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Abstract. By rank inequalities, we show that the limiting spectral distribution of

random matrices, which are Fisher matrices and Beta matrices composed of two

independent samples from independent p-dimensional, centered normal populations

such that all entries have unit variance and any correlation coefficient between dif-

ferent variables are fixed nonnegative r1, r2 < 1. Moreover, by similar method, we

also present the limiting spectral distribution of Wigner matrices, Toeplitz matri-

ces, and Hankel matrices of order p, where all entries are standard normal random

variables and mutually correlated with a fixed nonnegative r < 1. However, the

rank inequality for empirical spectral distributions is unable to show the limiting

spectral distributions of Markov matrices and banded Toeplitz matrices because the

perturbation matrices of those matrices have a rate rank 1.

Key words and Phrases: random matrices, limiting spectral distribution, equi-

correlated normal population, rank inequalities for empirical spectral distributions,
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1. INTRODUCTION

Suppose M is a Hermitian matrix of order p and λ1(M) ≥ λ2(M) ≥ · · · ≥
λp(M) are the eigenvalues of M. The empirical spectral distribution (ESD) of M
is, by definition, a function

FM(x) =
1

p

p∑
i=1

1λi(M)≤x, (x ∈ R)

where 1 is an indicator function. If FM has a limit deterministic distribution func-
tion in an asymptotic framework for p → ∞, it is referred to as the limiting spectral
distribution (LSD) of M. The LSDs of large-dimensional random matrices can be
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used to determine the majority of their bulk spectrum limiting properties. Thus,
the LSDs of large dimensional random matrices have garnered considerable interest
among mathematicians, physicists, and statisticians, e.g., Wigner [1, 2] for LSDs
of random Wigner matrices, Yao et al. [3, p. 12] for the LSDs of sample covariance
matrices, Bai et al. [4] for the LSDs of the product of two independent random
matrices, Bryc et al. [5] for the LSDs of random symmetric Toeplitz matrices, Kar-
gin [6] for the LSDs of banded random Toeplitz matrices, and Paul-Aue [7] for a
review of application from random matrices to inference statistics.

Among the aforementioned works [4, 8, 9, 1, 2, 10], the assumption that
the entries of the random matrices have independent random variables is usually
required. However, in practical application, the independent variables assumption
is a strong condition. In this paper, we consider a case in which variables are fully
dependent. To allow for correlations among variables in massive models based on
the sample covariance matrices and the sample correlation matrices, e.g., financial
mathematics [11, 12, 13] and psychometrics [14], we concentrate on randommatrices
derived from an equi-correlated normal population (ENP). By the equi-correlation
structure, we mean the population correlation matrix

C(r) =


1 r · · · r
r 1 · · · r
...

...
...

r r · · · 1

 ∈ Rp×p.

This matrix is clearly unbounded spectral norm because the largest eigenvalues is
1 + (p− 1)r. Hereafter, we assume 0 ≤ r < 1.

The LSD of a sample covariance matrix from ENP is Marčhenko-Pastur dis-
tribution scaled by 1 − r [15]. This has two different proofs based on different
aspects of ENP. One proof observes that the LSD of C(r) is that of (1− r)I where
I denotes identity matrix of order p, and applies [16, Theorem 1.1] for Stieltjes
transform. The other proof [15] notes the decomposition

Np(0,C(r)) =
√
rN1(0, 1)[1, ..., 1]

⊤ +
√
1− rNp(0, I), (1)

and applies the rank inequality of ESD:

Proposition 1.1 ([17, Lemma 2.2, the rank inequality]).

K
(
FM1 , FM2

)
≤ 1

p
rank(M1 −M2), (M1,M2 ∈ Cp×p).

This rank inequality holds by the interlacing theorem [18, p. 242]. The first proof
by [16, Theorem 1.1] and Stieltjes transform is sophisticated, then developed later
by Bai-Zhou [19], Hui-Pan [20], and Bryson et al. [21], under the boundedness
condition of the spectral norm of random matrices. Therefore, they are no longer
applicable to ENP as the spectral norm 1+ (p− 1)r of C(r) is unbounded. On the
other hand, the second proof is simple because it does not use Stieltjes transform
and then only depends on the rank of first term on the right-hand side of (1) (the
rank of perturbation matrix ).
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The motivation of this paper is (a) to establish the LSDs of more various
complicated random matrices from ENP than sample covariance matrices by ex-
tending the rank inequalities for ESDs and the decomposition (1); (b) to examine
the realm of rank inequality for ESDs in order to demonstrate the LSDs of various
random matrices; (c) to show the application of LSDs in real datasets. According
to [22], the decomposition (1) is useful to show the characteristic of a random ma-
trix which the first term of the decomposition (1) is the low rank perturbations of a
random matrix. Moreover, by [22], the LSD of a random matrix is shown to depend
explicitly on LSD of the unperturbed random matrix. Furthermore, according to
[23], the decomposition (1) can be seen as a one factor-model. By this, Akama [23]
showed the estimator of r in equi-correlation normal population.

The rank inequality for ESDs are convenient technique in the cases where
the underlying variables are not independent and identically distributed (i.i.d.) [24,
p. 503]. We apply a new rank inequality for ESDs to show the LSDs of some
more complicated random matrices than the sample covariance matrices from ENP.
In particular, the random matrices used are Fisher matrices [3, p. 25] and Beta
matrices [25]. These matrices have key role in likelihood ratio test for verifying the
equality of two covariance matrices [3, 25, p. 151].

We also consider the others large-dimensional symmetric matrices being ran-
dom Wigner matrices [1, 2], random Toeplitz matrices, random Hankel matrices,
random Markov matrices, and banded random Toeplitz matrices [6]. Those applica-
tions assume that all entries of random Wigner matrices, random Toeplitz matrices,
random Hankel matrices, random Markov matrices, and banded random Toeplitz
matrices are i.i.d. random variables. Moreover, the LSDs of random Toeplitz ma-
trices, random Hankel matrices, and random Markov matrices with independent
entries are included in the list of unsolved random matrix problems from [17, Sec-
tion 6], and then Bryc et al. [5] provided the answer of that problem by the moment
method. However, in this paper, we assume that all pairings entries from those ma-
trices are equi-correlated and standard normal random variables, and then we find
their LSDs by rank inequality for ESDs. By these, we are able to understand the
realm of rank inequality for ESDs to show the LSDs of various random matrices.

Herein, we present our results. Given two independent samples X̃
(i)
1 , . . . , X̃

(i)
ni

i.i.d.∼ Np(0, C(ri)) with 0 ≤ ri < 1 (i = 1, 2). Let X̃(i) =
[
X̃

(i)
1 , . . . , X̃

(i)
ni

]
∈

Rp×ni and S̃i = n−1
i X̃(i)

(
X̃(i)

)⊤
. By definition, a Fisher matrix is F̃ = S̃1S̃

−1
2 ,

meanwhile a Beta matrix of scale parameter α > 0 is B̃ = S̃2(S̃2 + αS̃1)
−1. In a

suitable limiting regime p/ni → ci > 0 (i = 1, 2), the following results obtained by
our new rank inequality and decomposition (1): The LSD of F (B, resp.), which
is a distribution Fc1,c2((1 − r2)x/(1 − r1)) (BMα(1−r2)/(1−r1),c1,c2(x), resp.) for a
fixed deterministic distribution function Fc1,c2(x) (BMα,c1,c2(x), resp.).

Likewise, for random Wigner matrices, random Toeplitz matrices, random
Hankel matrices, and banded random Toeplitz matrices of order p, when all pair-
ings of variables are equi-correlated by a fixed nonnegative r < 1 and all entries
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are standard normal random variables, the following results hold by the rank in-
equality (Proposition 1.1): (1) The LSDs of random Wigner matrices are semicircle
law scaled by

√
1− r, (2) the LSDs of random Toeplitz matrices and random Han-

kel matrices are deterministic distribution functions scaled by
√
1− r. However,

the LSDs of random Markov matrices and banded random Toeplitz matrices are
undecided (see subsections 4.4 and 4.5).

This paper is organized as follows: Section 2 introduces a new rank inequality
for the ESDs of the product of a matrix and the inverse of another matrix, to show
the LSDs of Fisher matrices and Beta matrices, after the applications of Propo-
sition 1.1 for several random matrices in [24] are described. Section 3 examines
the LSDs of Fisher matrices and Beta matrices by a new rank inequality for ESDs
in a population Np(0,C(ri))(i = 1, 2). Section 4 establishes the LSDs of random
Wigner matrices, random Toeplitz matrices, and random Hankel matrices, assum-
ing all pairings of variables are equi-correlated standard normal random variables
by the rank inequality for ESDs (Proposition 1.1). In this section, we also show
that the LSDs of random Markov matrices and banded random Toeplitz matrices
are still undecided by the rank inequality for ESDs (Proposition 1.1).

2. RANK INEQUALITIES OF ESDs

Fact 2.1. (1) For square M1, M2 of the same size,

rank(M1 +M2) ≤ rank(M1) + rank(M2).

(2) For square M1, M2 in which M1M2 is defined

rank(M1M2) ≤ min(rank(M1), rank(M2)).

(3) For matrices M1,

rank(M1
⊤) = rank(M1).

The following propositions can be found in Huber [26].

Proposition 2.2 ([26, Lemma 2.9]). The Lévy distance metrizes the weak topology
of the set of distribution functions.

Proposition 2.3 ([26, p. 36]). For any distribution functions F and G,

L(F,G) ≤ K(F,G)

where L is the Lévy distance between two distribution functions F and G, see
[26, Definition 2.7]. Also, K is the Kolmogorov distance between two distribution
functions F and G is defined as

K(F,G) = sup
x∈R

|F (x)−G(x)| .

The rank inequality for ESDs (Proposition 1.1) is applied to show almost
surely the ESD of a Wigner matrix with centered i.i.d. entries weakly converges to
the ESD of the same Wigner matrix from the certain truncated entries. By this
and the moment method, Bai-Silverstein [24, p. 27] shows that almost surely the
ESD of Wigner matrix from the certain truncated entries converges weakly to the



5

semicircle law. On the other hand, we will apply the rank inequality for ESDs
(Proposition 1.1) to show that almost surely the ESDs of certain random matrices
with correlated pairing standard normal entries by a fixed nonnegative r < 1 weakly
converges to the ESDs of random matrices with centered i.i.d. entries multiplied by√
1− r.

We also consider the product of a random matrix and the inverse of another
random matrix. Let Y = [yij ]p×n such that yij are centered i.i.d. random vari-
ables. By the rank inequality for ESDs (Proposition 1.1), Bai-Silverstein [24, p. 70]
showed that almost surely the ESD of n−1YY⊤ converges weakly to the ESD of

n−1ỸỸ⊤ where Ỹ is the matrix Y with certain truncated entries. By this and the
moment method, Bai-Silverstein [24, p. 71] proved that almost surely the ESD of

n−1ỸỸ⊤M tends to a nonrandom limit in almost surely. Here, M is a symmetric
matrix independent of Y, and the ESD of M converges to a deterministic probabil-
ity distribution. In contrast, we will apply a new rank inequality for ESDs to show
the LSD of the product of a random matrix and the inverse of another random
matrix by extended Proposition 1.1 in the following Lemma 2.5.

Remark 2.4. It is well-known that for any square matrices M1 and M2 of the
same order, the two products M1M2 and M2M1 share a common characteristic
polynomial. Therefore, for any real symmetric matrices M1,M2, if M1 is positive
definite, then

FM−1
1 M2 = FM2M

−1
1 = FM

−1/2
1 M2M

−1/2
1

and M
−1/2
1 is a symmetric matrix such that M−1

1 =
(
M

−1/2
1

)2
.

Lemma 2.5. For any real Hermitian matrices Mi (1 ≤ i ≤ 4) of order p, if M2

is positive definite, M3 is positive semi-definite, and M4 is nonsingular, then

K(FM1M
−1
2 , FM3M

−1
4 ) ≤ 1

p
(rank(M1 −M3) + rank(M2 −M4)) .

Proof. By the triangle inequality, K(FM1M
−1
2 , FM3M

−1
4 ) ≤ K(FM1M

−1
2 , FM3M

−1
2 )+

K(FM3M
−1
2 , FM3M

−1
4 ) which is, through Remark 2.4,

K(FM
−1/2
2 M1M

−1/2
2 , FM

−1/2
2 M3M

−1/2
2 ) + K(FM

1/2
3 M−1

2 M
1/2
3 , FM

1/2
3 M−1

4 M
1/2
3 )

≤ 1

p
rank(M

−1/2
2 (M1 −M3)M

−1/2
2 ) +

1

p
rank(M

1/2
3 (M−1

2 −M−1
4 )M

1/2
3 ),

by Proposition 1.1. For any square matrices M1,M2,M3 of the same order,
rank(M2M1M3) ≤ rank(M1) (the equality holds if M2,M3 are nonsingular).
Thus, the former fraction is rank(M1 −M3)/p and the latter fraction is at most
rank(M−1

2 −M−1
4 )/p. Because rank(M−1

2 −M−1
4 ) = rank(M2(M

−1
2 −M−1

4 )M4) =
rank(M2 −M4), we obtain the desired consequence. □

By Lemma 2.5, we will establish the LSDs of Fisher matrices and Beta ma-
trices from two independent ENPs in the Section 3. Moreover, we also use Proposi-
tion 1.1 in Section 4 to show the LSDs of randomWigner matrices, random Toeplitz
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matrices and random Hankel matrices, all being equipped with specially devised
equi-correlated normal structure.

3. FISHER MATRICES AND BETA MATRICES

Assumption 3.1. Let two independent matrices X(i) =
[
X

(i)
1 , . . . , X

(i)
ni

]
∈ Rp×ni

where all entries are i.i.d. random variables with unit variance, finite fourth mo-
ments and centered random variables. Suppose that the following equations are
the sample covariance matrices of X(i).

Si = n−1
i X(i)

(
X(i)

)⊤
.

Remark 3.2. Suppose all entries of X(i) are i.i.d. random variables and obey a
continuous distribution. Assume without loss of generality that p ≤ ni. Let j-th
row of X(i) be xj. For the first row, x1 is linearly independent because it is 0 with
probability 0. For the second row, because it is drawn independently from the first
row, the first row is fixed. The probability of x2 fall in to the span of a fixed row is
0 because x2 has a continuous density in Rni . For general k ≤ n, because p ≤ n,
the first k− 1 rows forms a subspace in Rni and so xk falls into that subspace with
probability 0 (linear subspace has Lebesgue measure 0 in Rni). Thus the first k rows
are linearly independent. Let k = p. As a result, X(i) has rank p with probability
1.

3.1. Fisher matrix.

The new statistical tools proposed in Yao et al. [3, p. 7] are based on linear
spectral statistics (LSS) on sample covariance matrices and Fisher matrices, which
play an essential role in multivariate data analysis, such as the likelihood ratio test
(LRT) for assessing the equality of variances from two populations [3, p. 151] [27].
A random Fisher matrix is defined as

F = S1S
−1
2 .

In multivariate analysis of variance (MANOVA), the test on the equality of means
is reduced to a statistic depending on a Fisher matrix which is a functional of the
“between” sum of squares and the “within” sum of squares [28, p. 328]. In multi-
variate linear regression, the likelihood ratio criterion for testing linear hypotheses
about regression coefficients is expressed as a functional of the eigenvalues of a
Fisher matrix [28, p. 294].

Since the classical limit theorems for LSS of F are missmatch in the large-
dimensional, Yao et al. [3, p. 30] showed the limiting behavior of Fisher matrices
for large-dimensional in the following proposition.

Proposition 3.3 ([3, p. 30]). Assume Assumption 3.1, p/n1 → c1 ∈ (0,∞) and
p/n2 → c2 ∈ (0, 1). Then, almost surely, the ESD of F weakly converges to a
deterministic distribution function Fc1,c2 .



7

Moreover, Yoshida [29] showed that Fc1,c2 is the free F-Distribution which defined
as the distribution of the ratio of two random variables from two freely independent
free Poisson random variables.

By Stieltjes transform, Yao et al. [3, p. 30] established Proposition 3.3. How-
ever, in relaxing independent entries of X(i) (i = 1, 2), the Stieltjes transform of
the ESD of F may be complicated because the Stieltjes transform of the ESD of S1

from ENP has a complicated expectation from correlated pairwise rows in X(1) [3,
p. 14, 30]. Instead, we will show the LSD of F derived from ENPs by decom-
position (1) and the new rank inequality for ESDs (Theorem 2.5) because of its
simplicity.

Assumption 3.4. Suppose two independent matrices X̃(i) = [X̃
(i)
1 , . . . , X̃

(i)
ni ] ∈

Rp×ni such that X̃
(i)
1 , . . . , X̃

(i)
ni

i.i.d.∼ Np(0, C(ri)) with 0 ≤ ri < 1 (i = 1, 2).

Suppose that S̃i = n−1
i X̃(i)

(
X̃(i)

)⊤
(i = 1, 2).

Remark 3.5. Note that X̃(i) can be written by C(ri)
1/2X(i) such that all entries

of X(i) are i.i.d. and obey standard normal distribution. Thus, by Remark 3.2, X̃(i)

is full rank matrix.

Theorem 3.6. Assume Assumption 3.4 and F̃ = S̃1S̃
⊤
2 . Suppose p/n1 → c1 ∈

(0,∞) and p/n2 → c2 ∈ (0, 1). Then, it holds almost surely that F F̃ weakly con-
verges to a distribution function

x 7→ Fc1,c2

(
1− r2
1− r1

x

)
where Fc1,c2 denotes the deterministic distribution function assured in Proposi-
tion 3.3.

Proof. By decomposition (1) and Assumption 3.1,

X̃(i) =
√
1− riX

(i) +N(i), (i = 1, 2). (2)

where all entries X(i) are independent, standard normal random variables, and

N(i) =
√
ri[η

(i)
j ]p×ni

has rank at most 1. Hence, X̃(i)(X̃(i))
⊤
− (1− ri)X

(i)
(
X(i)

)⊤
is equal to

N(i)(
√
1− riX

(i) +N(i))⊤ +
√
1− riX

(i)(N(i))⊤. (3)

By Fact 2.1, the rank of (3) is at most

rank(N(i)(
√
1− riX

(i) +N(i))⊤) + rank(
√
1− riX

(i)(N(i))⊤) ≤ 2 rank(N(i))

≤ 2. (4)

Because the entries of X(i) are independent standard normal random vari-
ables, the entries of X(i) for i = 1, 2 have finite fourth moment. Moreover, since

n2 > p, almost surely S̃−1
2 and S−1

2 are well-defined in the limit p.
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By Lemma 2.5 and (4), K
(
F F̃, F

1−r1
1−r2

F
)
≤ 4/p → 0 as p → ∞. Note that

F
1−r1
1−r2

F(x) = FF

(
1− r2
1− r1

x

)
.

By Proposition 2.3 and Proposition 3.3, the desired consequence follows. □

To sum up, if the LSDs of Fisher matrices composed from two independent
centered ENPs with unit variance and nonnegative r1, r2 < 1, the LSDs of Fisher
matrices are similar to the LSDs of Fisher matrices composed of two independent
centered populations with i.i.d. random variables and finite enough moment but
scaled by (1− r2)/(1− r1).

3.2. Beta matrices.

Several hypothesis testing apply Beta matrices in multivariate analysis when
α = n1/n2 with n1, n2 > p [30, p. 332] [25]. For example, in the two-sample test for
equality of variances, terms of LSS of the ESDs of Beta matrices [25] can formulate
the LRT for hypothesis H0 : Σ1 = Σ2. A random Beta matrix is defined as

B = S1(S1 + αS2)
−1 (α > 0).

In multivariate analysis of variance (MANOVA), the test on the equality of means
is reduced to a statistic depending on a Beta matrix which is a functional of the
“between” sum of squares and the “within” sum of squares [28, p. 331]. However,
in large-dimensional, the limiting behaviors of Beta matrices are needed because
the LSS of Beta matrices are not valid [25].

Remark 3.7 ([24, p. 325]). Assume all conditions of Proposition 3.3 are satis-

fied. Then, almost surely, the ESD of Ḃ = S2(S2 + αS1)
−1 weakly converges to a

distribution function

x 7→ 1− Fc1,c2

(
1

α

(
1

x
− 1

)
−

)
, x > 0

where Fc1,c2(x−) is the left-limit at x.

Later it has been shown that Bai-Silverstein [24, p. 325] established the LSD
of a Beta matrix is similar to LSD of a Fisher matrix. They just requires that
the original variables to construct S1 and S2 are respectively i.i.d. with sufficient
moments and p/n1 → c1 > 0, p/n2 → c2 ∈ (0, 1). On the other hand, for p >
max(n1, n2) and p < n1+n2, by Stieltjes transform, Bai et al. [25] showed the LSD
of B which is showed in the following proposition.

Proposition 3.8 ([25, Theorem 1.1]). Assume Assumption 3.1 and the following
conditions:

(1) α > 0 and p/n1 → c1 > 0.
(2) p/n2 → c2 > 0 and p

n1+n2
→ c1c2

c1+c2
∈ (0, 1).

Then, almost surely, FB weakly converges to a deterministic distribution function
BMα,c1,c2 .



9

In relaxing independent entries of X(i) (i = 1, 2), similar to the reason in
Fisher matrices, the Stieltjes transform of FB may be complicated. Instead, we
will show that the LSD of B from two centered ENPs with unit variances as p >
max(n1, n2) and p < n1 + n2 by the new rank inequality corresponding to LSD of
B under i.i.d. conditions (Theorem 3.8).

Theorem 3.9. Assume Assumption 3.4 and B̃ = S̃1(S̃1 + αS̃2)
−1. Suppose the

conditions (1)-(2) of Proposition 3.8. Then, almost surely, F B̃ weakly converges to
the distribution function BMs,c1,c2 where s = α(1 − r2)/(1 − r1). Here, BMs,c1,c2

is the deterministic distribution function assured in Proposition 3.8.

Proof. By decomposition (1),

X̃(i) =
√
1− riX

(i) +N(i), (i = 1, 2).

Note that Si are positive semi-definite matrices for i = 1, 2. Because c1c2
c1+c2

∈
(0, 1), we have p < n1+n2 almost surely. Thus, S1+αS2 is invertible almost surely
in p → ∞.

As with (4), we can show that rank

(
X̃(i)

(
X̃(i)

)⊤
− (1− ri)X

(i)X(i)⊤
)

≤ 2

(i = 1, 2). Therefore, by Lemma 2.5, K
(
F B̃, F (1−r1)S1((1−r1)S1+α(1−r2)S2)

−1
)
is at

most

1

p

(
rank(S̃1 − (1− r1)S1) + rank(S̃1 + αS̃2 − S1 − α(1− r2)S2)

)
≤ 1

p

(
rank(S̃1 − (1− r1)S1) + rank(S̃1 − (1− r1)S1) + rank(αS̃2 − α(1− r2)S2)

)
≤ 6/p → 0 (p → ∞).

Moreover,

(1− r1)S1((1− r1)S1 + α(1− r2)S2)
−1 = S1

(
S1 +

α(1− r2)

(1− r1)
S2

)−1

Thus, by Proposition 2.3 and Proposition 3.8, the desired consequence follows. □

As a result, the LSDs of Beta matrices are the LSDs of Beta matrices from
two independent centered populations with i.i.d. random variables and finite enough
moments where the parameter is α(1−r2)/(1−r1) if the Beta matrix is composed of
two independent centered ENPs with unit variances, and nonnegative r1, r2 < 1.

4. SYMMETRIC RANDOM MATRICES WITH CORRELATED
PAIRING STANDARD NORMAL ENTRIES BY A FIXED

COEFFICIENT

To further our exploration of the rank inequality for ESDs (Proposition 1.1),
we will apply these techniques to various symmetric random matrices which all
pairings of entries from those matrices are equi-correlated and standard normal
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random variables. Specifically, the random matrices are Wigner matrices, symmet-
ric Toeplitz matrices, Hankel matrices, Markov matrices [17], and banded Toeplitz
matrices [6].

Assumption 4.1. x̃i, x̃ij (i, j = 0, 1, 2, . . . ; i ≤ j) are standard random variables
mutually correlated with r (0 ≤ r < 1).

The following equalities are the well-known decomposition of x̃i, x̃ij (i, j =
0, 1, 2, . . .).

Z(x̃1, x̃2, . . .) =
√
1− rZ(x1, x2, . . .) +

√
rηZ(1, 1, . . .) (5)

Z(x̃11, x̃12, . . .) =
√
1− rZ(x11, x12, . . .) +

√
rηZ(1, 1, . . .) (6)

where xi, and xij (i, j = 0, 1, 2, . . . ; i ≤ j) are i.i.d. standard normal random vari-
ables. Here, Z(.) is a matrix of linear combination from several random variables.

4.1. Wigner matrices.

A Wigner matrix of order p is a real symmetric matrix W = [xij ]p×p such
that above-diagonal entries xij , where 1 ≤ i ≤ j ≤ p, are independent centered
random variables such that

• the diagonal entries xii are i.i.d.; and
• the off-diagonal entries xij are i.i.d. and have unit variance.

Wigner [1, 2] found that the gaps between the lines in the spectrum of a heavy
nucleus are like the gaps between the eigenvalues of an extensive p× p symmetric
or Hermitian random matrix with random entries. Some of the physical applications
of Wigner matrices are surveyed in [31, p. 13]. Let Sca be the distribution function
of a semicircle law scaled by a > 0.

Proposition 4.2 ([17, Theorem 2.1]). Assume that W is a Wigner matrix of order
p. Let p → ∞. Then, almost surely, FW/

√
p converges pointwise to Sc2.

Theorem 4.3. Assume W̃ = [x̃ij ]p×p is a real symmetric matrix of order p and

Assumption 4.1. Let p → ∞. Then, almost surely, FW̃/
√
p converges pointwise to

the distribution function Sc2
√
1−r.

Proof. By applying decomposition (6), we can find independent, standard normal
random variables xij , η (1 ≤ i, j ≤ p) such that the rank of Z(1, 1, . . .) is at most
1. By this, the Proposition 1.1 implies

K
(
FW̃/

√
p, F

√
1−rW/

√
p
)
≤ 1

p
→ 0 (p → ∞).

By Proposition 4.2, F
√
1−rW/

√
p converges pointwise to Sc2

√
1−r almost surely.

Hence, FW̃/
√
p does so. □

When the Wigner matrices has a perfect correlation on diagonal entries and
i.i.d. random variables on off diagonal, the Wigner matrices is then symmetric
Toeplitz matrices in the following subsection.
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4.2. Symmetric Toeplitz matrices.

Let x0, x1, . . . be i.i.d. real random variables with mean zero and unit variance.
Define a random Toeplitz matrix T =

[
x|i−j|

]
1≤i,j≤p

[5], i.e., a matrix of the form

T =



x0 x1 x2 · · · xp−2 xp−1

x1 x0 x1 xp−2

x2 x1 x0
. . .

...
...

... x2

xp−2 x0 x1

xp−1 xp−2 · · · x2 x1 x0


.

Hammond and Miller [32] demonstrated that almost surely the kth moment
of FT converges to the moments of a new universal distribution, independent of
p. The new distribution seemed normal, and numerical simulations and heuristics
corroborate a conjecture. That result was extended by Bryc, Dembo, and Jiang [5].

Proposition 4.4 ([5, Theorem 1.1]). Let T be as above. Suppose p → ∞. Then,

almost surely, the ESD F
1√
pT converges weakly to a deterministic probability dis-

tribution FT that does not depend on the distribution of x1, and has unbounded
support.

Theorem 4.5. Assume T̃ =
[
x̃|i−j|

]
1≤i,j≤p

and Assumption 4.1. Then, almost

surely, in p → ∞, the ESD F
1√
p T̃ to a deterministic probability distribution FT

scaled by
√
1− r, and has unbounded support.

Proof. By applying decomposition (5), we can find independent, standard normal
random variables η, xk (0 ≤ k ≤ (p − 1)) such that the rank of Z(1, 1, . . .) is at
most 1. By this, the Proposition 1.1 implies

K
(
F T̃/

√
p, F

√
1−rT/

√
p
)
≤ 1

p
→ 0 (p → ∞).

By Proposition 2.3 and Proposition 4.4, the desired consequence follows. □

4.3. Hankel matrices.

Let x0, x1, . . . be i.i.d. real random variables with mean zero and unit variance.
Define a random Hankel matrix H = [xi+j−1]1≤i,j≤p [5], i.e., a matrix of the form

H =



x1 x2 · · · · · · xp−1 xp

x2 x3 xp xp+1

... . .
.

xp+1 xp+2

xp−2 xp−1 . .
. ...

xp−1 xp x2p−3 x2p−2

xp xp+1 · · · · · · x2p−2 x2p−1


.



12

Proposition 4.6 ([5, Theorem 1.2]). Let H be as above. Suppose p → ∞. Then,

almost surely the ESD F
1√
pH converges weakly to a deterministic probability dis-

tribution FH which does not depend on the distribution of x1, and has unbounded
support and is unimodal.

Theorem 4.7. Assume H̃ = [x̃i+j−1]1≤i,j≤p and Assumption 4.1. Then, almost

surely, F
1√
p H̃ converges weakly as p → ∞ to a deterministic probability distribution

FH scaled by
√
1− r, and has unbounded support.

Proof. By applying decomposition (5), we can find independent, standard normal
random variables η, xk (0 ≤ k ≤ (2p − 1)) such that the rank of Z(1, 1, . . .) is at
most 1. By this, the Proposition 1.1 implies

K
(
F H̃/

√
p, F

√
1−rH/

√
p
)
≤ 1

p
→ 0 (p → ∞).

By Proposition 2.3 and Proposition 4.6, the desired consequence follows. □

4.4. Banded symmetric Toeplitz matrices.

Define a symmetric Toeplitz matrix with band structure Tb =
[
x|i−j|

]
1≤i,j≤p

such that x|i−j| = 0 for |i− j| > b.

Proposition 4.8 ([6, Theorem 2.1] ). Suppose that Tb is a banded symmetric
Toeplitz matrix with the band of width b = b(p). Let k = |i − j|. Assume that
the nonzero entries are centered i.i.d. random variables such that Ex2

k = 1/b and

supk,p E
∣∣∣√bxk

∣∣∣4 < ∞. If both b = b(p) → ∞ and b/p → 0 as p → ∞, then for every

x, the expectation of FTb(
√
2x) converges to the cumulative distribution function

of standard normal distribution. Moreover, Var(FTb(x)) tends to 0.

Let T̃b be a banded symmetric Toeplitz matrix with the band of width b =

b(p). Suppose that the entries of T̃b in the band obey a centered normal distribution
with variance 1/b and are mutually correlated by a fixed nonnegative correlation
coefficient r. By decomposition (5), we have

√
rηZ(1, 1 . . .) is a p × p banded

symmetric Toeplitz matrix for b > 0 such that all nonzero entries are
√
rη, and

centered normal distribution with variance 1/b. Note that the rank of
√
rηZ(1, 1 . . .)

is p − d where d is the dimension of null space from matrix
√
rηZ(1, 1 . . .). If√

rηZ(1, 1 . . .) is a banded symmetric Toeplitz matrix of 1 with band width b, d is
at most b. By this and b/p → 0,

K
(
F T̃b/

√
2, F

√
1−rTb/

√
2
)
≤ p− d

p
→ 1. (7)

as p → ∞. As a result, the rank inequality (Proposition 1.1) is inapplicable to

compute the LSD of T̃b/
√
2.
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4.5. Markov matrices.

Let {xij} for j ≥ i ≥ 1 be an infinite upper triangular array of i.i.d. random
variables and define xij = xji for j > i ≥ 1. Define M a p×p Markov matrix given
by

M =



−
∑p

j=2 x1j x12 x13 · · · x1p

x21 −
∑p

j ̸=2 x2j x23 · · · x2p

...
. . .

...
xk1 xk2 · · · −

∑p
j ̸=k xkj · · · xkp

...
...

. . .
...

xp1 xp2 · · · −
∑p−1

j=1 xpj


.

Proposition 4.9 ([5, Theorem 1.3]). Let T be as above with Ex12 = 0 and
Var(x12) = 1. Suppose p → ∞. Then, almost surely the ESD of FM/

√
p converges

weakly to the free convolution of the semicircle and standard normal distribution.
This distribution is a nonrandom symmetric distribution with smooth bounded den-
sity, does not depend on the distribution of x12 and has unbounded support.

Suppose that M̃ be a p×p Markov matrix such that E(xijxkl) = r ((i, j) ̸=
(k, l), 1 ≤ i ≤ j ≤ p, and 1 ≤ k ≤ l ≤ p). By (1), ηZ(1, 1 . . .) is a p × p matrix
given by −(p− 1)η · · · η

...
. . .

...
η · · · −(p− 1)η

 .

Note that P(η = 0) = 0 because η is continuous variable. Since the above matrix
with the first row and the first column erased is a diagonally dominant matrix [18,
p. 352], ηZ(1, 1 . . .) is a full matrix of order p−1. Therefore, the rank of ηZ(1, 1 . . .)
is at least p − 1 almost surely. Hence, by the rank inequality for ESDs (Proposi-
tion 1.1),

K
(
F M̃/

√
p, F

√
1−rM/

√
p
)
≤ rank

(
p− 1

p

)
→ 1. (8)

As a result, the rank inequality (Proposition 1.1) is inapplicable for computing the

LSD of M̃/
√
p.

5. THE LSDs OF SIMULATION RANDOM MATRICES AND REAL
DATASETS

In this section, we demonstrate the LSDs of simulation random matrices
from ENP by presenting the histogram of random Fisher matrices, Beta matrices,
Toeplitz matrices and Hankel matrices. Moreover, for real datasets, we show the
LSDs of two independent microarray datasets by estimating ri (i = 1, 2) from
Akama.
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5.1. Simulation study of Fisher and Beta matrices.

Throughout the simulation of Fisher and Beta matrices, the Fisher and Beta
matrices are composed of two independent samples X(i) (i = 1, 2) from indepen-
dent 1000-dimensional, centered normal populations such that all entries have unit
variance and any correlation coefficient between different variables are fixed non-
negative r1, r2 < 1.

(a) (b) (c)

(d) (e) (f)

Figure 1. Histogram of numerical eigenvalues of 1000 × 1000
Fisher matrices. From (A)-(F), (p/n1, p/n2, r1, r2) is equal
to (0.7,0.3,0,0), (0.7,0.3,0.3,0.8), (0.7,0.3,0.8,0.3), (1.3,0.7,0,0),
(1.3,0.3,0.3,0.8), (0.7,0.3,0.8,0.3). The tick curve is the density
function of Fp/n1,p/n2

scaled by (1− r2)/(1− r1).

The Figure 1 shows that the density functions of Fp/n1,p/n2
for 0 ≤ r < 1 fit

to histogram of Fisher matrices which is composed from two independent popula-
tion where all elements are standard normal distribution mutually correlated with
0 ≤ r < 1. Since (1−r1)/(1−r2) < 1 for (r1, r2) = (0.8, 0.3), as Figure 2 (B), the his-
togram has the largest eigenvalue outside of thick curve from (1−r2)/(1−r1)F

′((1−
r2)/(1− r1)x) for all x ∈ [ (1−r1)(1−(c1+c2−c1c2)

1/2)2

(1−r2)(1−c2)2
, (1−r1)(1+(c1+c2−c1c2)

1/2)2

(1−r2)(1−c2)2
].

The Figure 2 shows that the density functions of BMs,p/n1,p/n2
for 0 ≤ r <

1 fit to histogram of Fisher matrices which is composed from two independent
population where all elements are standard normal distribution mutually correlated
with 0 ≤ r < 1. However, as Figure 2 (B), the histogram has the extreme values
outside of thick curve from BM′

s,p/n1,p/n2. This extreme value will be identified as
future work for our research about LSDs of Beta matrices from ENP.
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(a) (b) (c)

Figure 2. Histogram of numerical eigenvalues of 1000×1000 Beta
matrices with α = 1. From (A)-(C), (p/n1, p/n2, r1, r2) is equal to
(0.7,0.3,0,0), (0.7,0.3,0.3,0.8), (0.7,0.3,0.8,0.3). The tick curve is
the density function of BMs,p/n1,p/n2

where s = (1− r2)/(1− r1).

5.2. Simulation study of symmetric matrices.

In this simulation, we construct the symmetric matrices following decomposi-
tion (5) and (6) such that xi, and xij (i, j = 0, 1, 2, . . . , p ; i ≤ j) are i.i.d. standard
normal random variables. We set p = 500 and r = 0, 0.3, 0.5, 0.8.

(a) (b)

(c) (d)

Figure 3. Histogram of numerical eigenvalues Wigner matrices
from 100 matrices. From (A)-(D), r is equal to 0,0.3,0.5,0.8; and
the tick curve is Sc2

√
1−r.
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The Figure 3 shows that the density functions of Sc2
√
1−r for 0 ≤ r < 1 fit to

histogram of Wigner matrices which all elements are standard normal distribution
mutually correlated with 0 ≤ r < 1. Moreover, as Figure 2, (B)-(D) present the
histogram and thick curve of semi-circle distribution scaled by

√
1− r.

(a) (b)

(c) (d)

Figure 4. Histogram of numerical eigenvalues symmetric Toeplitz
matrices from 100 matrices. From (A)-(D), r is equal to
0,0.3,0.5,0.8.

The Figure 4 shows that the histogram of eigenvalues of symmetric Toeplitz
matrices with all entries are standard normal and duplicate correlated entries r.
Moreover, as Figure 4, (B)-(D) present the histogram is scaled by

√
1− r. Figure 5

presents that the histogram of eigenvalues of symmetric Toeplitz matrices with
all entries are standard normal and duplicate correlated entries r. Moreover, as
Figure 5, (B)-(D) present the histogram is scaled by

√
1− r.

5.3. Real dataset.

For the scaling parameter 1−ri of Fisher matrices of Theorem 3.6, Akama [23]
proposed 1− λ1(Si)/p (i = 1, 2) in:

Theorem 5.1 (Akama [23]). Let Si (i = 1, 2) be a sample covariance matrix formed
from i-th population Np(0, C(ri)) for a deterministic constant ri ∈ [0, 1). Suppose
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(a) (b)

(c) (d)

Figure 5. Histogram of numerical eigenvalues Hankel matrices
from 100 matrices. From (A)-(D), r is equal to 0,0.3,0.5,0.8.

p, n → ∞ and p/n → c ∈ (0, ∞). Then, almost surely,

λ1(Si)

p
→ r.

With this, we show Theorem 3.6 by real datasets such as the two independent
returns of S&P500 stocks of two specific periods and two independent class of a
microarray dataset from [33].

5.3.1. Finance dataset.

We consider the two datasets of returns of p S&P500 stocks for n trading
days. Table 1 is the list of p/n, λ1(S)/p and p = 212 S&P500 stocks of two periods.

Table 1. The returns of S&P500 datasets.

No Period p/n λ1(S)/p p
1 1993-01-04-1995-12-29 .280 .110 210
2 2012-08-01-2022-08-01 .083 .400 210
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(a) (b)

(c) (d)

Figure 6. The box plots of S&P500 stocks in Table 1. (A)-(B)
are the means and variance from returns of the first dataset. (C)-
(D) are the means and variance from returns of the second dataset.

As Figure 6, the box plots (A)-(B) show that the means is close to zero.
However, the box plots (C)-(D) have very large variance and there are many outlier.

Let S̃1 and S̃2 are the sample covariance matrix of the first and second dataset
in Table 1. As Figure 7, the thick curve fits to histogram (A) of Fisher matrix but
some bins of histogram outside the thick curve. Otherwise, the thick curve unfits to
histogram (B) of Fisher matrix and many bins of histogram outside the thick curve.
Following 6 (C), the variance of the first dataset are very far from 1 which is different
with our assumption in Theorem 3.6 and Theorem 3.6. By this, the histogram of
Fisher and Beta matrix may be disparate from our distribution function of Fc1,c2

and BMs,c1,c2 . However, this result will be our future research to more generalize
the assumption for variance from each independent datasets.

5.3.2. Microarray dataset.

We used microarray data sets of breast cancer with restricted variables p = 50
genes. The data sets consist of two classes: π1 :cancer (57 samples) and π2 :normal
breast (111 samples). See Gravier et al. [34] for the details. The data sets are
available at [33]. Table 2 is the list of p/n, λ1(S)/p and p = 50 genes from two
classes.
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(a) (b)

Figure 7. (A) The histogram of Fisher matrix F̃ composed by two
independent returns of S&P500 datasets from Table 1. The thick
curve is density function of F0.28,0.4((1 − λ1(S2))/(1 − λ1(S2))x)

for all x ∈ R. (B) The histogram of Beta matrix B̃ composed by
two independent returns of S&P500 datasets from Table 1. The
thick curve is density function of BM0.2,0.28,0.4(x) for all x ∈ R.

(a) (b)

(c) (d)

Figure 8. The box plots of the microarray dataset in Table 2.
(A)-(B) are the means and variance from the microarray dataset
of the first class dataset. (C)-(D) are the means and variance from
the microarray dataset of the second class dataset.
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Table 2. The microarray dataset of breast cancer patients.

No Class p/n λ1(S)/p p
1 π1 (cancer) .877 .58 50
2 π2 (normal) .450 .56 50

As Figure 8, the box plots (A)-(B) show that the means is close to zero.
Otherwise, the box plots (C)-(D) have very small variance. However, the outlier
just two variables for box plot (C) and three variables for box plot (C).

Let S̃1 and S̃2 are the sample covariance matrix of the first and second class
in Table 2. As Figure 9, the thick curve fits to histogram (A) of Fisher matrix but

(a) (b)

Figure 9. (A) The histogram of Fisher matrix F̃ composed by
two independent class of the microarray dataset from Table 2.

The thick curve is density function of F0.87,0.45((1− λ1(S̃2))/(1−
λ1(S̃2))x) for all x ∈ R. (B) The histogram of Beta matrix B̃ com-
posed by two independent class of the microarray dataset from
Table 2. The thick curve is density function of BM0.31,0.28,0.4(x)
for all x ∈ R.

some bins of histogram outside the thick curve. Similarly, the thick curve fits to
histogram (B) of Beta matrix. Following 8, the variance of the first dataset are
close to 1 and the the mean is very small which is different with our assumption
in Theorem 3.6 and Theorem 3.6. However, the outlier is not as much the box
plots in Figure 6 (C)-(D). By this, the histogram of Fisher and Beta matrix may
be suitable from our distribution function of Fc1,c2 and BMs,c1,c2 .

REFERENCES

[1] E. P. Wigner, “Characteristic vectors of bordered matrices with infinite dimensions,” Ann.
Math., vol. 62, no. 3, pp. 548–564, 1955. https://www.jstor.org/stable/1970079.

https://www.jstor.org/stable/1970079


21

[2] E. P. Wigner, “On the distribution of the roots of certain symmetric matrices,” Ann. Math.,

vol. 67, no. 2, pp. 325–327, 1958. https://www.jstor.org/stable/1970008.

[3] J. Yao, S. Zheng, and Z. D. Bai, Sample covariance matrices and high-dimensional
data analysis. New York: Cambridge University Press, 2015. https://doi.org/10.1017/

CBO9781107588080.
[4] Z. D. Bai, Y. Q. Yin, and P. R. Krishnaiah, “On the limiting empirical distribution function

of the eigenvalues of a multivariate F matrix,” Theory Probab. Its Appl., vol. 32, no. 3,

pp. 490–500, 1988. https://doi.org/10.1137/1132067.
[5] W. Bryc, A. Dembo, and T. Jiang, “Spectral measure of large random Hankel, Markov and

Toeplitz matrices,” Ann. Probab., vol. 34, no. 1, pp. 1–38, 2006. https://doi.org/10.1214/

009117905000000495.
[6] V. Kargin, “Spectrum of random Toeplitz matrices with band structure,” Electron. Commun.

Probab., vol. 14, pp. 412–423, 2009. https://doi.org/10.1214/ECP.v14-1492.

[7] D. Paul and A. Aue, “Random matrix theory in statistics: A review,” J. Stat. Plan. Inference,
vol. 150, pp. 1–29, 2014. https://doi.org/10.1016/j.jspi.2013.09.005.
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