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Abstract. Let G be a simple graph with vertex set V (G) and edge set E(G). Graph

labeling is an assignment of integers to the vertices or the edges, or both, subject

to certain conditions. For a graph G(V,E), a friendly labeling f : V (G) → {0, 1} is

a binary mapping such that |vf (1)− vf (0)| ≤ 1, where vf (1) and vf (0) represents

number of vertices labeled by 1 and 0 respectively. A partial edge labeling f∗ of G is

a labeling of edges such that, an edge uv ∈ E(G) is, f∗(uv) = 0 if f(u) = f(v) = 0;

f∗(uv) = 1 if f(u) = f(v) = 1 and if f(u) ̸= f(v) then uv is not labeled by f∗. A

graph G is said to be balanced graph if it admits a vertex labeling f that satisfies

the conditions, |vf (1) − vf (0)| ≤ 1 and |ef (1) − ef (0)| ≤ 1, where ef (0), ef (1) are

the number of edges labeled with 0 and 1 respectively. The balanced index set of

the graph G is defined as, {|ef (1) − ef (0)| : the vertex labeling f is friendly}. A

semigraph is a generalization of graph. The concept of semigraph was introduced

by E. Sampath Kumar. Frank Harrary has defined an edge as a 2-tuple (a, b) of

vertices of a graph satisfying, two edges (a, b) and (a′, b′) are equal if and only if

either a = a′ and b = b′ or a = b′ and b = a′. Using this notion, E. Sampath Kumar

defined semigraph as a pair (V,X) where V is a non-empty set whose elements are

called vertices of G and X is a set of n-tuples called edges of G of distinct vertices,

for various n ≥ 2 satisfying the conditions: (i) Any two edges of G can have at most

one vertex in common; and (ii) two edges (a1, a2, a3, ..., ap) and (b1, b2, b3, ..., bq)

are said to be equal if and only if the number of vertices in both edges must be

equal, i.e p = q, and either ai = bi for 1 ≤ i ≤ p or ai = bp−i+1, 1 ≤ i ≤ p. In this

article, balance index set of T (Pn), T (Wn), T (Km,n) and T (Sn) determined, and

the balance index set of semigraph is introduced. Additionally, the balanced index

set of semigraph Cn,m, Kn,m is determined.
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1. Introduction

Consider a simple graph G(V,E) consist of finite non- empty set V called
vertex set and a set E of 2-element subsets of V called edges. For a binary vertex
labeling f of a graph G, a partial edge labeling f∗ of a graph G defined as: for all
edge uv ∈ E(G)

f∗(uv) =

{
0, if f(u) = f(v) = 0,

1, if f(u) = f(v) = 1.

If f(u) ̸= f(v) then the edge uv is not labeled by f∗. Let vf (i) be the number
of vertices of G that are labeled by i under f and ef∗(i) is the number of edges
that are labeled by i under f∗, where i = 0, 1[1].

The vertex labeling f is called friendly if |vf (0) − vf (1)| ≤ 1 and friendly
labeling is called balanced if |ef∗(0)− ef∗(1)| ≤ 1.

It is clear that every friendly labeling is not balanced. Therefore, Lee et al.
[2] introduced the balance index set of a graph G as,

BI(G) = {|ef∗(0)− ef∗(1)|, where f∗ is the partial edge labeling runs

over all friendly labelings f of G}.

Our objective is to assign a binary labeling to some substructure of graphs
G (e.g., the vertices) so that the assignment is balanced and induces a labeling on
some other substructure (e.g., the edges). We then attempt to classify the degree
of imbalance in the induced labeling of G. We hope that such an index set could
form an invariant that in some way can distinguish classes of graphs. In this paper,
we focus on the balanced index sets of various product graphs. The balance index
set of some families of graph forms an arithmetic progression, but not every graph.
Some balanced graphs are considered in citekong,Alhe,kim,tan. In general, it is
difficult to determine the balance index set of a given graph. Most of the existing
research work is focused on some special families of graph with simple structure.
For the wonderful work one can see [2, 6, 7, 8].

Kwong and Shiu [9] developed an algebraic approach to find the balance
index set. It shows that the balance index set depends on the degree sequence of
the graph. It becomes a very powerful tool to deal with balance indices. Later, Lee
et al. [10] proved the following lemma and corollary. In this article we have used
C.o.v in the table, it stands for ’Compositions of vertices’.

Lemma 1.1. [10] For any graph G,

(1) 2ef∗(0) + ef∗(X) =
∑

v∈v(0) deg(v).

(2) 2ef∗(1) + ef∗(X) =
∑

v∈v(1) deg(v).

(3) 2|E(G)| =
∑

v∈v(G) deg(v) =
∑

v∈v(0) deg(v) +
∑

v∈v(1) deg(v),

where ef∗(X) is the subset of E(G) containing all the unlabeled edges.
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Corollary 1.2. [10] For any friendly labeling f, the balance index is∣∣∣ef∗(0)− ef∗(1)
∣∣∣ = 1

2

∣∣∣ ∑
v∈v(0)

deg(v)−
∑

v∈v(1)

deg(v)
∣∣∣

2. Balance index set of total graphs

In this section balance index set of total graph of Pn, Km,n, Wn and Sn are
discussed.

Theorem 2.1. The Balance index set of T (Pn) is

BI(T (Pn)) =


{0, 1, 2, 3}, when n = 3;

{0, 1, 2, 3, 4}, when n = 4;

{0, 1, 2, 3, 4, 5}, when n ≥ 5.

Proof. Let T (G) be a total graph of Pn. It consist of 2n − 1 vertices and 4n − 5
edges. Since 2n− 1 is odd, to satisfy friendly labeling, vf (0) = n and vf (1) = n− 1
or vf (0) = n−1 and vf (1) = n. The graph T (Pn) has 2 vertices with degree 2, two
vertices with degree 3 and remaining 2n− 5 vertices with degree 4.

For friendly labeling, composition of degree 2, degree 3 and degree 4 vertices
are given in Table 2.

Table 1. Composition of vertices of degree 2, degree 3 and degree
4, for friendly labeling

“Case
C.o.v of de-
gree 2

C.o.v of de-
gree 3

C.o.v of degree 4

when (vf (0) =
n, vf (1) = n− 1)

when (vf (0) = n−
1, v(1) = n)

1 (0,2) (2-i,i) (n-2+i,n-3-i) (n-3+i,n-2-i)
2 (1,1) (2-i,i) (n-3+i,n-2-i) (n-4+i,n-1-i)
3 (2,0) (2-i,i) (n-4+i,n-1-i) (n-5+i,n-i)”

1) If the composition of degree 2 vertices is (0,2), then the possible compositions
of degree 3 and degree 4 vertices are given in Table 2.

Table 2. Compositions of degree 3 and degree 4 vertices, when
composition of degree 2 vertices is (0, 2).

“i (2− i, i)
When vf (0) =
n, vf (1) = n− 1

When vf (0) = n −
1, vf (1) = n

(n-2+i,n-3-i) (n-3+i,n-2-i)
i=0 (2,0) (n-2,n-3) (n-3,n-2)
i=1 (1,1) (n-1,n-4),n ≥ 4 (n-3,n-2)
i=2 (0,2) (n,n-5),n≥5 (n-1,n-4),n≥ 4”
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a) If compositions of degree 2, 3 and 4 are (0, 2), (2− i, i), (n− 2+ i, n− 3− i)
respectively, then by Corollary 1.2,∣∣∣ef∗(0)− ef∗(1)

∣∣∣ =1

2

∣∣∣∣∣[3(2− i) + 4(n− 2 + i)
]
−

[
2(2) + 3i+ 4(n− 3− i)

]∣∣∣∣∣
=
1

2

∣∣∣∣∣[6− 3i+ 4n− 8 + 4i
]
−

[
4 + 3i+ 4n+ 12 + 4i

]∣∣∣∣∣
=|3 + i|, i = 0, 1, 2.

b) If compositions of degree 2, 3 and 4 are (0, 2), (2− i, i), (n− 3+ i, n− 2− i)
respectively, then by Corollary 1.2∣∣∣ef∗(0)− ef∗(1)

∣∣∣ =1

2

∣∣∣∣∣[3(2− i) + 4(n− 3 + i)
]
−

[
2(2) + 3i+ 4(n− 2− i)

]∣∣∣∣∣
=
1

2

∣∣∣∣∣[6− 3i+ 4n− 12 + 4i
]
−
[
4 + 3i+ 4n− 8− 4i

]∣∣∣∣∣
=|i− 1|, i = 0, 1, 2.

2) If the compositions of degree 2 vertices is (1,1), then the compositions of degree
3 and degree 4 vertices are given in Table 3.

Table 3. Compositions of degree 3 and degree 4 vertices, when
composition of degree 2 vertices is (1, 1).

“i (2− i, i)
When vf (0) =
n, vf (1) = n− 1

When vf (0) = n −
1, vf (1) = n

(n-3+i,n-2-i) (n-4+i,n-1-i)
i=0 (2,0) (n-3,n-2) (n-4,n-1), n≥ 4
i=1 (1,1) (n-2,n-3) (n-3,n-2)
i=2 (0,2) (n-1,n-4),n≥4 (n-2,n-3)”

a) If compositions of degree 2, 3 and 4 are (0, 2), (2− i, i), (n− 3+ i, n− 2− i)
respectively, then by Corollary 1.2,∣∣∣ef∗(0)− ef∗(1)

∣∣∣ =1

2

∣∣∣∣∣[2 + 3(2− i) + 4(n− 3 + i)
]
−

[
2 + 3i+ 4(n− 2− i)

]∣∣∣∣∣
=
1

2

∣∣∣∣∣[2 + 6− 3i+ 4n− 12 + 4i
]
−
[
2 + 3i+ 4n− 8− 4i

]∣∣∣∣∣
=|1 + i|, i = 0, 1, 2.
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b) If compositions of degree 2, 3 and 4 are (1, 1), (2− i, i), (n− 4+ i, n− 1− i)
respectively, then by Corollary 1.2,∣∣∣ef∗(0)− ef∗(1)

∣∣∣ =1

2

∣∣∣∣∣[(2 + 3(2− i) + 4(n− 4 + i)
]
−
[
2 + 3i+ 4(n− 1− i)

]∣∣∣∣∣
=
1

2

∣∣∣∣∣[2 + 6− 3i+ 4n− 16 + 4i
]
−

[
2 + 3i+ 4n− 4− 4i

]∣∣∣∣∣
=|i− 3|, i = 0, 1, 2.

3) If the composition of degree 2 vertices is (2, 0), then the compositions of degree
3 and degree 4 vertices are given in Table 4.

Table 4. Compositions of degree 3 and degree 4 vertices, when
composition of degree 2 vertices is (2, 0).

“i (2− i, i)
When Vf (0) =
n, Vf (1) = n− 1

When Vf (0) = n −
1, Vf (1) = n

(n-4+i,n-1-i) (n-5+i,n-i)
i=0 (2,0) (n-4,n-1),n≥ 4 (n-5,n), n≥ 5
i=1 (1,1) (n-3,n-2) (n-4,n-1)n≥ 4
i=2 (0,2) (n-2,n-3) (n-3,n-2)”

a) If compositions of degree 2, 3 and 4 are (2, 0), (2− i, i), (n−4+ i, n−1− i)
respectively, then by Corollary 1.2,∣∣∣ef∗(0)− ef∗(1)

∣∣∣ =1

2

∣∣∣∣∣[(4 + 3(2− i) + 4(n− 4 + i)
]
−

[
3i+ 4(n− 1− i)

]∣∣∣∣∣
=
1

2

∣∣∣∣∣[4 + 6− 3i+ 4n− 16 + 4i
]
−

[
3i+ 4n− 4− 4i

]∣∣∣∣∣
=|i− 2|, i = 0, 1, 2.

b) If compositions of degree 2, 3 and 4 are (2, 0), (2 − i, i), (n − 5 + i, n − i)
respectively, then by Corollary 1.2,∣∣∣ef∗(0)− ef∗(1)

∣∣∣ =1

2

∣∣∣∣∣[4 + 3(2− i) + 4(n− 5 + i)
]
−

[
3i+ 4(n− i)

]∣∣∣∣∣
=
1

2

∣∣∣∣∣[4 + 6− 3i+ 4n− 20 + 4i
]
−

[
3i+ 4n− 4i

]∣∣∣∣∣
=|i− 5|, i = 0, 1, 2.

Therefore from above cases,
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Table 5. Balance indices when vf (0) = n and vf (1) = 1

“
∣∣∣ef∗(0)− ef∗(1)

∣∣∣ i value
when n = 3

i value
when n = 4

i value
when n ≥ 5

|3 + i| i=0 i=0,1 i=0,1,2
|1 + i| i=0,1 i=0,1 i=0,1,2
|i− 2| i=1,2 i=1,2 i=0,1,2”

Table 6. Balance indices vf (0) = n− 1 and vf (1) = n

“
∣∣∣ef∗(0)− ef∗(1)

∣∣∣ i value
when n = 3

i value
when n = 4

i value
when n ≥ 5

|i− 1| i=0,1,2 i=0,1,2 i=0,1,2
|i− 3| i=1,2 i=0,1,2 i=0,1,2
|1− 5| i=2 i=1,2 i=0,1,2”

From Table 5 and 6,

BI(T (Pn)) =


{0, 1, 2, 3}, when n = 3

{0, 1, 2, 3, 4}, when n = 4

{0, 1, 2, 3, 4, 5}, when n ≥ 5

□

Theorem 2.2. Let Wn be a Wheel graph with n vertices, then

BI (T (Wn)) =



{∣∣∣∣ 12(7n− n2 + 2ni− 2i− 18
)∣∣∣∣,∣∣∣∣ 12(3n− n2 + 2ni− 8i+ 4

)∣∣∣∣ : i = 0, 1, ..., n− 1

}
,

when 3n− 2 is even.{∣∣∣∣ 12(3n− n2 + 2ni− 8i− 2
)∣∣∣∣, ∣∣∣∣ 12(2ni− n− n2 − 8i+ 6

)∣∣∣∣,∣∣∣∣ 12(2ni− n− n2 − 8i+ 6
)∣∣∣∣, ∣∣∣∣ 12(2− n− n2 + 2ni− 8i

)∣∣∣∣;
i = 0, 1, ..., n− 1

}
,

when 3n− 2 is odd.

Proof. Let T (Wn) be the total graph of wheel graph with 3n− 2 vertices. In which
one vertex has degree 2(n−1), n−1 vertices has degree n+2 and remaining 2(n−1)
vertices has degree 6. For friendly labeling the compositions of vertices of degree
2(n−1), n+2 and 6, when 3n−2 is even and odd are given in Table 7 and Table 8
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respectively. We use the same technique as in Theorem (2.1) to find the balanced
index of T (Wn).

Case 1) 3n− 2 is even.

Table 7. Compositions of vertices of degree 2(n−1), degree (n+2)
and degree 6, when i = 0, 1, ..., n− 1

C.o.v of degree 2(n−1) C.o.v of degree n− 1 C.o.v of degree 6

(1,0) (i,n-1-i)
(

3n−4
2 − i, n

2 + i

)
(0,1) (i,n-1-i)

(
3n−2

2 − i, n−2
2 + i

)
i) When compositions of vertices of degree 2(n−1),(n+2) and 6 are (1, 0),

(i, n− 1− i),

(
3n−4

2 − i, n
2 + i

)
respectively, then

∣∣∣ef∗(0)− ef∗(1)
∣∣∣,

∣∣∣ef∗(0)− ef∗(1)
∣∣∣ =1

2

∣∣∣∣∣
[
2(n− 1) + i(n+ 2) + 6

(
3n− 4

2
− i

)]
−

[
(n− 1− i)(n+ 2) +

(
n

2
+ i

)
6

]∣∣∣∣∣
=
1

2

∣∣∣∣∣
[
2n− 2 + ni+ 2i+ 9n− 12− 6i

]
−

[
n2 − n+ 2n− 2− 2i− ni+ 3n− 3 + 6

]∣∣∣∣∣
=

∣∣∣∣12(7n− n2 + 2ni− 2i− 18
)∣∣∣∣

ii) When compositions of vertices of degree 2(n−1),(n+2) and 6 are (0, 1),

(i, n− 1− i),

(
3n−2

2 − i, n−2
2 + i

)
respectively, then

∣∣∣ef∗(0)− ef∗(1)
∣∣∣

is,∣∣∣ef∗(0)− ef∗(1)
∣∣∣ =1

2

∣∣∣∣∣
[
i(n+ 2) + 6

(
3n− 2

2
− i

)]
−

[
2(n− 1) + (n− 1− i)(n+ 2) + 6

(
n− 2

2
+ i

)]∣∣∣∣∣
=
1

2

∣∣∣∣∣[ni+ 2i+ 9n− 6− 6i
]
−

[
2n− 2 + n2 + n− 2− 2i− ni+ 3n− 6 + 6i

]∣∣∣∣∣
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=

∣∣∣∣12(3n− n2 + 2ni− 8i+ 4
)∣∣∣∣

Case 2) 3n− 2 is odd.

Table 8. Compositions of vertices of degree 2(n−1), degree (n+2)
and degree 6, when i = 0, 1, ..., n− 1

C.o.v of degree 2(n− 1) C.o.v of degree n− 1 C.o.v of degree 6

(1,0) (i,n-1-i)
(

3(n−1)
2 − i, n−1

2 + i

)
(

3n−5
2 − i, n+1

2 − i

)
(0,1) (i,n-1-i)

(
3n−1

2 − i, n−3
2 + i

)
(

3(n−1)
2 − i, n−1

2 − i

)
i) When compositions“of vertices of degree 2(n − 1),(n + 2) and 6 are

(0, 1), (i, n− 1− i),

(
3(n−1)

2 − i, n−1
2 + i

)
respectively, then

∣∣∣ef∗(0)−

ef∗(1)
∣∣∣ is,∣∣∣ef∗(0)− ef∗(1)

∣∣∣ =1

2

∣∣∣∣∣
[
i(n+ 2) + 6

(
3(n− 1)

2
− i

)]
−

[
2(n− 1)+

(n− 1− i)(n+ 2) +

(
n− 1

2
+ i

)]∣∣∣∣∣
=
1

2

∣∣∣∣∣[ni+ 2i+ 9n− 9− 6i
]
−

[
2n− 2 + n2 + n− 2− 2i− ni+ 3n− 3 + 6i

]∣∣∣∣∣
=

∣∣∣∣12(3n− n2 + 2ni− 8i− 2
)∣∣∣∣

ii) When compositions of vertices of degree 2(n−1),(n+2) and 6 are (1, 0),

(i, n− 1− i),

(
3n−5

2 − i, n+1
2 + i

)
respectively, then

∣∣∣ef∗(0)− ef∗(1)
∣∣∣

is,∣∣∣ef∗(0)− ef∗(1)
∣∣∣ =1

2

∣∣∣∣∣
[
2(n− 1)) + i(n+ 2) + 6

(
3n− 5

2
− i

)]
−

[
(n− 1− i)(n+ 2) + 6

(
n+ 1

2
+ i

)]∣∣∣∣∣



476

=

∣∣∣∣12(3n− n2 + 2ni− 8i− 6
)∣∣∣∣

iii) When compositions of vertices of degree 2(n−1),(n+2) and 6 are (1, 0),

(i, n− 1− i),

(
3n−1

2 − i, n−3
2 + i

)
respectively, then

∣∣∣ef∗(0)− ef∗(1)
∣∣∣

is,∣∣∣ef∗(0)− ef∗(1)
∣∣∣ =1

2

∣∣∣∣∣
[
2(n− 1) + i(n+ 2) + 6

(
3n− 1

2
− i

)]
−

[
(n− 1− i) ∗ (n+ 2) + 6

(
n− 3

2
+ i

)]∣∣∣∣∣
=
1

2

∣∣∣∣(2ni− n− n2 − 8i+ 6
)∣∣∣∣

iv) When compositions of vertices of degree 2(n−1),(n+2) and 6 are (0, 1),

(i, n− 1− i),

(
3(n−1)

2 − i, n−1
2 − i

)
respectively, then

∣∣∣ef∗(0)− ef∗(1)
∣∣∣

is,∣∣∣ef∗(0)− ef∗(1)
∣∣∣ =1

2

∣∣∣∣∣
[
i(n+ 2) + 6

(
3(n− 1)

2
− i

)]
−

[
2(n− 1) + (n− 1− i)(n+ 2) + 6

(
n− 1

2
− i

)]∣∣∣∣∣
=
1

2

∣∣∣∣(2− n− n2 + 2ni− 8i
)∣∣∣∣′′

Therefore from Case 1 and Case 2 the balance index set is,

BI (T (Wn)) =



{∣∣∣∣ 12(7n− n2 + 2ni− 2i− 18
)∣∣∣∣,∣∣∣∣ 12(3n− n2 + 2ni− 8i+ 4

)∣∣∣∣ : i = 0, 1, 2, ..., n− 1

}
,

when 3n− 2 is even.{∣∣∣∣ 12(3n− n2 + 2ni− 8i− 2
)∣∣∣∣, ∣∣∣∣ 12(2ni− n− n2 − 8i+ 6

)∣∣∣∣,∣∣∣∣ 12(2ni− n− n2 − 8i+ 6
)∣∣∣∣, ∣∣∣∣ 12(2− n− n2 + 2ni− 8i

)∣∣∣∣ :
i = 0, 1, 2, ..., n− 1

}
, when 3n− 2 is odd.

□
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Theorem 2.3. Let Km,n be the complete Bipartite graph, then

BI(T (Km,n)) =



{
1
2

∣∣∣∣2ni+ 2mj − 2mi− 2nj − 2mn+m2 + n2

∣∣∣∣
}
,

when m+ n+mn is even.{
1
2

∣∣∣∣2ni+ 2mj − 2mi− 2nj − 2mn+m2 + n2 +m+ n

∣∣∣∣,
1
2

∣∣∣∣2ni+ 2mj − 2mi− 2nj − 2mn+m2 + n2 −m− n

∣∣∣∣
}
,

when m+ n+mn is odd.

Proof. Let T (Km,n) be the total graph of complete bipartite graph with m+n+mn
number of vertices. In which m vertices are of degree 2n, n vertices are of degree
2m and remaining mn vertices has degree m+ n.

For friendly labeling, compositions of vertices of degree 2n, degree 2m and
degree m + n, when m + n +mn is even and odd are given in Table 9 and Table
10 respectively.

1) m+ n+mn is even.

Table 9. Compositions of vertices of degree m, degree n and de-
gree mn, when i = 0, 1, ...,m; j = 0, 1, 2, ..., n.

C.o.v of degree m C.o.v of degree n C.o.v of degree mn
(i,m-i) (i,n-j) mn+m+n

2 − (i+ j), mn−m−n
2 +(i+ j)

If compositions of vertices of degree m, degree n and degree mn, are (i,m−
i), (i, n−j), mn+m+n

2 −(i+j), mn−m−n
2 +(i+j) respectively, then by Corollary

1.2,

∣∣∣ef∗(0)− ef∗(1)
∣∣∣ =1

2

∣∣∣∣∣
[
2n+ 2jm+

(
mn+m+ n

2
− (i+ j)

)
(m+ n)

]
−

[
(m− i)2n+ (n− j)(2m) +

(
mn−m− n

2
+ (i+ j)

)
(m+ n)

]∣∣∣∣∣
=
1

2

∣∣∣∣(2ni+ 2mj − 2mi− 2nj − 2mn+m2 + n2
)∣∣∣∣

2) m+ n+mn is odd.
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Table 10. Compositions of vertices of degree m, degree n and
degree mn, when i = 0, 1, ...,m; j = 0, 1, 2, ..., n.

C.o.v of degree m C.o.v of degree n C.o.v of degree mn

(i,m-i) (i,n-j)
mn+m+n+1

2 − (i + j), mn−m−n−1
2 +

(i+ j)
mn+m+n−1

2 − (i + j), mn−m−n+1
2 +

(i+ j)

(a) If compositions of vertices of degree m, degree n and degree mn, are (i,m−
i), (i, n− j), mn+m+n+1

2 − (i+ j), mn−m−n−1
2 + (i+ j) respectively, then

by Corollary 1.2,∣∣∣ef∗(0)− ef∗(1)
∣∣∣ =1

2

∣∣∣∣∣
[
2n+ 2jm+

(
mn+m+ n+ 1

2
− (i+ j)

)
(m+ n)

]
−[

(m− i)2n+ (n− j)(2m) +

(
mn−m− n− 1

2
+ (i+ j)

)
(m+ n)

]∣∣∣∣∣
=

∣∣∣∣12(2ni+ 2mj − 2mi− 2nj − 2mn+m2 + n2 +m+ n
)∣∣∣∣

(b) If compositions of vertices of degree m, degree n and degree mn, are (i,m−
i), (i, n− j), mn+m+n−1

2 − (i+ j), mn−m−n+1
2 + (i+ j) respectively, then

by Corollary 1.2,∣∣∣ef∗(0)− ef∗(1)
∣∣∣ =1

2

∣∣∣∣∣
[
2n+ 2jm+

(
mn+m+ n− 1

2
− (i+ j)

)
(m+ n)

]
−[

(m− i)2n+ (n− j)(2m) +

(
mn−m− n+ 1

2
+ (i+ j)

)
(m+ n)

]∣∣∣∣∣
=
1

2

∣∣∣∣∣
[
2ni+ 2mj +

m2n+m2 +mn−m

2
−m(i+ j)+

mn2 +mn+ n2 + n

2
− n(i+ j)

]
−

[
2nm− 2ni+ 2mn− 2mj+

m2n−m2 −mn+m

2
+m(i+ j) +

mn2 −mn− n2 + n

2
+

n(i+ j)

]∣∣∣∣∣
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=

∣∣∣∣12(2ni+ 2mj − 2mi− 2nj − 2mn+m2 + n2 −m− n
)∣∣∣∣

Therefore from above cases,

BI(T (Km,n)) =



{
1
2

∣∣∣∣2ni+ 2mj − 2mi− 2nj − 2mn+m2 + n2

∣∣∣∣
}
,

when m+ n+mn is even.{
1
2

∣∣∣∣2ni+ 2mj − 2mi− 2nj − 2mn+m2 + n2 +m+ n

∣∣∣∣,
1
2

∣∣∣∣2ni+ 2mj − 2mi− 2nj − 2mn+m2 + n2 −m− n

∣∣∣∣
}
,

when m+ n+mn is odd.

□

Theorem 2.4. If Sn is a Star graph with n vertices, then

BI T (Sn) =

{
1

2

∣∣∣∣4i− n− 2ni+ n2

∣∣∣∣, 12
∣∣∣∣2i− 5n− 2ni+ n2 + 4

∣∣∣∣ : i = 0, 1, ..., n− 1

}

Proof. Consider a total graph of star graph T (Sn) with 2n− 1 vertices. It has one
vertex with degree 2(n − 1), n − 1 vertices with degree 2 and n − 1 vertices with
degree n. Since 2n− 1 is odd, the compositions of vertices are given in Table 11,

Table 11. Compositions of vertices of degree 2n−1, degree 2 and
degree n, when i = 0, 1, ..., n− 1.

C.o.v of degree 2n−
1

C.o.v of degree 2 C.o.v of degree n

(1,0) (i,n-1-i) n− 1− i, i
(0,1) (i,n-1-i) n− 1− i, i

Case 1) If compositions of vertices of degree 2n−1, degree 2 and degree n are (1, 0),
(i, n− 1− i), (n− 1− i, i) respectively, then by Corollary 1.2,∣∣∣ef∗(0)− ef∗(1)

∣∣∣ =1

2

∣∣∣∣∣[2(n− 1) + 2i+ (n− 1− i)n
]
−
[
(n− 1− i) ∗ 2 + ni

]∣∣∣∣∣
=
1

2

∣∣∣∣∣[(2n− 2 + 2i+ n2 − n− ni)
]
−

[
(2n− 2− 2i+ ni)

]∣∣∣∣∣
=
1

2

∣∣∣∣4i− n− 2ni+ n2

∣∣∣∣
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Case 2) If compositions of vertices of degree 2n−1, degree 2 and degree n are (0, 1),
(i, n− 1− i), (n− 1− i, i) respectively, then by Corollary 1.2,∣∣∣ef∗(0)− ef∗(1)

∣∣∣ =1

2

∣∣∣∣∣[2i+ (n− 1− i)n
]
−
[
2(n− 1) + (n− 1− i)2 + ni

]∣∣∣∣∣
=
1

2

∣∣∣∣∣[(2i+ n2 − n− ni)
]
−
[
(2n− 2 + 2n− 2− 2i+ ni)

]∣∣∣∣∣
=
1

2

∣∣∣∣2i− 5n− 2ni+ n2 + 4

∣∣∣∣
Therefore BI set of T (Sn) is,

BI T (Sn) =

{
1

2

∣∣∣∣4i− n− 2ni+ n2

∣∣∣∣, 12
∣∣∣∣2i− 5n− 2ni+ n2 + 4

∣∣∣∣ : i = 0, 1, ..., n− 1

}
□

3. Balance index set of some classes of semigraph

A semigraph is a generalization of graph (Given in Fig. 1 ). The concept of
semigraph was introduced by E. Sampath Kumar[11]. If E1 = (u1, u2, ..., uk) and
E2 = (uk, uk−1, ..., u1) are two edges, then by SG − II, it is noted that E1 = E2.
The size of an edge is denoted by |E|, is the number of vertices in an edge E. Here
we introduce balance index set of semigraph G.

For a semigraphG(V,X), the binary labeling is a function fs : V (G) → {0, 1}.
If a binary labeling fs satisfies |vfs(1) − vfs(0)| ≤ 1, where vfs(0) is number of
vertices labeled by 0 and vfs(1) is number of vertices labeled by 1 in a semigraph
G, then it is called friendly labeling.

Example 3.1. Consider a semigraph G with edges, E1 = {v1, v2, v3, v4}, E2 =
{v5, v6, v7, v8}, E3 = {v9, v10, v11, v12}, E4 = {v1, v5, v9}, E5 = {v4, v8, v12}.
End vertices: {V1, V4, V9, V12}, middle vertices: {V2, V3, V6, V7, V10, V11}, and mid-
dle end vertices: {V5, V8}.

Figure 1. A Semigraph G.
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For each binary vertex labeling fs of a semigraph G(V,X), the partial edge la-
beling f∗

s defined as: for an edge E = vi, vi+1, vi+2, ..., vj ∈ X(G),

f∗
s (E) =

{
1, if vfs(1) > vfs(0) for the vertices vk, i ≤ k ≤ j

0, if vfs(0) > vfs(1) for the vertices vk, i ≤ k ≤ j.

If vfs(0) = vfs(1), then E is not labeled.

In a semigraph G, fs is a vertex labeling and f∗
s is a partial edge labeling

then, a graph is said to be balanced if |vfs(0)−vfs(1)| ≤ 1 and |ef∗
s
(0)−ef∗

s
(1)| ≤ 1,

where ef∗
s
(0), ef∗

s
(1) are the number of edges labeled with 0 and 1 respectively. In

a semigraph G, if vfs(0) = vfs(1)
(
or ef∗

s
(0) = ef∗

s
(1)

)
then it is said to be strongly

vertex
(
or edge

)
balanced semigraph. For a given semigraph G,

BI(G) = {|ef∗
s
(0)− ef∗

s
(1)| : the vertex labeling fs of G is friendly}

is called the balance index set of semigraph G.

Theorem 3.2. The balance index set of semigraph Kc
n,m is

BI(Kc
n,m) =


{0, 1, 2, 3, ..., |E|}, when m is odd and |E| is even;

{1, 2, 3, ..., |E|}, when m is odd and |E| is odd;

{0, 1, 2, 3, ..., n(n−2)
2 }, when m is even and |E| is even;

{1, 2, 3, ..., (n−1)2

2 }, when m is even and |E| is odd.

Proof. Consider (m + 2) − uniform semigraph Kc
n,m with (n

2−n
2 )m + n vertices.

Let E1, E2, ..., Em are the edges of Kc
n,m. It contains n edges of (m+2)−uniform

semigraph Cc
n,m and (n

2−3n
2 ) edges joining any two end vertices.

Case 1) When m is odd, the vertices of Kc
n,m can be labeled as follows.

Label end vertices of Kc
n,m by 1 and one middle vertex in each edge of Cc

n,m

in Kc
n,m by 0. Since m is odd, m − 1 is even. To satisfy friendly labeling label

m−1
2 vertices in each edge of Kc

n,m by 1 and remaining m−1
2 vertices in each edge

of Kc
n,m by 0.

Remaining one vertex in each edge of (n
2−3n
2 ) edges joining any two end vertices

can be labeled as follows.

(a) If n2−3n
2 is odd, then

n2−3n
2 +1

2 vertices are labeled by 1 and
n2−3n

2 −1

2 vertices
are labeled by 0 or vice versa. Thus it satisfies friendly labeling.

(b) If n2−3n
2 is even, to satisfy friendly labeling, n2−3n

4 vertices are labeled by 1

and n2−3n
4 labeled by 0.

It can be observed that, in each edge vfs(1) =
m+3
2 and vfs(0) =

m+1
2

(
vfs(1) =

m+1
2 and vfs(0) =

m+3
2

)
. Therefore vfs(1) > vfs(0) (vfs(0) > vfs(1)) and highest

balance index is |E| with each edge label is 1. To find balance index set we use
following steps.

(a) If the number of edges n2−n
2 is even, then interchange the label of one of the

vertex which is labeled by 1 in Ei with one of the vertex which is labeled by
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0 in Em
2 +i. So that edge Ei takes the label 0 and label of edge Em

2 +i remains
1. Repeat this process for 1 ≤ i ≤ m

2 . At each interchange, ef∗
s
(1) decreases

by one and ef∗
s
(0) increases by one or vice versa. So we get balance index set

as {0, 2, 4, ..., |E|}.
(b) If the number of edges n2−n

2 is odd, then interchange the label of one of the
vertex which is labeled by 1 in Ei with one of the vertex which is labeled
by 0 in En2−n+1

2 +i
. So that edge Ei takes the label 0 and label of an edge

En2−n+1
2 +i

remains 1. Repeat this process for 1 ≤ i ≤ n2−n−1
2 . At each

interchange, ef∗
s
(1) decreases by one and ef∗

s
(0) increases by one or vice

versa. So we get balance index set as {1, 3, 5, ..., |E|}.
Case 2) When m is even, the vertices of Kc

n,m can be labeled as follows.
Since each edge has even number of middle vertices then label m

2 vertices of

each edge in (n
2−3n
2 ) edges joining any two end vertices by 1 and remaining m

2

vertices of each edge of (n
2−3n
2 ) edges joining any two end vertices by 0. The end

vertices of Kc
n,m and first vertex of each edge in Cn,m in Kc

n,m are labeled by 1
and 0 respectively. Label the vertices vi, 2 ≤ i ≤ m − 1 in each edge of Cn,m in
Kc

n,m by alternative 0 and 1.The remaining one vertex in each edge of Cc
n,m in

Kc
n,m are labeled as follows,

(a) If n is odd, then label m+1
2 vertices by 1 and m−1

2 vertices by 0 or vice

versa. Therefore vfs(1) =
(n2−n

2 )m+n+1

2 andvfs(0)
(n2−n

2 )m+n−1

2 or vice versa.
Therefore |vfs(0)| − |vfs(1)| = 1.

(b) When n is even, then label m
2 vertices by 1 and m

2 vertices by 0. Therefore

vfs(1) = vfs(0) =
(n2−n

2 )m+n

2 . Hence |vfs(0)| − |vfs(1)| = 0.

Since each edge in (n
2−3n
2 ) edges joining any two end vertices has m+4

2 vertices
with label 1 and m

2 vertices with label 0 then each edge will get a label 1.
The edges of Cc

n,m in Kc
n,m takes the label as follows.

(a) If n is odd, then n+1
2 edges has m+4

2 vertices with label 1 and m
2 vertices with

label 0. Also, n−1
2 edges has m

2 vertices with label 0 and m
2 vertices with label

1. Therefore n+1
2 edges will get label 1. Since n−1

2 edges has |Vf (0)| = |Vf (1)|,
hence they are not labeled. Therefore highest balance index of Kc

n,m when n

is odd is, n2−3n
2 + n+1

2 = n2−2n+1
2 = (n−1)2

2 .
(b) If n is even then n

2 edges has |vf (1)| = |vf (0)| and n
2 edges has |vf (1)| =

|vf (0)|. Therefore highest balance index of Kc
n,m when n is even is, n2−3n

2 +
n
2 = n2−2n

2 = n(n−2)
2 .

To get the balance index set, we need to decrease the number of edges label by
1 or increase the number of edges label by 0. In each edge we have m

2 zero’s
and m

2 once’s. Therefore to decrease the number of edges label by 1, interchange
two 1′s of any edge with two 0′s with any other edge. Continue this process

until we get
∣∣∣|ef∗

s
(1)| − |ef∗

s
(0)|

∣∣∣ ≤ 1. Therefore when |E| is odd, we get balance



483

index set as {1, 2, 3, ..., (n−1)2

2 } and when |E| is even, we get balance index set as

{0, 1, 2, 3, ..., n(n−2)
2 }.

□

Theorem 3.3. The balance index set of Cc
n,m is

BI(Cc
n,m) =


{1, 3, 5, ..., n}, when m and n are odd;

{0, 2, 4, ..., n}, when m is odd and n is even;

{1, 2, 3, ..., n+1
2 }, when m is even and n is odd;

{0, 2, 4, ..., n
2 }, when m and n are even.

Proof. Let Cc
n,m be a semigraph with n(m + 1) vertices and E1, E2, E3, ..., En be

the edges.

Case 1) If m and n both are odd, then n(m+1) is even. To satisfy friendly labeling

vfs(0) = vfs(1) =
n(m+1)

2 . The vertex labeling is done as follows.
All n end vertices and all first vertices in each edge are labeled by 1 and 0

respectively. Label m−1
2 vertices in each edge by 1 and m−1

2 vertices in each

edge by 0. Each edge contains m+3
2 vertices labeled by 1 and m+1

2 labeled by 0.
Therefore highest balance index in Cc

n,m is n.
To get balance index set of Cc

n,m, interchange the label of one of the vertex
which is labeled by 1 in Ei with the label of one of the vertex which is labeled
by 0 in En−1

2 +i, 1 ≤ i ≤ n−1
2 . At each interchange, vfs(1) is decreases by 1 and

vfs(0) increases by 1. Since n is odd we get balanced index set as {1, 3, 5, ..., |E|}.
Case 2) When m is odd and n is even, follow the labeling procedure when m and
n are odd. When interchanging the labels, continue up to, 1 ≤ i ≤ n

2 . Since n is
even we get balanced index set as {0, 2, 4, ..., n}.
Case 3) When m is even and n is odd, the total number of vertices n(m+1) is odd.

Therefore, to satisfy friendly labeling, vfs(1) =
n(m+1)−1

2 and vfs(0) =
n(m+1)−1

2 .
The vertex labeling is done as follows,

All the end vertices are labeled by 1 and first vertex in each edge is labeled by
0. Label m−2

2 middle vertices of each edge by 0 and m−2
2 middle vertices of each

edge by 1. There will be one vertex in each edge is remaining. Label n+1
2 vertices

by 1 and n−1
2 vertices by 0, in the remaining n vertices. Thus n+1

2 edges have

vfs(1) > vfs(0) and n−1
2 edges have vfs(1) = vfs(0). Therefore highest balanced

index is n+1
2 . To get balanced index set use following steps.

Interchange the label of the vertex which has label 0 by 1 in Ei with the label
of vertex which has label 0 in En+1

2 +i, 1 ≤ i ≤ n−1
2 . At each interchange, number

of edges labeled by 1 increases by 1. Since n is odd, the balanced index set is
{1, 2, ..., n+1

2 }.
Case 4) When m is even and n is even, n(m+1) is even. Then for friendly labeling

vfs(1) = vfs(0) = n(m+1)
2 . To label the vertices of Cc

n,m, the labeling technique
can be done as in Case 3. The highest edge balanced index is n

2 . Using Case 3,
the balanced index set is {0, 2, 4, ..., n

2 }.
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Therefore,

BI(Cc
n,m) =


{1, 3, 5, ..., n}, when m and n are odd;

{0, 2, 4, ..., n}, when m is odd and n is even;

{1, 2, 3, ..., n+1
2 }, when m is even and n is odd;

{0, 2, 4, ..., n
2 }, when m and n are even.

□

4. Significance in Network Optimization

The concepts and results presented in this paper have significant applications
in the field of telecommunication networks. Specifically, the balanced index set
and friendly labeling of graphs and semigraphs can be utilized to optimize network
design, enhance routing efficiency, and improve fault tolerance in communication
systems. By ensuring a balanced distribution of labels and edges, network designers
can achieve more robust and efficient network structures.

Network Design Optimization: The balanced index set provides a frame-
work for designing network topologies that minimize the difference between different
types of connections. This can lead to more uniform and stable networks, which
are less prone to congestion and failure.

Routing Efficiency: In telecommunication networks, efficient routing algo-
rithms are crucial for minimizing latency and maximizing throughput. The friendly
labeling and balanced index set can be applied to develop routing protocols that
evenly distribute traffic, reducing the likelihood of bottlenecks and improving over-
all network performance.

Fault Tolerance and Reliability: A balanced network, as defined by the
balanced index set, can enhance the fault tolerance of a telecommunication system.
By maintaining a balanced structure, the network can better withstand node or
edge failures, ensuring continued communication and reducing the risk of network
partitioning.

Load Balancing: The concepts of friendly labeling and partial edge labeling
can be used to achieve load balancing in telecommunication networks. By evenly
distributing the load across different nodes and edges, the network can prevent
overloads and ensure more efficient utilization of resources.

Scalability: As telecommunication networks grow in size and complexity,
maintaining balance becomes increasingly important. The methods described in
this paper provide a scalable approach to network design and management, allowing
for the seamless integration of new nodes and connections while preserving network
balance.

By applying the balanced index set and friendly labeling to telecommunica-
tion networks, researchers and engineers can develop more efficient, reliable, and
scalable communication systems. The theoretical advancements presented in this
paper pave the way for practical implementations that can significantly improve
the performance and robustness of modern telecommunication networks.
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Cite or refer to your theorem using: Theorem 2.1 (for example).

5. Conclusion

Labeled graph is the topic of current interest for many researchers as it has
diversified applications. We discuss here balanced labeling and balance index set of
T (Pn), T (Wn), T (Km,n), T (Sn) are obtained and balance index set of semigraph
is introduced. Also, balance index set of semigraphs Cc

n,m and Kc
n,m are obtained.

The derived labeling pattern is demonstrated by means of elegant illustrations
which provides better under-standing of the derived results.

REFERENCES

[1] Kong, M. C., Lee, S. M., Seah, E., and Tang, A. S., A complete characterization of balanced

graphs, Journal of Combinatorial Mathematics and combinatorial computing, 66 (2008),
125-136.

[2] Kwong, H., On balance index sets of rooted trees, Ars. Combinatorica, 91 (2009), 373-382.
[3] Alhevaz, A., Darkooti, M., Rahbani, H., Shang, Y., Strong equality of perfect roman and

weak roman domination in trees, Mathematics, 77(997), (2019), 1-13.

[4] Kim, R. Y., Lee, S. M., and Ng, H. K., On balancedness of some graph construction, Journal
of Combinatorial Mathematics and combinatorial computing, 66(2008), 3-16.

[5] Tan, S. K., Liu, A., and Lee, S. M., On balanced graphs, Congresses Numerantium, 82

(1992), 59-64.
[6] Kwong, H., Lee, S. M., and Sarvate, On balance index sets of one point union of graphs,

Journal of Combinatorial mathematics and Combinatorial Computing, 66 (2008), 113-127.

[7] Ng, H. K., Lee, S. M., and Tong, S. M., On balance index of the chain-sum graphs of cycle,
Utilitas Mathematica,77, (2008), 113-123.

[8] Lee, S. M., Wang, W. C., and Wen, Y. H., On the balance index set of (p, p + 1)-graphs,

Journal of Combinatorial mathematics and Combinatorial Computing, 62 (2007), 193-216.
[9] Kwong, H., and Shiu, W. C., An algebraic approach for finding balance index sets, Australian

Journal of Combinatorial 45,(2009), 139-155.

[10] Su, H. H., Lee, S. M., and Wang, H. C., On balance index set of trees of diameter four,
Journal of Combinatorial mathematics and Combinatorial Computing, 78 (2011), 285-302.

[11] SampathKumar, E., Semigraphs and their applications, Technical Report[DST/MS/022/94],
India: Dept. of Science and Technology, 1999.


	1. Introduction 
	2. Balance index set of total graphs
	3. Balance index set of some classes of semigraph
	4. Significance in Network Optimization
	5. Conclusion
	REFERENCES

