∈E4(CLd)

ℵa(ab|CLd)ℵb(ab|CLd) = 3

d∑
i=1

(22i− 16)(22d+ 17− 22i) +

d∑
i=1

(22i− 15)(22d+ 16− 22i)

+ 3
d∑

i=1

(22i− 5)(22i+ 6− 22i) +
d∑

i=1

(22i− 4)(22d+ 5− 22i)

= 3

d∑
i=1

484(di− i2) + 374i+ 352(d− i)− 272 +

d∑
i=1

484(di− i2) + 352i+ 330(i− d)− 240

+ 3

d∑
i=1

484(di− i2) + 132i+ 110(i− d)− 30 +

d∑
i=1

484(di− i2) + 110i+ 88(i− d)− 20

=

d∑
i=1

(3(484(di− i2) + 374i+ 352(d− i)− 272) + 484(di− i2) + 352i+ 330(i− d)− 240

+ 3(484(di− i2) + 132i+ 110(i− d)− 30) + 484(di− i2) + 110i+ 88(i− d)− 20)

= 3

(
(d2 + d)

(
242

d− 1

3
+ 187

)
+ 176(d− d2)− 272d

)
+ (d2 + d)

(
242

d− 1

3
+ 176

)
+ 165(d− d2)− 240d+ 3

(
(d2 + d)

(
242

d− 1

3
+ 66

)
+ 55(d− d2)− 30d

)
+ (d2 + d)

(
242

d− 1

3
+ 55

)
+ 44(d− d2)− 20d
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= (d2 + d)

(
1936

(
d− 1

3

)
+ 990

)
+ 902(d− d2)− 1166d

Hence by summing up these values we have

Sz(CLd) = 2d(22d) + (4d+ 2)22d+ 4d(22d− 1) + (d2 + d)

(
1452

d− 1

3
+ 1001

)
+ 935(d− d2)− 1332d+ 22d(d− 1)

(
22d+ 25

3

)
+ (d2 + d)

(
1936

(
d− 1

3

)
+ 990

)
+ 902(d− d2)− 1166d

Hence the theorem. □

Next, we obtained obtained the weighted version of szeged index in the con-
secutive theorems.

Theorem 3.2. Let CLd be the chemical graph of cellulose,

SzA(CLd) = 3(2d(22d)) + 4((4d+ 2)22d) + 5

(
4d(22d− 1) + (d2 + d)

(
1452

d− 1

3
+ 1001

)
+935(d− d2)− 1332d+ 22d(d− 1)

(
22d+ 25

3

))
+ 6

(
(d2 + d)

(
1936

(
d− 1

3

)
+ 990

)
+902(d− d2)− 1166d

)
Proof. To obtain the additively weighted szeged index of the CLd, by the definition
of Additively weighted szeged index and from the Table 1. we have

SzA(CLd) =
∑

e=abϵE(CLd)

(∧a(ab|CLd) + ∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

=
∑

i=1,2,3,4.
e=abϵEi(CLd)

(∧a(ab|CLd) + ∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

By using Theorem 3.1, we have

SzA(CLd) = (1 + 2)(Sz(E1)) + (1 + 3)(Sz(E2)) + (2 + 3)(Sz(E3)) + (3 + 3)(Sz(E4))

= 3(2d(22d)) + 4((4d+ 2)22d) + 5(4d(22d− 1) + (d2 + d)

(
1452

d− 1

3
+ 1001

)
+ 935(d− d2)− 1332d+ 22d(d− 1)

(
22d+ 25

3

)
+ 6

((
d2 + d

)(
1936

(
d− 1

3

)
+ 990

)
+ 902(d− d2)− 1166d

)
Hence the theorem. □

Theorem 3.3. Let CLd be the chemical graph of cellulose,

SzM (CLd) = 2(2d(22d)) + 3((4d+ 2)22d) + 6
(
4d(22d− 1) + (d2 + d)(

1452
d− 1

3
+ 1001

)
+ 935(d− d2)− 1332d+ 22d(d− 1)(

22d+ 25

3

))
+ 9((d2 + d)

(
1936

(
d− 1

3

)
+ 990

)
+ 902(d− d2)− 1166d)

.
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Proof. To obtained the Multiplicatively weighted szeged index of CLd, by the def-
inition of Multiplicatively weighted szeged index and from the Table 1. we have

SzM (CLd) =
∑

e=ab∈E(CLd)

(∧a(ab|CLd). ∧b (ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

=
∑

i=1,2,3,4.
e=ab∈Ei(CLd)

(∧a(ab|CLd). ∧b (ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

By using Theorem 3.1, we have

SzM (CLd) = (1.2)(Sz(E1)) + (1.3)(Sz(E2)) + (2.3)(Sz(E3)) + (3.3)(Sz(E4))

= 2(2d(22d)) + 3((4d+ 2)22d) + 6

(
4d(22d− 1) + (d2 + d)

(
1452

d− 1

3
+ 1001

)
+935(d− d2)− 1332d+ 22d(d− 1)

(
22d+ 25

3

))
+ 9((d2 + d)

(
1936

(
d− 1

3

)
+ 990

)
+ 902(d− d2)− 1166d)

Hence the theorem. □

To the continuity of the above result, now we derive the exact expression of
szeged and its related polynomial

Theorem 3.4. Let CLd be the chemical graph of cellulose,

Sz(CLd, x) = 2dx22d + (4d+ 2)x22d + 2dx(44d−2) +

d∑
i=1

(
2
(
x484(di−i2)+352i+330(i−d)−240

)
+ 5

(
x484(di−i2)+374i+352(i−d)−272

)
+ x484(id−i2)+264i+242(i−d)−132

+ x484(id−i2)+242i+220(i−d)−110 + x484(di−i2)+374(i−d)+396i−306

+3
(
x484(di−i2)+132i+110(i−d)−30

)
+ x484(di−i2)+110i+88(i−d)−20

)
+

d−1∑
i=1

x22((22d+1)(i−1)−22(i−1)2) +
d−1∑
i=1

x22d((22(i−1)+1))−(22(i−1)+1)(i−1).

Proof. To obtained the szeged polynomial of CLd, by the definition of szeged poly-
nomial and applying the Table 1., we have

Sz(CLd, x) =
∑

e=abϵE(CLd)

xℵa(ab|CLd)ℵb(ab|CLd)

Sz(CLd, x) =
∑

e=abϵE1(CLd)

xℵa(ab|CLd)ℵb(ab|CLd) +
∑

e=abϵE2(CLd)

xℵa(ab|CLd)ℵb(ab|CLd)

+
∑

e=abϵE3(CLd)

xℵa(ab|CLd)ℵb(ab|CLd) +
∑

e=abϵE4(CLd)

xℵa(ab|CLd)ℵb(ab|CLd)

For convenient, we have calculated each summation separately to the corre-
sponding edge partitions as mentioned early.
For the edge partition E1:∑

e=abϵE1(CLd)

xℵa(ab|CLd)ℵb(ab|CLd) =
∑

e=abϵE1(CLd)

x22d = 2dx22d
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For edge partition E2:∑
e=abϵE2(CLd)

xℵa(ab|CLd)ℵb(ab|CLd) =
∑

e=abϵE2(CLd)

x22d = (4d+ 2)x22d

For edge partition E3:

∑
e=abϵE3(CLd)

xℵa(ab|CLd)ℵb(ab|CLd) = 2dx(44d−2) +

d∑
i=1

x(22i−15)(22d+16−22i)

+

d∑
i=1

x(22i−16)(22d+17−22i) +

d∑
i=1

x(22i−11)(22d+12−22i)

+

d∑
i=1

x(22i−10)(22d+11−22i) +

d∑
i=1

x(22i+18−22i)(22i−17)

+

d∑
i=1

x(22i−16)(22d+17−22i) +

d∑
i=1

x22(i−1)(22d+1−22(i−1))

+

d∑
i=1

x(22(i−1)+1)(22d−22(i−1))

= 2dx(44d−2) +

d∑
i=1

x484(di−i2)+352i+330(i−d)−240

+ 2

d∑
i=1

x484(di−i2)+374i+352(i−d)−272 +

d∑
i=1

x484(id−i2)+264i+242(i−d)−132

+

d∑
i=1

x484(id−i2)+242i+220(i−d)−110) +

d∑
i=1

x484(di−i2)+374(i−d)+396i−306

+

d−1∑
i=1

x22((22d+1)(i−1)−22(i−1)2) +

d−1∑
i=1

x22d(d(22(i−1)+1))−(22(i−1)+1)(i−1)

= 2dx(44d−2) +

d∑
i=1

(
x484(di−i2)+352i+330(i−d)−240

+ 2
(
x484(di−i2)+374i+352(i−d)−272

)
+ x484(id−i2)+264i+242(i−d)−132

+ x484(id−i2)+242i+220(i−d)−110 + x484(di−i2)

+ 374(i− d) + 396i− 306 +

d−1∑
i=1

x22((22d+1)(i−1)−22(i−1)2)

+

d−1∑
i=1

x22d(22(i−1)+1)−(22(i−1)+1)(i−1)

)

For edge partition E4:

∑
e=abϵE4(CLd)

xℵa(ab|CLd)ℵb(ab|CLd) = 3

d∑
i=1

x(22i−16)(22d+17−22i)
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+

d∑
i=1

x(22i−15)(22d+16−22i) + 3

d∑
i=1

x(22i−5)(22i+6−22i)

+

d∑
i=1

x(22i−4)(22d+5−22i)

= 3

d∑
i=1

x484(di−i2)+374i+352(d−i)−272 +

d∑
i=1

x484(di−i2)+352i+330(i−d)−240

+ 3

d∑
i=1

x484(di−i2)+132i+110(i−d)−30 +

d∑
i=1

x484(di−i2)+110i+88(i−d)−20

=

d∑
i=1

(
3
(
x484(di−i2)+374i+352(d−i)−272

)
+ x484(di−i2)+352i+330(i−d)−240

+3
(
x484(di−i2)+132i+110(i−d)−30

)
+ x484(di−i2)+110i+88(i−d)−20

)
Hence by summarizing these values obtained here for the partitions E1,E2,E3 and
E4, we have

Sz(CLd, x) = 2dx22d + (4d+ 2)x22d + 2dx(44d−2) +

d∑
i=1

(
2
(
x484(di−i2)+352i+330(i−d)−240

)
+ 5

(
x484(di−i2)+374i+352(i−d)−272

)
+ x484(id−i2)+264i+242(i−d)−132

+ x484(id−i2)+242i+220(i−d)−110 + x484(di−i2)+374(i−d)+396i−306

+3
(
x484(di−i2)+132i+110(i−d)−30

)
+

d∑
i=1

x484(di−i2)+110i+88(i−d)−20

)

+

d−1∑
i=1

x22((22d+1)(i−1)−22(i−1)2) +

d−1∑
i=1

x22d((22(i−1)+1))−(22(i−1)+1)(i−1)

Hence the theorem. □

Theorem 3.5. Let CLd be the chemical graph of cellulose,

SzA(CLd, x) = 2dx3(22d) + (4d+ 2)x4(22d) + 2dx5(44d−2)

+

d∑
i=1

(
x5(484(di−i2)+352i+330(i−d)−240) + 2

(
x5(484(di−i2)+374i+352(i−d)−272)

)
+ x5(484(id−i2)+264i+242(i−d)−132) + x5(484(id−i2)+242i+220(i−d)−110)

+ x5(484(di−i2)+374(i−d)+396i−306) + 3
(
x6(484(di−i2)+374i+352(i−d)−272)

)
+ x6(484(di−i2)+352i+330(i−d)−240) + 3

(
x6(484(di−i2)+132i+110(i−d)−30)

)
+x6(484(di−i2)+110i+88(i−d)−20)

)
+

d−1∑
i=1

x5(22((22d+1)(i−1)−22(i−1)2))

+

d−1∑
i=1

x5(22d((22(i−1)+1))−(22(i−1)+1)(i−1)).
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Proof. To obtained the Additively weighted szeged polynomial of CLd, by the def-
inition of Additively weighted szeged polynomial and from the Table 1., we have

SzA(CLd, x) =
∑

e=abϵE(CLd)

x(∧a(ab|CLd)+∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

SzA(CLd, x) =
∑

e=abϵE1(CLd)

x(∧a(ab|CLd)+∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

+
∑

e=abϵE2(CLd)

x(∧a(ab|CLd)+∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

+
∑

e=abϵE3(CLd)

x(∧a(ab|CLd)+∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

+
∑

e=abϵE4(CLd)

x(∧a(ab|CLd)+∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

For our convenient, now we calculate each summation separately to the correspond-
ing edge partition as mentioned early.
For edge partition E1:∑

e=abϵE1(CLd)

x(∧a(ab|CLd)+∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd) = 2dx(3)22d

For edge partition E2:∑
e=abϵE2(CLd)

x(∧a(ab|CLd)+∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd) =
∑

e=abϵE2(CLd)

x(1+3)22d

= (4d+ 2)x(4)22d

For edge partition E3:∑
e=abϵE3(CLd)

x(∧a(ab|CLd)+∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

= 2dx(2+3)(44d−2) +

d∑
i=1

x(3+2)(22i−15)(22d+16−22i) +

d∑
i=1

x(2+3)(22i−16)(22d+17−22i)

+

d∑
i=1

x(3+2)(22i−11)(22d+12−22i) +

d∑
i=1

x(2+3)(22i−10)(22d+11−22i)

+

d∑
i=1

x(3+2)(22i+18−22i)(22i−17) +

d∑
i=1

x(2+3)(22d+17−22i)(22i−16)

+

d∑
i=1

x(2+3)22(i−1)(22d+1−22(i−1)) +

d∑
i=1

x(3+2)(22(i−1)+1)(22d−22(i−1))

= 2dx5(44d−2) +

d∑
i=1

x5(484(di−i2)+352i+330(i−d)−240) + 2

d∑
i=1

x5(484(di−i2)+374i+352(i−d)−272)

+

d∑
i=1

x5(484(id−i2)+264i+242(i−d)−132) +

d∑
i=1

x5(484(id−i2)+242i+220(i−d)−110))

+

d∑
i=1

x5(484(di−i2)+374(i−d)+396i−306) +

d−1∑
i=1

x5(22((22d+1)(i−1)−22(i−1)2))
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+

d−1∑
i=1

x5(22d((22(i−1)+1))−(22(i−1)+1)(i−1))

= 2dx5(44d−2) +

d∑
i=1

(
x5(484(di−i2)+352i+330(i−d)−240)

+ 2
(
x5(484(di−i2)+374i+352(i−d)−272)

)
+ x5(484(id−i2)+264i+242(i−d)−132)

+ x5(484(id−i2)+242i+220(i−d)−110) + x5(484(di−i2)+374(i−d)+396i−306)

+

d−1∑
i=1

x5(22((22d+1)(i−1)−22(i−1)2)) +

d−1∑
i=1

x5(22d((22(i−1)+1))−(22(i−1)+1)(i−1))

)

For edge partition E4:

∑
e=abϵE4(CLd)

x(∧a(ab|CLd)+∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

= 3

d∑
i=1

x(3+3)(22i−16)(22d+17−22i) +

d∑
i=1

x(3+3)(22i−15)(22d+16−22i)

+ 3

d∑
i=1

x(3+3)(22i−5)(22i+6−22i) +

d∑
i=1

x(3+3)(22i−4)(22d+5−22i)

= 3

d∑
i=1

x6(484(di−i2)+374i+352(d−i)−272)

+

d∑
i=1

x6(484(di−i2)+352i+330(i−d)−240) + 3

d∑
i=1

x6(484(di−i2)+132i+110(i−d)−30)

+

d∑
i=1

x6(484(di−i2)+110i+88(i−d)−20)

=

d∑
i=1

(
3
(
x6(484(di−i2)+374i+352(d−i)−272)

)
+ x6(484(di−i2)+352i+330(i−d)−240) + 3

(
x6(484(di−i2)+132i+110(i−d)−30)

)
+x6(484(di−i2)+110i+88(i−d)−20)

)
Hence by summarizing these values obtained here for E1, E2,E3 and E4, we have

SzA(CLd, x) = 2dx3(22d) + (4d+ 2)x4(22d) + 2dx5(44d−2)

+

d∑
i=1

(
x5(484(di−i2)+352i+330(i−d)−240) + 2

(
x5(484(di−i2)+374i+352(i−d)−272)

)
+ x5(484(id−i2)+264i+242(i−d)−132) + x5(484(id−i2)+242i+220(i−d)−110)

+ x5(484(di−i2)+374(i−d)+396i−306) + 3
(
x6(484(di−i2)+374i+352(i−d)−272)

)
+ x6(484(di−i2)+352i+330(i−d)−240) + 3

(
x6(484(di−i2)+132i+110(i−d)−30)

)
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+x6(484(di−i2)+110i+88(i−d)−20)
)
+

d−1∑
i=1

x5(22((22d+1)(i−1)−22(i−1)2))

+

d−1∑
i=1

x5(22d((22(i−1)+1)−(22(i−1)+1)(i−1)))

Hence the theorem. □

Theorem 3.6. Let CLd be the chemical graph of cellulose,

SzM (CLd, x) = 2dx2(22d) + (4d+ 2)x3(22d) + 2dx6(44d−2)

+

d∑
i=1

(
x6(484(di−i2)+352i+330(i−d)−240) + 2

(
x6(484(di−i2)+374i+352(i−d)−272)

)
+ x6(484(id−i2)+264i+242(i−d)−132) + x6(484(id−i2)+242i+220(i−d)−110

+ x6(484(di−i2)+374(i−d)+396i−306) + 3
(
x9(484(di−i2)+374i+352(i−d)−272)

)
+ x9(484(di−i2)+352i+330(i−d)−240) + 3

(
x9(484(di−i2)+132i+110(i−d)−30)

)
+x9(484(di−i2)+110i+88(i−d)−20)

)
+

d−1∑
i=1

x6(22((22d+1)(i−1)−22(i−1)2))

+

d−1∑
i=1

x6(22d((22(i−1)+1))−(22(i−1)+1)(i−1))

Proof. To obtained the Multiplicatively weighted szeged polynomial of CLd, by the
definition of Multiplicatively weighted szeged polynomial and from the Table 1., we
have

SzM (CLd, x) =
∑

e=abϵE(CLd)

x(∧a(ab|CLd).∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

SzM (CLd, x) =
∑

e=abϵE1(CLd)

x(∧a(ab|CLd).∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

+
∑

e=abϵE2(CLd)

x(∧a(ab|CLd).∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

+
∑

e=abϵE3(CLd)

x(∧a(ab|CLd).∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

+
∑

e=abϵE4(CLd)

x(∧a(ab|CLd).∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

For convenient, we have calculated each summation separately to the corresponding
edge partition as mentioned early.
For edge partition E1:∑

e=abϵE1(CLd)

x(∧a(ab|CLd).∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd) =
∑

e=abϵE1(CLd)

x(1.2)22d

= 2dx(2)22d
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For edge partition E2:∑
e=abϵE2(CLd)

x(∧a(ab|CLd).∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd) =
∑

e=abϵE2(CLd)

x(1.3)22d

= (4d+ 2)x(3)22d

For edge partition E3:∑
e=abϵE3(CLd)

x(∧a(ab|CLd).∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

= 2dx(2.3)(44d−2) +

d∑
i=1

x(3.2)(22i−15)(22d+16−22i) +

d∑
i=1

x(2.3)(22i−16)(22d+17−22i)

+

d∑
i=1

x(3.2)(22i−11)(22d+12−22i) +

d∑
i=1

x(2.3)(22i−10)(22d+11−22i)

+

d∑
i=1

x(3.2)(22i+18−22i)(22i−17) +

d∑
i=1

x(2.3)(22d+17−22i)(22i−16)

+

d−1∑
i=1

x(2.3)22(i−1)(22d+1−22(i−1)) +

d−1∑
i=1

x(3+2)(22(i−1)+1)(22d−22(i−1))

= 2dx6(44d−2) +

d∑
i=1

x6(484(di−i2)+352i+330(i−d)−240) + 2

d∑
i=1

x5(484(di−i2)+374i+352(i−d)−272)

+

d∑
i=1

x6(484(id−i2)+264i+242(i−d)−132) +

d∑
i=1

x6(484(id−i2)+242i+220(i−d)−110))

+

d∑
i=1

x6(484(di−i2)+374(i−d)+396i−306) +

d−1∑
i=1

x6(22((22d+1)(i−1)−22(i−1)2))

+

d−1∑
i=1

x6(22d((22(i−1)+1))−(22(i−1)+1)(i−1))

= 2dx6(44d−2) +

d∑
i=1

(
x6(484(di−i2)+352i+330(i−d)−240) + 2

(
x6(484(di−i2)+374i+352(i−d)−272)

)
+ x6(484(id−i2)+264i+242(i−d)−132) + x6(484(id−i2)+242i+220(i−d)−110)

+ x6(484(di−i2)+374(i−d)+396i−306) +

d−1∑
i=1

x6(22((22d+1)(i−1)−22(i−1)2))

+

d−1∑
i=1

x6(22d((22(i−1)+1))−(22(i−1)+1)(i−1))

)
For edge partition E4:∑
e=abϵE4(CLd)

x(∧a(ab|CLd).∧b(ab|CLd))ℵa(ab|CLd)ℵb(ab|CLd)

= 3

d∑
i=1

x(3.3)(22i−16)(22d+17−22i) +

d∑
i=1

x(3.3)(22i−15)(22d+16−22i)
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+ 3

d∑
i=1

x(3.3)(22i−5)(22i+6−22i) +

d∑
i=1

x(3.3)(22i−4)(22d+5−22i)

= 3

d∑
i=1

x9(484(di−i2)+374i+352(d−i)−272) +

d∑
i=1

x9(484(di−i2)+352i+330(i−d)−240)

+ 3

d∑
i=1

x9(484(di−i2)+132i+110(i−d)−30) +

d∑
i=1

x9(484(di−i2)+110i+88(i−d)−20)

=

d∑
i=1

(
3
(
x9(484(di−i2)+374i+352(d−i)−272)

)
+ x9(484(di−i2)+352i+330(i−d)−240)

+3
(
x9(484(di−i2)+132i+110(i−d)−30)

)
+ x9(484(di−i2)+110i+88(i−d)−20)

)
Hence by summarizing these values obtained here for E1, E2,E3 and E4, we have

SzM (CLd, x) = 2dx2(22d) + (4d+ 2)x3(22d) + 2dx6(44d−2)

+

d∑
i=1

(
x6(484(di−i2)+352i+330(i−d)−240) + 2

(
x6(484(di−i2)+374i+352(i−d)−272)

)
+ x6(484(id−i2)+264i+242(i−d)−132) + x6(484(id−i2)+242i+220(i−d)−110

+ x6(484(di−i2)+374(i−d)+396i−306) + 3
(
x9(484(di−i2)+374i+352(i−d)−272)

)
+ x9(484(di−i2)+352i+330(i−d)−240) + 3

(
x9(484(di−i2)+132i+110(i−d)−30)

)
+x9(484(di−i2)+110i+88(i−d)−20)

)
+

d−1∑
i=1

x6(22(22d+1)(i−1)−22(i−1)2)

+

d−1∑
i=1

x6(22d(22(i−1)+1)−(22(i−1)+1)(i−1))

Hence the theorem. □

Using the results obtained here, the following remarks are easy to observe.

Remark 3.7. Sz
′
(CLd, 1) = Sz(CLd) and Sz(CLd, 1) = |E(CLd)|.

Remark 3.8. Sz
′

A(CLd, 1) = SzA(CLd) and SzA(CLd, 1) = |E(CLd)|.

Remark 3.9. Sz
′

M (CLd, 1) = SzM (CLd) and SzM (CLd, 1) = |E(CLd)|.

The following corollaries shows the relationship between szeged index, Addi-
tively weigted szeged index and Multiplicatively weigted szeged index for cellulose.

Corollary 3.10. SzA(CLd) = 5Sz(CLd)− 2Sz(E1)− Sz(E2) + Sz(E4).

Corollary 3.11. SzM (CLd) = 6Sz(CLd)− 4Sz(E1)− 3Sz(E2) + 3Sz(E4).

Corollary 3.12. Sz(CLd) < SzA(CLd) < SzM (CLd).

4. PADMAKAR-IVAN INDEX AND ITS POLYNOMIAL

In this section, we compute another interesting topological indices based on
distance called the Padmakar-Ivan index and its polynomial. Observe that for any
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edge e = ab of cellulose CLd has no equidistant vertices, thus we have ℵa(ab|CLd)+
ℵb(ab|CLd) = |V (CLd)|.

Theorem 4.1. Let CLd be the chemical graph of cellulose, then
PI(CLd) = 24d(22d+ 1).

Proof. To obtained the Padmakar-Ivan index of the CLd, by the definition of PI
index and from the Table 1., we have

PI(CLd) =
∑

e=abϵE(CLd)

(ℵa(ab|CLd) + ℵb(ab|CLd))

=
∑

e=abϵE1(CLd)

(ℵa(ab|CLd) + ℵb(ab|CLd)) +
∑

e=abϵE2(CLd)

(ℵa(ab|CLd) + ℵb(ab|CLd))

+
∑

e=abϵE3(CLd)

(ℵa(ab|CLd) + ℵb(ab|CLd)) +
∑

e=abϵE4(CLd)

(ℵa(ab|CLd) + ℵb(ab|CLd))

Since there is no equidistant vertices exist in CLd, thus we have

PI(CLd) = 2d(22d+ 1) + (4d+ 2)(22d+ 1) + (10d− 2)(22d+ 1) + 8d(22d+ 1)

= (2d+ 4d+ 2 + 10d− 2 + 8d)(22d+ 1)

= 24d(22d+ 1)

Hence the theorem. □

Theorem 4.2. Let CLd be the chemical graph of cellulose, then
PIA(CLd) = (120d− 2)(22d+ 1).

Proof. To obtained the Additively weighted Padmakar-Ivan index of the CLd, by
the definition of Additively weighted PI index and from the Table 1., we have

PIA(CLd) =
∑

e=abϵE(CLd)

(∧a(ab|CLd) + ∧b(ab|CLd))(ℵa(ab|CLd) + ℵb(ab|CLd))

=
∑

e=abϵE1(CLd)

(1 + 2)(ℵa(ab|CLd) + ℵb(ab|CLd)) +
∑

e=abϵE2(CLd)

(1 + 3)(ℵa(ab|CLd) + ℵb(ab|CLd))

+
∑

e=abϵE3(CLd)

(2 + 3)(ℵa(ab|CLd) + ℵb(ab|CLd)) +
∑

e=abϵE4(CLd)

(3 + 3)(ℵa(ab|CLd) + ℵb(ab|CLd))

= 2d(1 + 2)|V (CLd)|+ (4d+ 2)(1 + 3)|V (CLd)|+ (10d− 2)(2 + 3)|V (CLd)|
+ (8d)(3 + 3)|V (CLd)|
= (6d+ 16d+ 8 + 50d− 10 + 48d)|V (CLd)|
= (120d− 2)|V (CLd)|, since |V (CLd)| = 22d+ 1

= (22d+ 1)(120d− 2)

Hence the theorem. □

It should be noted that a similar method can also be used in the study of
more general Gaussian-type indices see [5] on generalized distance Gaussian Estrada
index of graph.

Theorem 4.3. Let CLd be the chemical graph of cellulose, then
PIM (CLd) = (148d− 6)(22d+ 1).
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Proof. To obtained the Multiplicatively weighted Padmakar-Ivan index of the CLd,
by the definition of Multiplicatively weighted PI index and from the Table 1., we
have

PIM (CLd) =
∑

e=abϵE(CLd)

(∧a(ab|CLd). ∧b (ab|CLd))(ℵa(ab|CLd) + ℵb(ab|CLd))

=
∑

e=abϵE1(CLd)

(1.2)(ℵa(ab|CLd) + ℵb(ab|CLd)) +
∑

e=abϵE2(CLd)

(1.3)(ℵa(ab|CLd) + ℵb(ab|CLd))

+
∑

e=abϵE3(CLd)

(2.3)(ℵa(ab|CLd) + ℵb(ab|CLd)) +
∑

e=abϵE4(CLd)

(3.3)(ℵa(ab|CLd) + ℵb(ab|CLd))

= 2d(2)|V (CLd)|+ (4d+ 2)(3)|V (CLd)|+ (10d− 2)(6)|V (CLd)|+ (8d)(9)|V (CLd)|
= (4d+ 12d+ 6 + 60d− 12 + 72d)|V (CLd)|
= (148d− 6)|V (CLd)|, since |V (CLd)| = 22d+ 1

= (148d− 6)(22d+ 1)

Hence the theorem. □

The relationships between the Padmakar-Ivan index, Additively weighted
Padmakar-Ivan index, and Multiplicatively weighted Padmakar-Ivan index for the
cellulose graphs are shown in the following corollaries.

Corollary 4.4. PIA(CLd) = 4PI(CLd) + |V (CLd)||E(CLd)| − 2|V (CLd)|.

Corollary 4.5. PIM (CLd) = 3PI(CLd) + 2(38d− 3)|V (CLd)|.

Corollary 4.6. PI(CLd) < PIA(CLd) < PIM (CLd).

Example 4.7. One can check the above corollaries for, d = 3, with |V (CL3)| = 67,
|E(CL3)| = 72, PI(CL3) = 4824, PIA(CL3) = 23986, PIM (CL3) = 29346.

One may generalize the above corollaries for any molecular structure. To
the continuity of the above result, now we derive the PI related polynomial’s of
cellulose.

Theorem 4.8. Let CLd be the chemical graph of cellulose, then PI(CLd, x) =
24dx(22d+1).

Proof. To obtained the Padmakar-Ivan polynomial of the CLd, by the definition of
Padmakar-Ivan polynomial and from the Table 1., we have

PI(CLd, x) =
∑

e=abϵE(ab|CLd)

x(ℵa(ab|CLd)+ℵb(ab|CLd))

=
∑

e=abϵE1(CLd)

x(ℵa(ab|CLd)+ℵb(ab|CLd)) +
∑

e=abϵE2(CLd)

x(ℵa(ab|CLd)+ℵb(ab|CLd))

+
∑

e=abϵE3(CLd)

x(ℵa(ab|CLd)+ℵb(ab|CLd)) +
∑

e=abϵE4(CLd)

x(ℵa(ab|CLd)+ℵb(ab|CLd))

= 2dx|V (CLd)| + (4d+ 2)x|V (CLd)| + (10d− 2)x|V (CLd)| + 8dx|V (CLd)|

= (2d+ 4d+ 2 + 10d− 2 + 8d)x(22d+1), since |V (CLd)| = 22d+ 1
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= 24dx(22d+1)

Hence the theorem. □

In this connection now we can obtained the weighted PI related polynomial
using the Table 1.

Theorem 4.9. Let CLd be the chemical graph of cellulose, then
PIA(CLd, x) = 2dx3(22d+1)+(4d+2)x4(22d+1)+(10d−2)x5(22d+1)+(8d)x6(22d+1)|.

Proof. To obtained the Additively weighted PI polynomial of the CLd, by the def-
inition of Additively weighted PI polynomial and from the Table 1., we have

PIA(CLd, x) =
∑

e=abϵE(CLd)

x(∧a(ab|CLd)+∧b(ab|CLd))(ℵa(ab|CLd)+ℵb(ab|CLd))

=
∑

e=abϵE1(CLd)

x(1+2)(ℵa(ab|CLd)+ℵb(ab|CLd)) +
∑

e=abϵE2(CLd)

x(1+3)(ℵa(ab|CLd)+ℵb(ab|CLd))

+
∑

e=abϵE3(CLd)

x(2+3)(ℵa(ab|CLd)+ℵb(ab|CLd)) +
∑

e=abϵE4(CLd)

x(3+3)(ℵa(ab|CLd)+ℵb(ab|CLd))

= 2dx(1+2)|V (CLd)| + (4d+ 2)x(1+3)|V (CLd)| + (10d− 2)x(2+3)|V (CLd)| + (8d)x(3+3)|V (CLd)|,

since |V (CLd)| = 22d+ 1

= 2dx3(22d+1) + (4d+ 2)x(4(22d+1) + (10d− 2)x(5(22d+1) + 8dx6(22d+1)

Hence the theorem. □

Theorem 4.10. Let CLd be the chemical graph of cellulose, then
PIM (CLd, x) = 2dx2(22d+1)+(4d+2)x3(22d+1)+(10d−2)x6(22d+1)+(8d)x9(22d+1).

Proof. To obtained the Multiplicatively weighted PI polynomial of the CLd, by
the definition of Multiplicatively weighted PI polynomial and from the Table 1.,
we have

PIM (CLd, x) =
∑

e=abϵE(CLd)

x(∧a(ab|CLd).∧b(ab|CLd))(ℵa(ab|CLd)+ℵb(ab|CLd))

=
∑

e=abϵE1(CLd)

x(1.2)(ℵa(ab|CLd)+ℵb(ab|CLd)) +
∑

e=abϵE2(CLd)

x(1.3)(ℵa(ab|CLd)+ℵb(ab|CLd))

+
∑

e=abϵE3(CLd)

x(2.3)(ℵa(ab|CLd)+ℵb(ab|CLd)) +
∑

e=abϵE4(CLd)

x(3.3)(ℵa(ab|CLd)+ℵb(ab|CLd))

= 2dx(2)|V (CLd)| + (4d+ 2)x(3)|V (CLd)| + (10d− 2)x(6)|V (CLd)| + (8d)x(9)|V (CLd)|,

since |V (CLd)| = 22d+ 1

= 2dx2(22d+1) + (4d+ 2)x3(22d+1) + (10d− 2)x6(22d+1) + (8d)x9(22d+1)

Hence the theorem. □

Finally we observe the following remarks, which follows easily from the re-
sults discussed here.

Remark 4.11. PI
′
(CLd, 1) = PI(CLd) and PI(CLd, 1) = |E(CLd)|.

Remark 4.12. PI
′

A(CLd, 1) = PIA(CLd) and PIA(CLd, 1) = |E(CLd)|.

Remark 4.13. PI
′

M (CLd, 1) = PIM (CLd) and PIM (CLd, 1) = |E(CLd)|.
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5. CONCLUSION

In this study, we primarily calculate the bond-additive based indices such as
szeged, PI, weighted Szeged, weighted PI and their polynomials of cellulose graphs
using chemical graph analysis are distance calculation. Our theoretical formula-
tions demonstrate the great potential for practical implementation in pharmacy
and chemical engineering. As directed networks often predict complex dynamical
behaviors more faithfully than undirected networks, it is desirable to bring direct-
ness to higher-order structures in the future.
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Journal of mathematical chemistry, 56(10), (2018), 2995-3013.

[14] Ghorbani, M. and Jalali, M., The Vertex PI, Szeged and Omega Polynomials of Carbon
Nanocones CNC4[n], MATCH Commun. Math. Comput. Chem. 62, (2009), 353-362.

[15] Ghorbani, M. and Hemmasi, M., The Vertex PI and Szeged Polynomials of an Infinite Family

of Fullerenes, Journal of Computational and Theoretical Nanoscience, 7, (2010), 2411-2415.
[16] Gutman, I. and Dobrynin, A., The Szeged index - a success story,Graph Theory Notes New

York, 34, (1998), 37-44.

[17] Gutman, I. and Ashrafi, A.R., On the PI Index of Phenylenes and their Hexagonal Squeezes,
MATCH Commun. Math. Comput. Chem., 60, (2008), 135-142.

[18] Gupta, P.K., Raghunath, S.S., Prasanna, D.V., Venkat, P., Shree, D.V., Chithananthan,

C., Choudhary, S., Surender, K., and Geetha, K., An Update on Overview of Cellulose, Its
Structure and Applications, web of science, intech open, (2019), 1-23.



20 P. Kandan, S. Subramanian
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