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Abstract. Some methods have been used to express a finitely generated module
over a principal ideal domain as a finite direct sum of its cyclic submodules. In this
paper, we give an alternative technique to decompose a free module with finite rank

over a principal ideal domain using eigen spaces of its endomorphism ring.

Endomorphism, Free Module, Principal Ideal Domain, Eigen Space.

1. INTRODUCTION

There are many decompositions of a module that are brought up to make
it easy to analyze like the decomposition of a vector space by its basis [1]. Some
research on the decomposition of a finitely generated module had been conducted
such as by Hadjirezaei and Hedayat [3] who studied its decomposition using fitting
ideals. A recent study gives a new way of proving the Main Fundamental Theorem
for the finitely generated module over a principal ideal domain (PID) was carried
out in 2020 in a favor of the module decomposition [4].

A study on matrices over a commutative ring investigated the properties of
eigenspaces of a matrix. It was concluded that the eigenspace of a matrix over a
commutative ring no need to have a basis. In this paper, we provide another tech-
nique to decompose a free module over a principal ideal domain with finite rank
using its module endomorphism. First, we generalize the concept of the eigenspaces
of a matrix into a general module endomorphism and then express this free module
into a direct sum of these eigenspaces. Moreover, some particular matrices are also
used in finding such endomorphism.
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General properties, such as operations, determinants, etc on M, (R), the set
of square matrices over a ring with unity R, have been defined as those in matrices
over a field, see the details on [2]. In this paper, U(R) will denote the set of all
units in R. Some basic theories and notations are given as follows.

Definition 1.1. [2] Let A € M,,«n(R) and suppose 1 <t < min{m,n}. The ¢t x t
minor of A is the determinant of a t X t submatriz of A.

Theorem 1.2. [2] If A € M,,(R), then A is invertible if and only if det(A) € U(R).

Definition 1.3. [2] Let A € My,xn(R). For each t = 1,...,1 = min{m,n}, I;(A)
will denote the ideal in R generated by all t X t minors of A. Moreover, for any
integer t > min{m,n} and t <0, I;(A) = {0} and I;(A) = R respectively.

Definition 1.4. [2] Let A € M,,xn(R). The rank of A, denoted by rk(A) is the
following integer: rk(A) =max {t|Anng(I:(A)) = 0}, where Anng(I;(A)) denotes
the annihilator of I(A).

Theorem 1.5. [2] If A € M,,(R), then rk(A) < n if and only if det(A) € Z(R).

Theorem 1.6. [2] Given A € My,xn(R). The homogenous linear system Az =0
has a non-trivial solution if and only if rk(A) < n.

Now, the definition of eigen value and eigen vector of a square matrix over R
is given as follows.

Definition 1.7. [2] Given A be a matriz in M, (R).

(1) An elementd € R is called as eigen value of A if A& = d€ for some non-zero
vector £ € R™.

(2) A non-zero vector § € R™ is called an eigen vector of A if AL = d€ for
somed € R

(3) Let d be an eigen value of A. E(d) = {{ € R™|AE = d&} is called the eigen
space associated to d.

In the definition, it is clear that E(d) = NS(dI — A), where NS(dI — A)
denotes the null space of the matrix dI — A [2]. Now we move to some basic
definitions and theorems in module theory.

Definition 1.8. [5] A module M over R is called the direct sum of a family F =
{S;|i € I} of submodules of M, denoted by M = @ F or M = €D, ; S; if satisfying:

(1) M = Ez‘eISi
(2) For eachi €I, S;N (3, 5;) ={0}.

iel

Subsequently, the definition of rank of a free module over a commutative ring
with unity is given as follows.

Definition 1.9. [5] Suppose R is a commutative ring with unity. The rank of a
nonzero R-free module M, denoted by rk(M), is the cardinality of any basis for M.
Moreover, the trivial module {0} has rank 0.
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Note that we used same symbol for the rank of a module and that of a matrix
as those two definitions are analogous like in vector spaces. Moreover, when the
base ring is a principal ideal domain, some significant properties apply.

Theorem 1.10. [5] Let M be a free module over a principal ideal domain R. Any
submodule S of M is also free and rk(S) < rk(M).

Theorem 1.11. [5] A finitely generated module over a principal ideal domain is
free if and only if it is torsion-free.

2. MAIN RESULTS

We begin this section by defining the notion of eigen vector of a module
endomorphism over a commutative ring with unity.

Definition 2.1. [2] Given M be an R-module and 6 : M — M be an endomor-
phism. An eigen vector of 0 is a non-zero vector v in M satisfying 0(v) = v for
some A € R. The scalar X\ is called the eigen value of 6 associated with the eigen
vector v.

Now we have a properties that the characterization polynom value must be
a zero or a zero divisor, and we give the notation Z(R) is the collection of zero
divisor of ring R with zero element.

Theorem 2.2. Given M be a free R-module with rank n. Let A = [0]p be a
representation matriz of an endomorphism 0 : M — M, where B is a basis of M.
A scalar X\ € R is an eigen value of 0 if and only if Ca(N\) € Z(R).

Proof. Let A € R be an eigen value of 6. Hence 6(v) = Av for some v € M and
v # 0. This implies [#(v)]p = Av]p or we can write AI,[v]p — A[v]p = (A, —
A)v]p = 0. Since v # 0, we have [v]p # 0, which means that the equation has a
nonzero solution. By Theorem (1.6), we have rk(AI,, — A) < n, and so by Theorem
(1.5), Ca(N) = det(A\l, — A) € Z(R). Conversely, suppose that Cx(\) € Z(R).
By Theorem (1.5), we have rk(A, — A) < n, and by Theorem (1.6) we have
(A, — A)w = 0 for some w € R",w # 0. Now, set v € M that satisfies [v]g = w,
hence 6(v) = v. O

In the rest of this paper, R will denote a principal ideal domain and M will
be a free module with finite rank over R. Also, the set of all eigen values of an
endomorphism 6 will be denoted by R(9).

Theorem 2.3. Given rk(M) = n and 8 : M — M be an endomorphism on
free module M. The set of eigen wvectors from distinct eigen spaces is linearly
independent.

Proof. Let S = {vy,vs,...,u,} be a set of eigen vectors with v; is an eigen vector
associated with eigen value A\; where A\; # A; when ¢ # 7, 4,5 = 1,2,...,7. Suppose
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S is linearly dependent. Since M is free, we have every non zero singleton set in
M is linearly independent. Now, let k be the greatest number where 1 < k < r
(obtained by re-indexing if necessary) so that {v1, v, ..., vk } is linearly independent.
Hence {v1,va, ..., Uk, Vgp+1} is linearly dependent. Hence the equation rivy + rove +
oo + TRV + TE11VE+1 = 0 is not only satisfied by all scalars with zero values, which
at least (without loss of generality) Ap+1 # 0 . From this equation we obtain
r10(v1) + 120(v2) + ... + 1E0(vk) + rp4160(Vi+1) = 0 or i.e with riAjv1 + rodave +
e F TEARVE + Th41 Ak+1Vk+1 = 0 . By a multiplication of A\;41 to the first equation
and then subtract with the second equation, we have r1 (Ag41 — A1)vr + ro(Agp1 —
A2)vg + . + 7 (Ag+1 — Ak)vr = 0. By the independence of {vq, va, ..., vk}, then we
have r;(Ag41 — A;) =0 for all 4 = 1,2,..., k. Since A1 # A\; and R is an integral
domain, r; =0 for all i = 1,2, ..., k. So we have ri41v;+1 = 0 and implies rg1q1 = 0,
which is a contradiction. ([

It is worth noting that the corollary below is a direct result of the indepen-
dence condition on Theorem 2.3.

Corollary 2.4. Let 0 : M — M be an endomorphism with R(0) is all different
etgen value of 0. Hence 3, cr gy Ex = @ircr(o) Er-

In fact, we can consider R™ as an R-module. The following theorem will tell
us not only about the existence of a decomposition of R? into some eigen spaces
but it will also give a method to find such eigen spaces.

a b

Theorem 2.5. If A = 0 c} € Ms(R) such that a—c # 0, then R? = E(a)® E(c)

if and only if (a —c¢) | b.

Proof. If A = {g ﬂ € Ms(R) such that a — ¢ # 0, then the set of all eigen values
of A, R(A) = {a,c}. For A = a we have E(a) = NS {8 a_—bc] =R [(1)}
For A = ¢, we have E(c) = NS {caa _Ob

If (a —¢) | b, then we have E(c) = R _1k for k € R such that b = k(a — ¢).
By Theorem (2.3), S = { [(1)] , [ k} is linearly independent. Moreover, R? is also

1
. 1 —k
spanned by S, since det 0 1

Conversely, if R? = E(a) ® E(c), then R? has a basis containing eigen vectors from
E(a) and E(c). Since E(a) = R B], and R? = E(a) ® E(c) then there exists
e, f € R with f € U(R) such that (¢ —a)e — bf = 0. Noted that f must be a
unit, otherwise it has no basis. This implies b = (¢ — a)ef~!, and means that
(c—a)|b. O

=1 € U(R). This implies R? = E(a) & E(c).
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Now, let consider for a free module R™ with rank n for any n > 2.

aix aiz -+ Gin
0 ax -+ a2

Theorem 2.6. Given A = ) € M, (R) with a;; —agx # 0 for
0 0 - an,

any i # k. If (ai; — ag) | aij for alli < j <n, then R™ = @}, E(a;).

Proof. To prove this, we necessary show that the eigen vectors of \; has the
form (kiit, kiot,...,t,0,...,0) = t(k;1, k2, ..., 1,0,...,0) where t € R and for some
ki1, kiz, ..., kii—1) € R i.e with having an eigen vector with 1 at the i-th component
and 0 for all j-components when j > i. We will prove this by induction on n. For
n = 2, it has been proved by Theorem (2.5). Suppose this is true for n = k — 1.
Now, let n = k and consider the characteristic equation of A, that is:

A— a1 —ai2 s —aik
0 A—ag -+ —ag
IAN[— Al = ) =0, hence \; = a;; for alli =1,..., k.
0 0 )\—akk

It is clear that for every i = 1, ..., k—1, we have xj, the k-th component of the eigen
vector associated to A; must be 0 since a;; —agr # 0. Hence the remaining equations
are including k£ — 1 equations and k£ — 1 indeterminates. By the induction hypoth-
esis which is the remaining sub-matrix having (k — 1) x (k — 1) size and together
with the fact that x; = 0, then the eigen vectors for \; for every i = 1,....,k — 1
when n = k are have the form ¢(k;1, ki2,...,1,0,...,0) where t € R and for some
ki1, kizy .., kii—1) € R. Moreover, when A = ay, we have the i-th equation for
each 1 < i < (k — 1) on the linear system obtained from the characteristic equa-
tion is (akk — a”)xz — Z?:i-&-l AT = 0. Since (akk — a”) | aij,Vj =i+1,..,k
and (agr — ai;) # 0, we have x; = Z;‘::'Hrl lijz; for some l;; € R satisfying
lij(axk — ai;) = ai;. Moreover we can see that every x; for j = i+ 1,...,k -1
can be expressed in the xj form which implies that x; = d;z; for some d; € R.
Hence, if 2, = s for s € R, then the eigen vector (z1,zs,...,2;)7 associated to A
has the form s(dj,ds,...,1). This implies that for any n > 2, we have obtained
n eigenvectors that span R™. The independence of the vectors is guaranteed by
Theorem (2.3). Therefore, we can write R" = @, E(ai;). O

One can easily conclude that the Theorem 2.5 and Theorem 2.6 deal for a
lower triangular matrix with a similar way of construction.

Now we will use Theorem (2.6) to express any module with finite rank into
a direct sum of its eigenspaces. This is stated in the following theorem.

Theorem 2.7. Given M be a free R-module with rank n and B be any basis of M
and with 0 : M — M be an endomorphism with representation matriz [0]g as on

Theorem (2.6). Hence M = @, cr(p) E(N).
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Proof. By Theorem (2.6), choose any basis S = {v1,va,...,v,} of R" where {v;}
is a basis for the i-th eigen space of [0]p with i = 1,2,...,n. By setting m; € M
such that [m;]p = v; for all ¢ = 1,...,n, hence {m;} is a basis for E();). Thus,
M =@y, er(o) EO)- O
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