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Abstract. Some methods have been used to express a finitely generated module

over a principal ideal domain as a finite direct sum of its cyclic submodules. In this

paper, we give an alternative technique to decompose a free module with finite rank

over a principal ideal domain using eigen spaces of its endomorphism ring.
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1. INTRODUCTION

There are many decompositions of a module that are brought up to make
it easy to analyze like the decomposition of a vector space by its basis [1]. Some
research on the decomposition of a finitely generated module had been conducted
such as by Hadjirezaei and Hedayat [3] who studied its decomposition using fitting
ideals. A recent study gives a new way of proving the Main Fundamental Theorem
for the finitely generated module over a principal ideal domain (PID) was carried
out in 2020 in a favor of the module decomposition [4].

A study on matrices over a commutative ring investigated the properties of
eigenspaces of a matrix. It was concluded that the eigenspace of a matrix over a
commutative ring no need to have a basis. In this paper, we provide another tech-
nique to decompose a free module over a principal ideal domain with finite rank
using its module endomorphism. First, we generalize the concept of the eigenspaces
of a matrix into a general module endomorphism and then express this free module
into a direct sum of these eigenspaces. Moreover, some particular matrices are also
used in finding such endomorphism.
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General properties, such as operations, determinants, etc on Mn(R), the set
of square matrices over a ring with unity R, have been defined as those in matrices
over a field, see the details on [2]. In this paper, U(R) will denote the set of all
units in R. Some basic theories and notations are given as follows.

Definition 1.1. [2] Let A ∈Mm×n(R) and suppose 1 ≤ t ≤ min{m,n}. The t× t
minor of A is the determinant of a t× t submatrix of A.

Theorem 1.2. [2] If A ∈Mn(R), then A is invertible if and only if det(A) ∈ U(R).

Definition 1.3. [2] Let A ∈ Mm×n(R). For each t = 1, ..., r = min{m,n}, It(A)
will denote the ideal in R generated by all t × t minors of A. Moreover, for any
integer t > min{m,n} and t ≤ 0, It(A) = {0} and It(A) = R respectively.

Definition 1.4. [2] Let A ∈ Mm×n(R). The rank of A, denoted by rk(A) is the
following integer: rk(A) =max {t|AnnR(It(A)) = 0}, where AnnR(It(A)) denotes
the annihilator of It(A).

Theorem 1.5. [2] If A ∈Mn(R), then rk(A) < n if and only if det(A) ∈ Z(R).

Theorem 1.6. [2] Given A ∈ Mm×n(R). The homogenous linear system Ax = 0
has a non-trivial solution if and only if rk(A) < n.

Now, the definition of eigen value and eigen vector of a square matrix over R
is given as follows.

Definition 1.7. [2] Given A be a matrix in Mn(R).

(1) An element d ∈ R is called as eigen value of A if Aξ = dξ for some non-zero
vector ξ ∈ Rn.

(2) A non-zero vector ξ ∈ Rn is called an eigen vector of A if Aξ = dξ for
some d ∈ R

(3) Let d be an eigen value of A. E(d) = {ξ ∈ Rn|Aξ = dξ} is called the eigen
space associated to d.

In the definition, it is clear that E(d) = NS(dI − A), where NS(dI − A)
denotes the null space of the matrix dI − A [2]. Now we move to some basic
definitions and theorems in module theory.

Definition 1.8. [5] A module M over R is called the direct sum of a family F =
{Si|i ∈ I} of submodules of M , denoted by M =

⊕
F or M =

⊕
i∈I Si if satisfying:

(1) M =
∑
i∈I Si

(2) For each i ∈ I, Si ∩ (
∑
j 6=i Sj) = {0}.

Subsequently, the definition of rank of a free module over a commutative ring
with unity is given as follows.

Definition 1.9. [5] Suppose R is a commutative ring with unity. The rank of a
nonzero R-free module M , denoted by rk(M), is the cardinality of any basis for M .
Moreover, the trivial module {0} has rank 0.
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Note that we used same symbol for the rank of a module and that of a matrix
as those two definitions are analogous like in vector spaces. Moreover, when the
base ring is a principal ideal domain, some significant properties apply.

Theorem 1.10. [5] Let M be a free module over a principal ideal domain R. Any
submodule S of M is also free and rk(S) ≤ rk(M).

Theorem 1.11. [5] A finitely generated module over a principal ideal domain is
free if and only if it is torsion-free.

2. MAIN RESULTS

We begin this section by defining the notion of eigen vector of a module
endomorphism over a commutative ring with unity.

Definition 2.1. [2] Given M be an R-module and θ : M → M be an endomor-
phism. An eigen vector of θ is a non-zero vector v in M satisfying θ(v) = λv for
some λ ∈ R. The scalar λ is called the eigen value of θ associated with the eigen
vector v.

Now we have a properties that the characterization polynom value must be
a zero or a zero divisor, and we give the notation Z(R) is the collection of zero
divisor of ring R with zero element.

Theorem 2.2. Given M be a free R-module with rank n. Let A = [θ]B be a
representation matrix of an endomorphism θ : M → M , where B is a basis of M .
A scalar λ ∈ R is an eigen value of θ if and only if CA(λ) ∈ Z(R).

Proof. Let λ ∈ R be an eigen value of θ. Hence θ(v) = λv for some v ∈ M and
v 6= 0. This implies [θ(v)]B = λ[v]B or we can write λIn[v]B − A[v]B = (λIn −
A)[v]B = 0. Since v 6= 0, we have [v]B 6= 0, which means that the equation has a
nonzero solution. By Theorem (1.6), we have rk(λIn−A) < n, and so by Theorem
(1.5), CA(λ) = det(λIn − A) ∈ Z(R). Conversely, suppose that CA(λ) ∈ Z(R).
By Theorem (1.5), we have rk(λIn − A) < n, and by Theorem (1.6) we have
(λIn − A)w = 0 for some w ∈ Rn, w 6= 0. Now, set v ∈ M that satisfies [v]B = w,
hence θ(v) = λv. �

In the rest of this paper, R will denote a principal ideal domain and M will
be a free module with finite rank over R. Also, the set of all eigen values of an
endomorphism θ will be denoted by R(θ).

Theorem 2.3. Given rk(M) = n and θ : M → M be an endomorphism on
free module M . The set of eigen vectors from distinct eigen spaces is linearly
independent.

Proof. Let S = {v1, v2, ..., vr} be a set of eigen vectors with vi is an eigen vector
associated with eigen value λi where λi 6= λj when i 6= j, i, j = 1, 2, ..., r. Suppose
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S is linearly dependent. Since M is free, we have every non zero singleton set in
M is linearly independent. Now, let k be the greatest number where 1 ≤ k < r
(obtained by re-indexing if necessary) so that {v1, v2, ..., vk} is linearly independent.
Hence {v1, v2, ..., vk, vk+1} is linearly dependent. Hence the equation r1v1 + r2v2 +
...+ rkvk + rk+1vk+1 = 0 is not only satisfied by all scalars with zero values, which
at least (without loss of generality) λk+1 6= 0 . From this equation we obtain
r1θ(v1) + r2θ(v2) + ... + rkθ(vk) + rk+1θ(vk+1) = 0 or i.e with r1λ1v1 + r2λ2v2 +
...+ rkλkvk + rk+1λk+1vk+1 = 0 . By a multiplication of λk+1 to the first equation
and then subtract with the second equation, we have r1(λk+1 − λ1)v1 + r2(λk+1 −
λ2)v2 + ...+ rk(λk+1 − λk)vk = 0. By the independence of {v1, v2, ..., vk}, then we
have ri(λk+1 − λi) = 0 for all i = 1, 2, ..., k. Since λk+1 6= λi and R is an integral
domain, ri = 0 for all i = 1, 2, ..., k. So we have rk+1vk+1 = 0 and implies rk+1 = 0,
which is a contradiction. �

It is worth noting that the corollary below is a direct result of the indepen-
dence condition on Theorem 2.3.

Corollary 2.4. Let θ : M → M be an endomorphism with R(θ) is all different
eigen value of θ. Hence

∑
λ∈R(θ)Eλ =

⊕
λ∈R(θ)Eλ.

In fact, we can consider Rn as an R-module. The following theorem will tell
us not only about the existence of a decomposition of R2 into some eigen spaces
but it will also give a method to find such eigen spaces.

Theorem 2.5. If A =

[
a b
0 c

]
∈M2(R) such that a−c 6= 0, then R2 = E(a)⊕E(c)

if and only if (a− c) | b.

Proof. If A =

[
a b
0 c

]
∈M2(R) such that a− c 6= 0, then the set of all eigen values

of A, R(A) = {a, c}. For λ = a we have E(a) = NS

[
0 −b
0 a− c

]
= R

[
1
0

]
.

For λ = c, we have E(c) = NS

[
c− a −b

0 0

]
.

If (a− c) | b, then we have E(c) = R

[
−k
1

]
for k ∈ R such that b = k(a− c).

By Theorem (2.3), S =

{[
1
0

]
,

[
−k
1

]}
is linearly independent. Moreover, R2 is also

spanned by S, since det

([
1 −k
0 1

])
= 1 ∈ U(R). This implies R2 = E(a)⊕ E(c).

Conversely, if R2 = E(a)⊕E(c), then R2 has a basis containing eigen vectors from

E(a) and E(c). Since E(a) = R

[
1
0

]
, and R2 = E(a) ⊕ E(c) then there exists

e, f ∈ R with f ∈ U(R) such that (c − a)e − bf = 0. Noted that f must be a
unit, otherwise it has no basis. This implies b = (c − a)ef−1, and means that
(c− a) | b. �
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Now, let consider for a free module Rn with rank n for any n ≥ 2.

Theorem 2.6. Given A =


a11 a12 · · · a1n
0 a22 · · · a2n

: :
. . . :

0 0 · · · ann

 ∈Mn(R) with aii− akk 6= 0 for

any i 6= k. If (aii − akk) | aij for all i < j ≤ n, then Rn =
⊕n

i=1E(aii).

Proof. To prove this, we necessary show that the eigen vectors of λi has the
form (ki1t, ki2t, ..., t, 0, ..., 0) = t(ki1, ki2, ..., 1, 0, ..., 0) where t ∈ R and for some
ki1, ki2, ..., ki(i−1) ∈ R i.e with having an eigen vector with 1 at the i-th component
and 0 for all j-components when j > i. We will prove this by induction on n. For
n = 2, it has been proved by Theorem (2.5). Suppose this is true for n = k − 1.
Now, let n = k and consider the characteristic equation of A, that is:

|λI −A| =

∣∣∣∣∣∣∣∣∣
λ− a11 −a12 · · · −a1k

0 λ− a22 · · · −a2k

: :
. . . :

0 0 · · · λ− akk

∣∣∣∣∣∣∣∣∣ = 0, hence λi = aii for all i = 1, ..., k.

It is clear that for every i = 1, ..., k−1, we have xk, the k-th component of the eigen
vector associated to λi must be 0 since aii−akk 6= 0. Hence the remaining equations
are including k − 1 equations and k − 1 indeterminates. By the induction hypoth-
esis which is the remaining sub-matrix having (k − 1) × (k − 1) size and together
with the fact that xk = 0, then the eigen vectors for λi for every i = 1, ..., k − 1
when n = k are have the form t(ki1, ki2, ..., 1, 0, ..., 0) where t ∈ R and for some
ki1, ki2, ..., ki(i−1) ∈ R. Moreover, when λ = akk, we have the i-th equation for
each 1 ≤ i ≤ (k − 1) on the linear system obtained from the characteristic equa-

tion is (akk − aii)xi −
∑k
j=i+1 aijxj = 0. Since (akk − aii) | aij ,∀j = i + 1, ..., k

and (akk − aii) 6= 0, we have xi =
∑k
j=i+1 lijxj for some lij ∈ R satisfying

lij(akk − aii) = aij . Moreover we can see that every xj for j = i + 1, ..., k − 1
can be expressed in the xk form which implies that xi = dixk for some di ∈ R.
Hence, if xk = s for s ∈ R, then the eigen vector (x1, x2, ..., xk)T associated to λk
has the form s(d1, d2, ..., 1). This implies that for any n ≥ 2, we have obtained
n eigenvectors that span Rn. The independence of the vectors is guaranteed by
Theorem (2.3). Therefore, we can write Rn =

⊕n
i=1E(aii). �

One can easily conclude that the Theorem 2.5 and Theorem 2.6 deal for a
lower triangular matrix with a similar way of construction.

Now we will use Theorem (2.6) to express any module with finite rank into
a direct sum of its eigenspaces. This is stated in the following theorem.

Theorem 2.7. Given M be a free R-module with rank n and B be any basis of M
and with θ : M → M be an endomorphism with representation matrix [θ]B as on
Theorem (2.6). Hence M =

⊕
λ∈R(θ)E(λ).
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Proof. By Theorem (2.6), choose any basis S = {v1, v2, ..., vn} of Rn where {vi}
is a basis for the i-th eigen space of [θ]B with i = 1, 2, ..., n. By setting mi ∈ M
such that [mi]B = vi for all i = 1, ..., n, hence {mi} is a basis for E(λi). Thus,
M =

⊕
λi∈R(θ)E(λi). �
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