S-PRIME IDEALS IN PRINCIPAL DOMAIN

Mohamed Aqalmoun ${ }^{1}$
${ }^{1}$ Department of Mathematics, Higher Normal School, Sidi Mohamed Ben
Abdellah University, Fez, Morocco, maqalmoun@yahoo.fr

Abstract

Let R be a commutative ring and S be a multiplicative subset of R. The S-prime ideal is a generalization of the concept of prime ideal. In this paper, we completely determine all S-prime and S-maximal ideals of a principal domain. It is shown that the intersection of any descending chain of S-prime ideals in a principal domain is an S-prime ideal, also the S-radical is investigated.

Key words and Phrases: Principal domain, S-prime ideal, S-maximal ideal, S radical.

1. Introduction

Throughout this paper all rings are commutative with identity $\neq 0$. Let R be a commutative ring and S be a multiplicative subset of R. Recently, Sevim et al. [11], studied the concept of S-prime ideal which is a generalization of prime ideal and used it to characterize integral domains, certain prime ideals, fields and S-Noetherian rings. An ideal P with $P \cap S=\emptyset$ is said to be S-prime ideal if there exists an element $s \in S$ such that, whenever $a, b \in R$, if $a b \in P$ then $s a \in P$ or $s b \in P$. Note that if S consist of units of R, then the notions of S-prime ideal and prime ideal coincide. Recall from [4] that an ideal P of R is said to be S-maximal ideal if $P \cap S=\emptyset$ and there exists $s \in S$ such that whenever $P \subseteq Q$ for some ideal Q of R, then either $s Q \subseteq P$ or $Q \cap S \neq \emptyset$. The S-radical of an ideal I is defined by $\sqrt[S]{I}=\left\{a \in R / s a^{n} \in I\right.$ for some $s \in S$ and $\left.n \in \mathbb{N}\right\}$. In this paper we study the concept of S-prime ideal in a principal ideal domain, for instance, we completely determine all S-prime ideals of a principal ideal domain. In [4], the author showed that any S-maximal ideal is S-prime. If R is a principal ideal domain, we show that every non-zero S-prime ideal is S-maximal. Also the S-radical of an ideal is given.

Recall from [5] that a multiplicative subset S of R is said to be strongly multiplicative if for each family $\left(s_{\alpha}\right)_{\alpha \in \Lambda}$ we have $\cap_{\alpha \in \Lambda}\left(s_{\alpha} R\right) \cap S \neq \emptyset$. In [5], the

[^0]author showed that if S is a strongly multiplicative subset, then the intersection of any chain of S-prime ideals is an S-prime ideal, and in particular, any ideal disjoint with S is contained in a minimal S-prime ideal. Then the author asked the following question;
Question: Is the assumption " S strongly multiplicative subset" necessary for the theorem?

As part of our study, we give a negative answer to this question.
Her, we fix some notations that will be used throughout this paper. If R is a principal ideal domain. The set of all irreducible (prime) elements of R is denoted by \mathbb{P}. For a multiplicative subset S the set \mathbb{P}_{S} is defined by $\mathbb{P}_{S}=\{p \in$ $\mathbb{P} /(p) \cap S \neq \emptyset\}$, that is, \mathbb{P}_{S} is the set of all irreducible elements of R that belong to some element of S. An irreducible element p is in \mathbb{P}_{S} if and only if there exists $s \in S$ and $b \in R$ such that $s=b p$. Note that if $S=R \backslash\{0\}$, then $\mathbb{P}_{S}=\mathbb{P}$.

2. S-prime ideal in principal domain

We start this section by recalling the concept of S-prime ideals of a commutative ring R in order to give the form of all S-prime ideals in principal ideal domain.

Definition 2.1. Let R be a commutative ring, S be a multiplicative subset of R and P be an ideal of R disjoint with S. Then P is said to be S-prime ideal if there exists an $s \in S$ such that for all $a, b \in R$ with $a b \in P$, we have $s a \in P$ or $s b \in P$.

The following result will be frequently used and can be found in [5].
Proposition 2.2. Let R be a commutative ring and S be a multiplicative subset of R. Let P be an ideal of R. The following statements are equivalent
(1) P is an S-prime ideal of R.
(2) There exists $s \in S$ such that $(P: s)$ is a prime ideal of R.

The S-prime ideals of a principal ideal domain are completely determined in the following result.

Theorem 2.3. Let R be a principal ideal domain and S be a multiplicative subset of R and let I be an ideal of R. The following statements are equivalent:
(1) I is an S-prime ideal of R,
(2) $I=(0)$ or $I=(v p)$ for some $p \in \mathbb{P}-\mathbb{P}_{S}$ and $v \in R$ such that $(v) \cap S \neq \emptyset$.

Proof. (2) $\Rightarrow(1)$. If $I=(0)$, then I is an S-prime ideal since it is a prime ideal. Now, let $I=(v p)$ where $p \in \mathbb{P}-\mathbb{P}_{S}$ and $(v) \cap S \neq \emptyset$. There exists an $s_{0} \in S$ and $v^{\prime} \in R$ such that $s_{0}=v v^{\prime}$. Let $x \in\left(I: s_{0}\right)$, then $x s_{0} \in I$ so $x s_{0}=\alpha v p$ for some $\alpha \in R$, therefore $s_{0} x \in(p)$, hence $x \in(p)$ since $s_{0} \notin(p)$. It follows that $\left(I: s_{0}\right) \subseteq(p)$. On the other hand, we have $p s_{0}=v^{\prime} v p \in I$, that is $p \in\left(I: s_{0}\right)$, so that $\left(I: s_{0}\right)=(p)$ is a prime ideal of R. Thus I is an S-prime ideal of R.
$(1) \Rightarrow(2)$. Let $I=(a)$ be a non-zero S-prime ideal of R. Let $s_{0} \in S$ such that $\left(I: s_{0}\right)$ is a prime ideal of R. Since $(0) \neq I \subseteq\left(I: s_{0}\right)$ there exists an irreducible
element p of R such that $\left(I: s_{0}\right)=(p)$. As $p s_{0} \in I$, we have $p s_{0}=a^{\prime} a$ for some $a^{\prime} \in R$, in particular $a^{\prime} a \in(p)$ so $a^{\prime} \in(p)$ or $a \in(p)$. If $a^{\prime} \in(p)$, then $a^{\prime}=a^{\prime \prime} p$ where $a^{\prime \prime} \in R$, that is $p s_{0}=a^{\prime} a=a a^{\prime \prime} p$, so that $s_{0}=a^{\prime \prime} a \in(a) \cap S$, a contradiction. Thus $a \in(p)$, hence $a=v p$ where $v \in R$. Now $p s_{0}=a^{\prime} a=a^{\prime} v p$, so $s_{0}=a^{\prime} v$, that is $(v) \cap S \neq \emptyset$. It follows that $I=(v p)$ and $(v) \cap S \neq \emptyset$ and $p \in \mathbb{P}-\mathbb{P}_{S}$; in fact if $p \in \mathbb{P}_{S}$ then $(p) \cap S \neq \emptyset$, so there is an element $s \in S$ such that $s=c p$ where $c \in R$. Then clearly $s s_{0}=c s_{0} p \in I$, which is not compatible with the fact that $I \cap S=\emptyset$.

Remark 2.4. (1) If S is a multiplicative subset of a commutative ring R, then there exists a saturated multiplicative subset S^{\prime} of R such that $\operatorname{Spec}_{S} R=$ $\operatorname{Spec}_{S^{\prime}} R$ (see the appendix).
(2) If S is a saturated multiplicative subset of a principal ideal domain R. Then an ideal P is S-prime if and only if P is the zero ideal or $P=(s p)$ where $s \in S$ and $p \in \mathbb{P}-\mathbb{P}_{S}$.
Example 2.5. Let $R=\mathbb{Z}$ and $S=\left\{2^{k} / k \in \mathbb{N}\right\}$. Note that $\mathbb{P}_{S}=\{2\}$. Let I be a non-zero S-prime ideal of \mathbb{Z}. Then $I=(v p)$ where p is a prime integer and $v \in \mathbb{Z}$ such that $p \neq 2$ and $(v) \cap S \neq \emptyset$ that is $m v=2^{k}$ for some $m \in \mathbb{Z}$ and $k \in \mathbb{N}$. Thus $v= \pm 2^{l}$ for some $l \in \mathbb{N}$. It follows that the S-prime ideals of \mathbb{Z} are the zero ideal and the ideals of the form $\left(2^{l} p\right)$ where $p \neq 2$ is a prime integer and $l \in \mathbb{N}$.
Lemma 2.6. Let R be a principal ideal domain. Let $\left(I_{n}\right)_{n \in \mathbb{N}}$ be a descending chain of ideals of R. Then I_{n} stabilize or $\cap_{n} I_{n}=(0)$.

Proof. Let $I=(a)=\cap_{n} I_{n}$ and assume that $a \neq 0$. If a is invertible, then the chain stabilize. If a is not invertible, consider the commutative ring $R^{\prime}=R /(a)$. Then R^{\prime} is Noetherian and $\operatorname{dim} R^{\prime}=0$, so R^{\prime} is an Artinian ring. Thus $\overline{I_{n}}$ stabilize (in $\left.R^{\prime}\right)$. There exists N such that for all $n \geq N, \overline{I_{n}}=\overline{I_{N}}$, so $I_{n}=I_{N}$.
Proposition 2.7. Let R be a principal ideal domain. If $\left(Q_{n}\right)_{n}$ is a descending chain of S-prime ideals of R, then $\cap_{n} Q_{n}$ is an S-prime ideal of R.

Proof. This follows from the previous lemma.
Theorem 2.8. Let R be a principal ideal domain. Then every ideal which is disjoint with S is contained in a minimal S-prime ideal.
Proof. Let I be an ideal of R with $I \cap S=\emptyset$. Let

$$
\Gamma=\{Q / Q \text { is an } S \text {-prime ideal and } I \subseteq Q\}
$$

Note that Γ is not empty since $I \subseteq P$ for some prime ideal P of R with $P \cap S \neq \emptyset$, which is an S-prime ideal of R. If $\left(Q_{n}\right)_{n}$ is a descending chain of S-prime ideals of R containing I, then by the previous Proposition, $Q=\cap_{n} Q_{n}$ is an S-prime ideal containing I. By applying the Zorn's lemma, we get the desired results.

Proposition 2.9. Let R be a principal ideal domain and S be a multiplicative subset of R. The following statements are equivalent.
(1) S is a strongly multiplicative subset of R.
(2) $S \subseteq U(R)$, where $U(R)$ is the set of invertible elements of R.

Proof. If $S \subseteq U(R)$, then S is clearly a strongly multiplicative subset since for any $s \in S$ we have $s R=R$. Now, assume that $S \nsubseteq U(R)$. Then there exists a nonzero element $s \in S$ which is not invertible. Let $p \in \mathbb{P}$ such that $(s) \subset(p)$, then for any $n \in \mathbb{N},\left(s^{n}\right) \subseteq\left(p^{n}\right)$, thus $\cap_{n \in \mathbb{N}}\left(s^{n}\right) \subseteq \cap_{n \in \mathbb{N}}\left(p^{n}\right)=(0)$, in particular $\cap_{n \in \mathbb{N}}\left(s^{n}\right) \cap S=\emptyset$. Thus S is not a strongly multiplicative subset of R.

Example 2.10. Let p be an irreducible element of a principal ideal domain R and $S=\left\{p^{n} / n \in \mathbb{N}\right\}$. Then S is not a strongly multiplicative subset since $\cap_{n \in \mathbb{N}}\left(p^{n} R\right) \cap S=\emptyset$. But the intersection of a chain of S-prime ideals pf R is an S-prime ideal of R.

3. S-maximal ideal in principal domain

Definition 3.1. Let R be a commutative ring and S be a multiplicative subset. Let P be an ideal of R with $P \cap S=\emptyset$. Then P is said to be an S-maximal ideal of R if there exists $s \in S$ such that whenever $P \subseteq Q$ for some ideal Q of R then either $s Q \subseteq P$ or $Q \cap S \neq \emptyset$.

Remark 3.2. Every S-maximal ideal of R is an S-prime ideal of R (see [4]).
Lemma 3.3. Let R be a principal ideal domain and S be a multiplicative subset of R. Then (0) is an S-maximal ideal of R if and only if $\mathbb{P}_{S}=\mathbb{P}$

Proof. If (0) is an S-maximal ideal of R and $p \in \mathbb{P}$ then $(p) \cap S \neq \emptyset$ since $s(p) \nsubseteq(0)$, so $p \in \mathbb{P}_{S}$. Conversely, assume that $\mathbb{P}_{S}=\mathbb{P}$. Let $Q=(a)$ be an ideal of R. If $a=0$ then $1(Q)=(0) \subseteq(0)$. If $a \neq 0$. Then either $Q=R$, in this case $Q \cap S \neq \emptyset$, or $Q \neq R$, in this case $a=p_{1}^{n_{1}} \cdots p_{m}^{n_{m}}$ where $p_{1}, \cdots, p_{m} \in \mathbb{P}$ and n_{1}, \cdots, n_{m} are positive integers. Since $p_{i} \in \mathbb{P}=\mathbb{P}_{S}$ there exists $\alpha_{i} \in R$ such that $\alpha_{i} p_{i} \in S$, so $\prod_{i=1}^{m}\left(\alpha_{i} p_{i}\right)^{n_{i}} \in(a) \cap S$. Thus $Q \cap S \neq \emptyset$.

Classically, in a principal ideal domain every non-zero prime ideal is a maximal ideal, it's S-version is the following result.

Theorem 3.4. Let R be a principal ideal domain. Then every non-zero S-prime ideal is an S-maximal ideal.

Proof. Let P be a non-zero S-prime ideal of R. Then $P=(v p)$ for some $p \in \mathbb{P}-\mathbb{P}_{S}$ and $v \in R$ with $(v) \cap S \neq \emptyset$. Let $Q=(a)$ be an ideal of R with $P \subseteq Q$. Since $v p \in(a), v p=b a$ for some $b \in R$. In particular $a b \in(p)$, so $a \in(p)$ or $b \in(p)$.
First case, if $a \in(p)$, then $a=a^{\prime} p$ for some $a^{\prime} \in R$, so that $v p=b a^{\prime} p$, thus $v=b a^{\prime}$. As $(v) \cap S \neq \emptyset$, there exists $t \in R$ such that $s=t v=t b a^{\prime} \in S$. Therefore $s a=t v a^{\prime} p \in(v p)$. It follows that $s Q \subseteq P$.
Second case, if $a \notin(p)$, then $b \in(p)$. So $b=b^{\prime} p$ for some $b^{\prime} \in R$. Hence $v=b^{\prime} a$ since $v p=b a=b^{\prime} a p$. Thus $\emptyset \neq(v) \cap S \subseteq(a) \cap S$. It follows that $Q \cap S \neq \emptyset$.

4. S-radical in principal domain

Definition 4.1. Let R be a commutative ring and S be a multiplicative subset of R. The S-radical of an ideal I is defined by

$$
\sqrt[S]{I}=\left\{a \in R / a^{n} \in I \text { for some } s \in S \text { and } n \in \mathbb{N}\right\}
$$

Theorem 4.2. Let R be a principal ideal domain and S be a multiplicative subset of R. Let $I=(a)$ be a proper ideal of R write $a=\prod_{j=1}^{m} q_{j}^{m_{j}} \prod_{i=1}^{d} p_{i}^{n_{i}}$ where $q_{j} \in \mathbb{P}_{S}$ and $p_{i} \in \mathbb{P}-\mathbb{P}_{S}$. Then $\sqrt[S]{I}=\left(\prod_{i=1}^{d} p_{i}\right)$.
Proof. Since $q_{j} \in \mathbb{P}_{S}$, there exists $\alpha_{j} \in R$ such that $\alpha_{j} q_{j} \in S$. Let $n=\max \left(n_{i}\right)$, then $\prod_{j=1}^{m}\left(\alpha_{j} q\right)^{m_{i}}\left(\prod_{i=1}^{d} p_{i}\right)^{n} \in I$, thus $\prod_{i=1}^{d} p_{i} \in \sqrt[S]{I}$, that is $\left(\prod_{i=1}^{d} p_{i}\right) \subseteq \sqrt[S]{I}$. Conversely, let $x \in \sqrt[S]{I}$, then $s x^{n} \in I$ for some $s \in S$ and $n \in \mathbb{N}$. Let $b \in R$ such that $s x^{n}=b \prod_{j=1}^{m} q^{m_{i}} \prod_{i=1}^{d} p_{i}^{n_{i}}$. Then for each $1 \leq i \leq d$, $s x^{n} \in\left(p_{i}\right)$, since $\left(p_{i}\right) \cap S=\emptyset$ and $\left(p_{i}\right)$ is a prime ideal of R, we have $x^{n} \in\left(p_{i}\right)$, so $x \in\left(p_{i}\right)$. Thus $x \in \cap_{i=1}^{d}\left(p_{i}\right)=\left(\prod_{i=1}^{d} p_{i}\right)$. It follows that $\sqrt[S]{I}=\left(\prod_{i=1}^{d} p_{i}\right)$.

5. Appendix

Here we show, to studying the concept of S-prime ideal, we can always assume that the multiplicative subset S is saturated. So, for a multiplicative subset S of a commutative ring R, denote S^{\prime} the set defined by $S^{\prime}=\{a \in R /(a) \cap S \neq \emptyset\}$.
Proposition 5.1. With the previous notations, we have
(1) $S \subseteq S^{\prime}$ and S^{\prime} is a saturated multiplicative subset.
(2) If I is an ideal of R, then $I \cap S=\emptyset$ if and only if $I \cap S^{\prime}=\emptyset$.
(3) If P is an ideal of R, then P is S-prime if and only if P is S^{\prime}-prime.
(4) If P is an ideal of R, then P is S-maximal if and only if P is S^{\prime}-maximal.
(5) If I is an ideal of R, then $\sqrt[S]{I}=\sqrt[S^{\prime}]{I}$.

Proof. (1) Clearly $S \subseteq S^{\prime}, 0 \notin S^{\prime}$ and $1 \in S^{\prime}$. If $a, b \in S^{\prime}$, then $a a^{\prime} \in S$ and $b b^{\prime} \in S$ for some $a^{\prime}, b^{\prime} \in R$, so $\left(a^{\prime} b^{\prime}\right)(a b) \in S$, that is $a b \in S^{\prime}$. If $a b \in S^{\prime}$, then $a b t \in S$ for some $t \in R$, so $a, b \in S^{\prime}$.
(2) Clearly, if $I \cap S \neq \emptyset$, then $I \cap S^{\prime} \neq \emptyset$. If $I \cap S^{\prime} \neq \emptyset$, then there exists $i \in I$ such that $(i) \cap S \neq \emptyset$, so $i a \in S$ for some $a \in R$. Thus $i a \in I \cap S$.
(3) If P is an S-prime ideal of R, then it is easy to see that P is also an S^{\prime} prime ideal of R. Conversely, assume that P is an S^{\prime}-prime ideal of R. Then $\left(P: s^{\prime}\right)$ is a prime ideal for some $s^{\prime} \in S^{\prime}$. We have $t s^{\prime} \in S$ for some $t \in R$. Now; we show that $\left(P: t s^{\prime}\right)=\left(P: s^{\prime}\right)$. If $x \in\left(P: t s^{\prime}\right)$, then $x t s^{\prime} \in P$, so $x t \in\left(P: s^{\prime}\right)$. Since $t \notin\left(P: s^{\prime}\right)$, we have $x \in\left(P: s^{\prime}\right)$, hence $\left(P: t s^{\prime}\right) \subseteq\left(P: s^{\prime}\right)$. If $x \in\left(P: s^{\prime}\right)$, then $x s^{\prime} \in P$, hence $x t s^{\prime} \in P$, thus $x \in\left(P: t s^{\prime}\right)$. It follows that $\left(P: t s^{\prime}\right)$ is a prime ideal of R, therefore P is an S-prime ideal of R.
(4) If P is an S-maximal ideal. We fix an element $s \in S$ as in the definition, in particular $s \in S^{\prime}$. If $P \subseteq Q$ and $Q \cap S^{\prime}=\emptyset$, then $Q \cap S=\emptyset$, so $s Q \subseteq P$. It follows that P is an S^{\prime}-maximal ideal of R. Now, assume that Q is an
S^{\prime}-maximal ideal and fix $s^{\prime} \in S^{\prime}$ as in the definition. There exits $t \in R$ such that $t s^{\prime} \in S$. If $P \subseteq Q$ with $Q \cap S=\emptyset$, then $Q \cap S^{\prime}=\emptyset$, so $s^{\prime} Q \subseteq P$, thus $s t^{\prime} Q \subseteq t P \subseteq P$.
(5) From the definition we have $\sqrt[s]{I} \subseteq \sqrt[s^{\prime}]{I}$. Let $x \in \sqrt[s^{\prime}]{I}$, then $s^{\prime} x^{n} \in I$ for some $s^{\prime} \in S^{\prime}$ and $n \in \mathbb{N}$. There exists $t \in R$ such that $t s^{\prime} \in S$, so $t s^{\prime} x^{n} \in I$, thus $x \in \sqrt[S]{I}$.

Acknowledgement. The author would like to thank the referee for his/her great efforts in proofreading the manuscript.

REFERENCES

[1] Anderson, D. D., A note on minimal prime ideals, Proceedings of the AMS. Vol. 122 (1), 1994.
[2] Anderson, D.D., Dumitrescu, T.: S-Noetherian rings. Commun. Algebr. 30, 44074416 (2002).
[3] Atiyah, M., McDonald, I. G. (2018). Introduction to Commutative Algebra. Oxford: AddisonWesley Publishing Company.
[4] Eda Yldz, Bayram Ali Ersoy, nsal Tekir and Suat Ko (2020): On S-Zariski topology, Communications in Algebra
[5] Hamed, A., and Malek, A. (2019). S-prime ideals of a commutative ring. Beitrge Zur Algebra Und Geometrie.
[6] Hochster, M. (1971). The minimal prime spectrum of a commutative ring. Can. J. Math. 23(5):749758. DOI:10.4153/CJM-1971-083-8.
[7] Lim, J.W.: A note on S-Noetherian domains. Kyungpook Math. J.55, 507514 (2015)
[8] Liu, Z., On S-Noetherian rings. Arch. Math. (Brno) 43, 5560 (2007)
[9] McCoy, N.H., Rings and ideals. Carus Math. Monogr. 8, 96107 (1948)
[10] Ohm, J., Pendleton, R., Rings with Noetherian spectrum. Duke Math. J. 35:631639, (1968).
[11] Sevim, E. S., Arabaci, T., Tekir, U̇., Ko, S. (2019). On S-prime submodules. Turk. J. Math. 43(2):10361046.
[12] Thomas W. Hungerford. On the structure of principal ideal rings. Pacific J. of math., Vol. 25, No. 3, 1968
[13] Wiegand, R., Wiegand, S. Prime ideals in Noetherian rings. Surv. Trend. Math. 13, 175193 (2010)
[14] Wiegand, S., Intersections of prime ideals in Noetherian rings. Comm. Algebr. 11, 18531873 (1983)
[15] O. Zariski and P. Samuel, Commutative Algebra, volume I, Van Nostrand, Princeton, 1960.

[^0]: 2020 Mathematics Subject Classification: 13F10, 13A15, 13E15.
 Received: 18-04-2022, accepted: 22-02-2023.

