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Abstract. Here we purpose a simple but realistic model of one dimensional non-

linear Kapitza oscillator driven by sin- or cos- rapidly external oscillating periodical

force. The model has a parameter 2gl/a2γ2 of dimension one, depending on the

amplitude a and frequency of modulation γ. Changing its value we construct phase

portraits of the system in the neighbourhood of fixed points and demonstrate the

changing in Lyapunov spectrum. Our purpose is to observe the behavior of system

at fixed points due to the different structures of the Lyapunov spectra.
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Abstrak. Pada paper ini disajikan sebuah model sederhana tapi realistis dari

osilator Kapitza nonlinear dimensi satu yang dikendalikan oleh gaya luar berosilasi

periodik sin- dan cos- dengan cepat. Model ini mempunyai parameter 2gl/a2γ2

satu dimensi, bergantung pada amplitudo a dan frekuensi modulasi γ. Dengan

merubah nilai parameternya, kami mengkonstruksi diagram fasa dari sistim pada

ketetanggaan titik tetap dan mendemonstrasikan perubahan spektrum Lyapunov.

Kemudian, kami menyajikan pengamatan dari tingkah laku sistim pada titik tetap

dikaitkan dengan struktur dari spektral Lyapunov.

Kata kunci: Osilator Kapitza, spektrum Lyapunov, spektral Lyapunov.
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1. Introduction

An ordinary rigid planar pendulum suspended in the uniform gravitational
field is a very useful and versatile physical model famous first of all for its outstand-
ing role in the history of physics. The pendulum is also interesting as a paradigm
of contemporary nonlinear physics and more importantly, because the differential
equation of the pendulum is frequently encountered in various branches of modern
physics. For example, the mathematical relationship associated with the limiting
motion of a frictionless pendulum, play an important role in the theory of solitons,
in the problem of supper-radiation in quantum optics, and in theory of Josephson
effects in weak superconductivity. Kapitza oscillator is a simple pendulum with
pivot oscillating with a very high frequency of external periodical force. It was
named after Russian nobel laureate physicits ” Pyotr Kapitza ” which successfully
explains some of its unusual properties in 1951. The unique feature of Kapitza pen-
dulum is that the vibrating suspension can cause it to balance stably in an inverted
position, with the bob above the suspension point and can be employed to different
problems in applied sciences. For instance, in Quantum Mechanics, the trapping
of particles [1-3], or in Mechanical engineering, the control of robotic devices [4,5].
Kapitza oscillator has different structure of its stable points under the influence of
rapidly oscillating periodical force.The most traditional way to find out the stable
points, is the method of effective potential energy proposed by Kapitza himself [6].
In this method we present the coordinate x of the particle as a superposition with
of the smooth movement X and the rapidly changing part ξ

x = X + ξ (1)

and then apply the averaging procedure with respect to the period T of the ξ
coordinate changing. We denote here this averaging by < ... >, and we demand
< ξ >= 0. As a result the final dynamical equation doesn’t depend on ξ and it can
be presented in the form

mẌ = −Ueff (X)

dX
(2)

where the effective potential Ueff comes from the averaging: Ueff = U+ (averaging
terms from the external force f), and it is a function of the smooth coordinate X
only (for detail see [6]). The stable points can be easily found as minima of the
effective potential Ueff . From the mathematical point of view, most of the works
study linearized problem ([7][8]).In this paper we find stable points by the method
of linearization and investigate the behavior of system by calculating the Lyapunov
spectra. We investigate the Lyapunov spectra of the system in section 2. Table
of results is shown in section 3 and support our analytical research by numerical
simulations in section 4.
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2. Lyapunov exponents for Kapitza oscillator

2.1. Motion of the pendulum whose point of support oscillates horizon-
tally. Consider the motion of a pendulum of mass m whose point of support os-
cillates horizontally in the plane of motion of the pendulum according to the law
x = a cos γt with a high frequency γ >>

√
g
l , where g is the gravitational accel-

eration and l is the length of pendulum. Now the differential equation of such a
dynamical system is

mlφ̈ = −1

l

dUeff

dφ
(3)

where φ = φ(t) is the angular displacement of the pendulum. From the Lagrangian
derived in [9], we see in this case the variable force is

f = mlaγ2 cos γt

and

Ueff = mgl

[
− cosφ+

(
a2γ2

4gl

)
cos2 φ

]
is the effective potential energy, where a is the amplitude of the oscillation. The
dynamical system for horizontal modulation is

mℓ2ϕ̈+mgℓ sinϕ =
1

2
ma2γ2 sinϕ cosϕ (4)

Now equation (4) in Cauchy form can be written as{
ẋ1 = x2

ẋ2 = g
ℓ sinx1

(
a2γ2

2gℓ cosx1 − 1
)
,

(5)

The solutions of the system (5) define the paths (phase trajectories) associated
with the dynamical equation (4) in the x1x2 phase plane.Now we observe that
fixed points of the system (4) are

(kπ, 0),

(
arccos

(
a2γ2

2gℓ

)
+ 2kπ, 0

)
, k ∈ Z

The linear terms often dominate near the fixed point, and in the case, they deter-
mine the behavior of the nonlinear equations near the fixed point; in particular, the
linearized system (5) usually determines the stability of the fixed point.Here we cal-
culate the Lyapunov exponents which distinguish chaotic and nonchaotic motions
and are quantitative measures of the evolution of neighboring phase trajectories
(for detail see [10]).Lyapunov exponents generalize the concept of eigenvalues of a
fixed point.

Definition 2.1. If x∗ is a fixed point of ẋ = F (x), then the eigenvalues of the
matrix of partial derivatives DF(x∗) are the eigenvalues of the fixed point or the
eigenvalues of x∗.
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Definition 2.2. A fixed point x∗ is called hyperbolic provided that the real parts of
all the eigenvalues of the matrix DF(x∗) are nonzero.

If a fixed point is hyperbolic, then the stability type of the fixed point for
the nonlinear system is the same as that of the linearized system. The following
theorem states this more precisely.

Theorem 2.3. Consider a differential equation ẋ = F (x) in n variables, with a

hyperbolic fixed point x∗. Assume that F, ∂2Fi

∂xj
(x) and ∂2Fi

∂xj∂xk
(x) are all continuous.

Then, the stability type of the fixed point for the nonlinear system is the same as
that for the linearized system at that fixed point.
(a) In particular if the real parts of all the eigenvalues of DF(x∗) are negative then
the fixed point is asymptotically stable for the nonlinear equation (i.e., if the origin
is asymptotically stable for the linearized system, then x∗ is asymptotically stable
for the nonlinear equation ).
(b) If at least one eigenvalue of DF(x∗) has a positive real part, then the fixed
point x∗ is unstable for the nonlinear equation. (The linearized system can be a
saddle,unstable node, unstable focus, etc).
(c) If one of the eigenvalues of DF(x∗) has a zero real part, then the situation
is more delicate. In particular, for n = 2, if the fixed point is an elliptic center
(eigenvalues ±ıβ) or one eigenvalues is 0 of multiplicity one, then the linearized
system does not determine the stability type of the fixed point [11].

Theorem 2.4. Assume that x0 is a fixed point of the differential equation. Then,
the Lyapunov exponents at the fixed point are the real parts of the eigenvalues of
the fixed point [11].

We investigate the linearized stability of fixed points and calculate Lyapunov
spectra at fixed points for horizontal modulation of the dynamical system (4).
Eigenvalues at fixed point (0, 0) are

λ = ± aγ√
2ℓ

√
1− 2gℓ

a2γ2

By deffinition (2),the fixed point (0, 0) is hyperbolic. Now since the eigenvalues are
real, unequal, and of opposite signs so the origin is a saddle point and therefore the
fixed point is unstable for nonlinear equation (4).

If 2gℓ
a2γ2 < 1 then Lyapunov spectrum is {+,−}

If 2gℓ
a2γ2 ≥ 1 then Lyapunov spectrum is {0, 0}

Eigenvalues at fixed point (π, 0) are

λ = ± aγ√
2ℓ

√
1 +

2gℓ

a2γ2
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If 2gℓ
a2γ2 Q 1 then Lyapunov spectrum is {+,−}

Eigenvalues at fixed point
(
arccos

(
2gℓ
a2γ2

)
, 0
)
are

λ = ± aγ√
2ℓ

√(
2gℓ

a2γ2

)2

− 1

If 2gℓ
a2γ2 ≤ 1 then Lyapunov spectrum is {0, 0}

2.2. Motion of the pendulum whose point of support oscillates vertically.
In this case the point of support of pendulum oscillates vertically according to the
law y = a cos γt. From the Lagrangian derived in [9], we find

f = −mlaγ2 cos γt

and

Ueff = mgl

[
− cosφ+

(
a2γ2

4gl

)
sin2 φ

]
is the effective potential energy, where a is the amplitude of the oscillation. The
dynamical system for vertical modulation is

mℓ2ϕ̈+mgℓ sinϕ+
1

2
ma2γ2 sinϕ cosϕ = 0 (6)

Equation (6) in Cauchy form can be written as{
ẋ1 = x2

ẋ2 = − g
ℓ sinx1

(
1 + a2γ2

2gℓ cosx1

)
,

(7)

The fixed points of the system (7) are

(kπ, 0),

(
arccos

(
−a2γ2

2gℓ

)
+ 2kπ, 0

)
, k ∈ Z

Now we calculate Lyapunov spectra at fixed points for vertical modulation of the
dynamical system (6).
Eigenvalues at fixed point (0, 0) are

λ = ± aγ√
2ℓ

√
1 +

2gℓ

a2γ2
i

Since eigenvalues are pure imaginary so in this case the fixed point is a center i.e
we get rotation in the neighbourhood of origin and nonlinear system (6) is stable,
but not asymptotically stable.
If 2gℓ

a2γ2 Q 1 then Lyapunov spectrum is {0, 0}
Eigenvalues at fixed point (π, 0) are

λ = ± aγ√
2ℓ

√
2gℓ

a2γ2
− 1
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If 2gℓ
a2γ2 ≤ 1 then Lyapunov spectrum is {0, 0}

If 2gℓ
a2γ2 > 1 then Lyapunov spectrum is {+,−}

Eigenvalues at fixed point (arccos(− 2gℓ
a2γ2 ), 0) are

λ = ± aγ√
2ℓ

√
1−

(
2gℓ

a2γ2

)2

If 2gℓ
a2γ2 < 1 then Lyapunov spectrum is {+,−}

If 2gℓ
a2γ2 = 1 then Lyapunov spectrum is {0, 0}

2.3. Motion of the pendulum whose point of support moves uniformly on
a vertical circle. In this case point of support of the pendulum moves uniformly
on a vertical circle with constant frequency γ. From the Lagrangian derived in
[9],the force f is given by

f = mlaγ2 sin(ϕ− γt)

and

Ueff = mgl

[
− cosφ+

(
a2γ2

4gl

)]
is the effective potential energy, where a is the amplitude of the oscillation. The
dynamical system for vertical modulation is

mℓ2ϕ̈+mgℓ sinϕ = 0 (8)

Equation (8) in Cauchy form can be written as{
ẋ1 = x2

ẋ2 = − g
ℓ sinx1,

(9)

The fixed points of the system (9) are

(kπ, 0), k ∈ Z

We calculate Lyapunov spectra at fixed points for circulation modulation of the
dynamical system (8). Eigenvalues at fixed point (0, 0) are

λ = ± aγ√
2ℓ

√
2gℓ

a2γ2
i

Since eigenvalues are pure imaginary so in this case the fixed point is a center i.e
we get rotation in the neighbourhood of origin and nonlinear system (8) is stable,
but not asymptotically stable.
If 2gℓ

a2γ2 Q 1 then Lyapunov spectrum is {0, 0}
Eigenvalues at fixed point (π, 0) are

λ = ± aγ√
2ℓ

√
2gℓ

a2γ2

If 2gℓ
a2γ2 Q 1 then Lyapunov spectrum is {+,−}
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3. Table of results for Lyapunov spectra

We present our results in the form of Table 1.
2gl
a2γ2 < 1 2gl

a2γ2 = 1 2gl
a2γ2 > 1

(0, 0) (0, 0) (0, 0)
{+,−} {0, 0} {0, 0}

Horizontal (π, 0) (π, 0) (π, 0)
modulation {+,−} {+,−} {+,−}(

arccos
(

2gl
a2γ2

)
, 0
) (

arccos
(

2gl
a2γ2

)
, 0
)

{0, 0} {0, 0}
(0, 0) (0, 0) (0, 0)
{0, 0} {0, 0} {0, 0}

Vertical (π, 0) (π, 0) (π, 0)
modulation {0, 0} {0, 0} {+,−}(

arccos
(
− 2gl

a2γ2

)
, 0
) (

arccos
(
− 2gl

a2γ2

)
, 0
)

{+,−} {0, 0}
(0, 0) (0, 0) (0, 0)

Circular {0, 0} {0, 0} {0, 0}
modulation (π, 0) (π, 0) (π, 0)

{+,−} {+,−} {+,−}

4. Numerical simulations

We support our conclusion by numerical simulations for several typical cases.
On Fig.1-5 the phase portraits for all three cases , the horizontal, vertical and
circular modulation are presented in the neighbourhood of the points (0, 0) and
(π, 0). We can observe the conversion of the fixed point from focus to the saddle
point for the reasonably small decay ϵ, the real trajectories for the averaged systems.
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Figure 1. Horizontal modulation at (0, 0): (a) for the case 2gℓ
a2γ2 <

1 where a = 10, γ = 0.5, g = 9.8, ℓ = 1 (b) for the case 2gℓ
a2γ2 > 1

where a = 5, γ = 0.5, g = 9.8, ℓ = 1

Figure 2. Horizontal modulation at (π, 0): (a) for the case 2gℓ
a2γ2 <

1 where a = 10, γ = 0.5, g = 9.8, ℓ = 1 (b) for the case 2gℓ
a2γ2 > 1

where a = 5, γ = 0.5, g = 9.8, ℓ = 1
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Figure 3. Vertical modulation at (0, 0): (a) for the case 2gℓ
a2γ2 < 1

where a = 10, γ = 0.5, g = 9.8, ℓ = 1 (b) for the case 2gℓ
a2γ2 > 1

where a = 5, γ = 0.5, g = 9.8, ℓ = 1

Figure 4. Vertical modulation at (π, 0): (a) for the case 2gℓ
a2γ2 < 1

where a = 10, γ = 0.5, g = 9.8, ℓ = 1 (b) for the case 2gℓ
a2γ2 > 1

where a = 5, γ = 0.5, g = 9.8, ℓ = 1

5. Comparison and Conclusion

Kapitza averaging application changes drastically the equilibrium properties
of nonlinear oscillator. It can be demonstrated by calculation of Lyapunov spectra
in the neighbourhood of the stable points for Kapitza oscillator. From the table
in all three cases we have the conversion of Lyapunove spectrum from the focus
to the saddle point.On comparison we observe that the system for horizontal os-
cillation becomes unstable at origin if 2gℓ/a2γ2 < 1 while for vertical and circular
oscillations of pivot,the system remains stable at origin.Also we observe that the
system remains stable for vertical oscillation at each of the points under the con-
dition 2gℓ/a2γ2 = 1 but for horizontal modulation it becomes unstable at (π, 0).
At non-trivial points, the system is always stable for horizontal modulation but it
becomes unstable at non-trivial point for vertical modulation under the condition
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Figure 5. Circular modulation at (π, 0): (a) At (0, 0) for the case
2gℓ
a2γ2 Q 1 where a = 10, γ = 0.5, g = 9.8, ℓ = 1 (b) At (π, 0) for

the case 2gℓ
a2γ2 Q 1 where a = 5, γ = 0.5, g = 9.8, ℓ = 1

2gℓ/a2γ2 < 1. The dimensional less parameter 2gℓ/a2γ2 does not affect the stabil-
ity of the system at each of its stable points for oscillation of pivot along a vertical
circle.Our results can be easily extended for the case of non-harmonic modulation.
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