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Abstract. Horadam introduced a generalized sequence of numbers, describing its

key features and the special sub-sequences obtained from specific choices of initial

parameters. This sequence and its sub-sequences are known as the Horadam, gener-

alized Fibonacci, and generalized Lucas numbers, respectively. In the present study,

we propose another new sequence, which satisfies a second-order recurrence relation.

Further, we prove the Binet’s formula, some famous identities, and summation for-

mulas for this new sequence. In particular, we demonstrate the interrelationships

between our new sequence and the Horadam sequence.
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1. Introduction

In [1], Horadam considered a generalized form of the classic Fibonacci num-
bers, changing the initial terms F0 = 0 and F1 = 1 to a and b, respectively. Then
in [2], Horadam defined the second-order linear recurrence sequence wn (a, b; p, q)
as

wn = pwn−1 − qwn−2 (1)

with w0 = a and w1 = b. This generalizes many sequences of integers; e.g., the
Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas, Generalized Fi-
bonacci and Generalized Lucas sequences. The Binet’s formula for the Horadam
sequence is

wn =
Aαn −Bβn

α− β
. (2)

Here, the author used the notations

α =
p+ d

2
, β =

p− d

2
, A = b− aβ, B = b− aα and d =

√
p2 − 4q. (3)

One can readily show that

α+ β = p, αβ = q, α− β = d,
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A+B = 2b− ap, A−B = ad, and AB = b2 − abp+ a2q = E.

In working with this sequence, it is useful to consider the following special cases:

wn (0, 1; p, q) = un (p, q)

wn (2, p; p, q) = vn (p, q) .

We note that the Binet’s formulas for these special cases are

un =
αn − βn

d
,

vn = αn + βn.

For positive integers n, Horadam [3] has given the following formulas for wn,
un, and vn :

w−n = q−n
aun − bun−1

aun + (b− pa)un−1
, u−n = q−n+1un−2 and v−n = q−nvn.

In [4], Horadam presented some geometric interpretations of the Horadam
sequence including the Pythagorean property. In [5], Morales defined the 2 × 2
matrix

U (p, q) =

[
p −q
1 0

]
and showed that

Un (p, q) =

[
un+1 −qun
un −qun−1

]
.

For brevity, we denote the matrix U (p, q) by R unless stated otherwise.

In this paper, we define a new generalization hn (a, b; p, q) of the well-known
second-order linear sequences, i.e., of the Fibonacci, Lucas, Pell, Jacobsthal, Gener-
alized Fibonacci, and Generalized Lucas sequences. We present many results from
this new generalization, including the Binet’s formula, the d’Ocagne’s and Gelin-
Cesáro identities, and some summation formulas. Further, we give some special
identities of hn (a, b; p, q) via matrix techniques.

The paper is organized as follows. Section 2 introduces our main definition
and the related special cases. While Section 3 presents some elementary properties
and identities corresponding to our generalized definition, Section 4 develops a
matrix approach to the respective generalized sequences to obtain determinantal
results.

2. Main Results

We can give the definition of our generalized sequence as follows.

Definition 2.1. Let n be any integer. Then, for n > 2, we define

hn = phn−1 − qhn−2, (4)

with the initial conditions h0 = 2b− ap and h1 = bp− 2aq.
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Table 1. Sequences corresponding to different choices of a, b, p,
and q.

a b p q Horadam sequence Horadam-Lucas sequence

0 1 1 -1 Fibonacci numbers Lucas numbers

0 1 2 -1 Pell numbers Pell-Lucas numbers

0 1 1 -2 Jacobsthal numbers Jacobsthal-Lucas numbers

Note that the definitions in (1) and (4) allow us to investigate, respectively,
the primary sequences, e.g. Fibonacci and Pell numbers, and the secondary se-
quences, e.g. the Lucas and Pell-Lucas numbers, at the same time. Briefly, then
hn may be considered to be a companion sequence to wn. This is summarized in
Table 2.

We call the recurrence relation in (4) a Horadam-Lucas sequence due to Ho-
radam’s great contribution to the subject of this paper. Depending on the choice
of a, b, p, and q, we already know that many second-order sequences can be con-
structed. Further, for each of these sequences, we must consider a different choice
of the corresponding parameters. But, our definition is probably the most special
one. This statement is supported by the following theorem. Then it’s time to give
the Binet’s formula for the Horadam-Lucas sequence, which we shall extensively
use later.

Theorem 2.2 (Binet’s formula). For every integer n, we have the Binet’s formula

hn = Aαn +Bβn, (5)

where A = b− aβ and B = b− aα, as given by Horadam [2].

Proof. Eq. (4) is a second-order linear homogeneous difference equation with con-
stant coefficients which has the form

xn = pxn−1 − qxn−2. (6)

We assume that there is a solution to Eq. (4) of the form

xn = λn, (7)

where λ is a constant to be determined. Substituting Eq. (7) into Eq. (6) yields

λn = pλn−1 − qλn−2.

In particular, for n = 2, we have

λ2 − pλ+ q = 0, (8)

which was given by Horadam [3]. The roots of Eq. (8) are

λ1 = (p+ d) /2 = α and λ2 = (p− d) /2 = β. (9)
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The notations used here were given in Eq. (3). As a result, we have found two
independent solutions to Eq. (6) in the form of Eq. (7). Hence, a linear combination
of these two solutions is also a solution of Eq. (4), namely

hn = c1α
n + c2β

n.

Considering the initial conditions for our definition, we can write

c1 + c2 = 2b− ap

c1α+ c2β = bp− 2aq.
(10)

If the system of equations in (10) is solved, we obtain the two solutions

c1 = b− aβ and c2 = b− aα

and the result follows. �

Particular cases of the Horadam-Lucas sequence are as follows:

• For a = 1, b = p, we can write

hn (1, p; p, q) = Aαn +Bβn = vn+1.

• For a = 2, b = p, we can write

hn (1, p; p, q) = Aαn +Bβn = d2un.

With the above-mentioned, the presentation of the definitions related to our
generalized sequence is thus exhausted. In this context, we can now expand the
current study to discover fundamental identities.

3. Special Identities of Horadam-Lucas Sequence

In this section, we present some special properties of the generalized sequence
defined in (4). We first define the generating function given in the form

h (x) =

∞∑
n=0

hnx
n. (11)

Then we can state the following theorem.

Theorem 3.1. The generating functions of the Horadam-Lucas sequence are given
by

h (x) =
h0 + (h1 − ph0)x

1 − px+ qx2
. (12)

Proof. Summing these equations after setting up h (x), −pxh (x) and qx2h (x) read-
ily yields the first result. �

Theorem 3.2 (De Moivre’s Formula). Let xn = hn+1−qhn−1 and k be any integer.
Then, we have (

xn + hnd

2Ad

)k

=
xkn + hknd

2Ad
. (13)



120 A. Daşdemir

Proof. From Eq. (5), we can write

hn+1 = (Aα)αn + (Bβ)βn

hn = Aαn +Bβn.

Solving this system of equations permits us to obtain

αn =
hn+1 − βhn

Ad
and βn = −hn+1 − αhn

Bd
.

Since (αn)
k

= α(nk), with a little computation, the result follows. �

Note that Eq (13) has a similar form with the famous de Moivre’s formula.

Theorem 3.3 (Pythagorean formula). Let n be any integer. Then, we have(
p

q2
hnhn+3

)2

+ (2Phn+2 (2Phn+2 − hn))
2

=
(
h2n + 2Phn+2 (2Phn+2 − hn)

)2
,

where P = p2−q
2q2 .

Proof. Using Eq. (4), we can write(
p2 − q

)
hn+2 − phn+3 = q2hn(

p2 − q
)
hn+2 + phn+3 = 2

(
p2 − q

)
hn+2 − q2hn.

Multiplying these equations side-by-side, we obtain(
p2 − q

)2
h2n+2 − p2h2n+3 = 2q2

(
p2 − q

)
hnhn+2 − q4h2n

and we rearrange it to obtain

(phn+3)
2

=
((
p2 − q

)
hn+2

)2 − 2q2
(
p2 − q

)
hnhn+2 +

(
q2hn

)2
.

Dividing by q2 after multiplying the last equation by h2n and then adding the term(
p2 − q

)
hn+2

((
p2 − q

)
hn+2 − 2q2hn

)
to each side, we obtain the result. �

From Theorem 3.3, we also obtain the following result.

Corollary 3.4. All Pythagorean triples can be generated in terms of Horadam-
Lucas numbers.

Theorem 3.5. For any integer n, we have

hn+1
2 − qhn

2 = d2
[(
b2 − a2q

)
u2n+1 − aq (2b− ap)u2n

]
. (14)

Proof. To prove this property, we use the Binet’s formula for hn.

hn+1
2 − qhn

2 =
(
Aαn+1 +Bβn+1

)2 − q (Aαn +Bβn)
2

= A2α2n+2 +B2β2n+2 + 2Eqn+1 − q
(
A2α2n +B2β2n + 2Eqn

)
= A2α2n+2 +B2β2n+2 − qA2α2n − qB2β2n

= A2
(
α2 − q

)
α2n +B2

(
β2 − q

)
β2n (15)
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Here after some mathematical operations, we can write

A2
(
α2 − q

)
= d

[(
b2 − a2q

)
α− aq (2b− ap)

]
and

B2
(
β2 − q

)
= −d

[(
b2 − a2q

)
β − aq (2b− ap)

]
.

Substituting these equations into Eq. (15) yields the desired result. �

We next prove the following important theorem, which can be used to obtain
a number of special identities.

Theorem 3.6 (Vajda’s identity). Let n, r, and s be any integers. Then,

hn+shn−r − hnhn−r+s = Eqn−r (vr+s − qsvr−s) . (16)

Proof.

hnhn−r+s−hn+shn−r = (Aαn +Bβn)
(
Aαn−r+s +Bβn−r+s

)
−
(
Aαn+s +Bβn+s

) (
Aαn−r +Bβn−r)

= E
(
αnβn−r+s + αn−r+sβn − αn−rβn+s − αn+sβn−r)

= E
(
αn−r+sβn−r+s

(
αr−s + βr−s)− αn−rβn−r (αr+s + βr+s

))
= E

(
qn−r+svr−s − qn−rvr+s

)
= −Eqn−r (vr+s − qsvr−s) ,

which is the desired result. �

From Vajda’s identity, we also have the following special identities:

• For r = s, we obtain the Catalan’s identity:

hn+rhn−r − h2n = Eqn−r (v2r − 2qr) (17)

• For r = s = 1, we find the Cassini’s identity:

hn+1hn−1 − h2n = Ed2qn−1 (18)

• For n− r = m and s = 1, we recover the d’Ocagne’s identity:

hmhn+1 − hnhm+1 = Eqm (vn−m+1 − qvn−m−1) (19)

In addition, we can prove the following theorem.

Theorem 3.7 (Gelin-Cesáro identity). For any integer n, we have

hn−2hn−1hn+1hn+2 − h4n = Ed2qn−2
[(
p2 + q

)
h2n + Ed2p2qn−1

]
. (20)

Proof. For r = 2 in (17), we obtain

hn+2hn−2 − h2n = Ed2p2qn−2.

Combining the last equation with Cassini’s identity, we can write

hn−2hn−1hn+1hn+2 =
(
h2n + Ed2qn−1

) (
h2n + Ed2p2qn−2

)
= h4n +

(
Ed2qn−1 + Ed2p2qn−2

)
h2n + Ed2qn−1Ed2p2qn−2.

The last equation completes the proof. �
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The next theorem provides a number of summation formulas for the Horadam-
Lucas numbers.

Theorem 3.8. Let n be any integer. Then, we have
n∑

i=1

hi =
hn+1 − qhn − h1 + qh0

p− q − 1
(21)

and
n∑

i=1

(−1)
i
hi =

(−1)
n

(hn+1 + qhn) − h1 − qh0
p+ q + 1

, (22)

Proof. We prove only the first summation formula. Let us denote the right-hand
side of Eq. (21) by an. By the definition of the Horadam-Lucas numbers, we obtain

at − at−1 = ht.

Applying the idea of “creative telescoping” [6] to Eq. (21), we conclude
n∑

i=1

hi =

n∑
t=0

(at − at−1) = an − a−1,

and since a−1 = 0, the result follows. �

4. Matrix Approach to Second-order sequences

Note that the terms of the sequences in (1) and (4) may also be stated as
matrix recurrence relations. We define

Wn =

[
wn+1 wn

wn wn−1

]
and Hn =

[
hn+1 hn
hn hn−1

]
. (23)

Then we can write

Wn = RWn−1 and Hn = RHn−1. (24)

Extending the right-hand side of Eqs. (24) to zero, we obtain

Wn = RnW0 and Hn = RnH0, (25)

where

W0 =

[
b a

a pa−b
q

]
and H0 =

[
bp− 2aq 2b− ap

2b− ap
bp−a(p2−2q)

q

]
.

By Eq. (25), we can also obtain the following theorem:

Theorem 4.1 (Honsberger formula). Let n and m be any integers. Then, we have

hn+m = umhn+1 − qum−1hn. (26)

Proof. Replacing n+m by n in Eq. (25), we can write

Hn+m+1 = Rn+m+1H0 = Rn+1Hm.

The bottom right entry of the matrix Hn+m+1 is equal to the bottom right entry
of the product matrix, which gives the first result. �
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Note that in Theorem 4.1, symmetric exchanges of n with m in each equation
are possible.

Theorem 4.2. For any integers n and k, we can write

hn−k = q1−k (ukhn−1 − uk−1hn) = q−k (hnuk+1 − hn+1uk) (27)

and

wn−k = q1−k (ukwn−1 − uk−1wn) = q−k (wnuk+1 − wn+1uk) . (28)

Proof. By Eq. (25), we obtain

Hn−k = Rn−kH0 = R−kRnH0 =
(
Rk
)−1

Hn.

By Eq. (18) after computing the inverse of Rk, we can write

Hn−k =
1

qk

[
q (ukhn − uk−1hn+1) q (ukhn−1 − uk−1hn)
uk+1hn − ukhn+1 uk+1hn−1 − ukhn

]
.

This completes the proof of Eq. (27). Eq. (28) can be proved similarly. �

From Theorems 4.1 and 4.2, we obtain the following conclusion:

Theorem 4.3 (Melham identity). Let n and k be any integers. Then,

hn+k+1
2 − q2k+1hn−k

2 = d2u2k+1

[(
b2 − a2q

)
u2n+1 − aq (2b− ap)u2n

]
. (29)

Proof. Considering Eqs. (26) and (27), we can write

hn+k+1
2 − q2k+1hn−k

2 = uk+1
2hn+1

2 + q2uk
2hn

2 − 2quk+1ukhn+1hn

− q2k+1q−2k
{
hn

2uk+1
2 + hn+1

2uk
2 − 2uk+1ukhn+1hn

}
=
(
uk+1

2 − quk
2
) (
hn+1

2 − qhn
2
)

Applying Eq. (14) to the last equation, we obtain the claimed result. �

Theorem 4.4 (General bilinear formula). Let a, b, c, d, and r be any integers
satisfying a+ b = c+ d. Then, we have

uahb − uchd = qr (ua−rhb−r − uc−rhd−r) (30)

and

uawb − ucwd = qr (ua−rwb−r − uc−rwd−r) . (31)

Proof. Employing the matrix equations in (23) and (24), we obtain RaHb = RcHd.
Considering the bottom left entry of the result, we can write

uahb − uchd = q (ua−1hb−1 − uc−1hd−1) .

Repeating the same operations r times yields Eq. (30). The other result can be
proved in a similar way. �
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5. Conclusion

The present work describes a new class of a second-order integer sequence that
are closely related to Horadam’s generalized one. In this scope, the main definition
and the related Binet-type formula are given. To be clear, it is called the Horadam-
Lucas sequence. We give some special identities for this generalized sequence,
including De Moivre’s Formula, Pythagorean formula, Vajda’s identity, and Gelin-
Cesáro identity. A matrix treatment using the determinantal and multiplicative
properties is developed to achieve additional results such as the Melham identity
and General bilinear formula.
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