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Abstract. In this correspondence, we introduced the concept of minimum roman

dominating distance energy ERDd(G) of a graph G and computed minimum roman

dominating distance energy of some standard graphs. Also, we discussed the prop-

erties of eigenvalues of a minimum roman dominating distance matrix ARDd(G).

Finally, we derived the upper and lower bounds for ERDd(G).

Key words and Phrases: Distance Matrix, Energy of a graph, Roman dominating
function, Roman domination.

1. Introduction

In 1978, I. Gutman[7] was introduced the concept of energy of a graph . The
graph G = (V,E) mean a simple connected graph with n vertices and m edges.
The distance between two vertices u and v is the length shortest distance between
u and v. The Wiener index W (G) of G, is the sum of the lengths of the shortest
paths between all pairs of vertices. Let A = (aij) be the adjacency matrix of a
graph G. Then the energy E(G) of a graph G is defined by the sum of absolute
value of all eigenvalues of A. For more details about energy of a graph[1].

The union of two simple graphs G1 = (V1, E1) and G2 = (V2, E2) is the simple
graph with vertex set V1 ∪ V2 and edge set E1 ∪ E2. The union of G1 and G2 is
denoted by G1∪G2. A crown graph S0

k is a bipartite graph with two sets of vertices
{a1, a2, . . . , ak} and {b1, b2, . . . , bk} and with an edge from ai to bj whenever i ̸= j.
For a positive integer n ≥ 2, a healthy spider is a star K∗

1,n−1 with all of its edges
subdivided[3].

The distance matrix Ad = (dij) of G is a symmetric matrix of order n where
dij is the distance between ith and jth vertices of a graph. The distance energy
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Ed(G) of the graph G is defined by the sum of absolute value of all eigenvalues
of Ad. The distance matrix of an undirected graph has been widely studied in the
literature, see [2, 4, 5, 6].

A set S ⊆ V is a dominating set if every vertex of V \ S is adjacent to at
least one vertex in S. The domination number γ(G) is the minimum cardinality of
a dominating set in G, and a dominating set S of minimum cardinality is called
a γ-set of G. E. J. Cockayne et al.[3] introduce the concept of roman domination
in graphs. A Roman dominating function on a graph G = (V,E) is a function
f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is
adjacent to at least one vertex v for which f(v) = 2.

Let (V0, V1, V2) be the ordered partition of V induced by f, where Vi = {v ∈
V | f(v) = i} and |Vi| = ni, for i = 0, 1, 2. Note that there exists a one-one
correspondence between the functions f : V → {0, 1, 2} and the ordered partitions
(V0, V1, V2) of V. Thus, we will write f = (V0, V1, V2). A function f = (V0, V1, V2) is
a Roman dominating function (RDF) if V2 ≻ V0, where ≻ means that the set V2

dominates the set V0. The weight of f is f(V ) =
∑
v∈V

f(v) = 2n2 + n1.

The Roman domination number, denoted γR(G), equals the minimum weight
of an RDF of G, and we say that a function f = (V0, V1, V2) is a γR-function if it
is an RDF and f(V ) = γR(G).

Theorem 1.1. [3] For any graph G, γ(G) ≤ γR(G) ≤ 2γ(G).

Kanna et al. [8, 10] studied the minimum covering distance energy of a graph
and also they were studied Laplacian minimum dominating energy of a graph.
Kanna et al. [9] introduced the concept of the minimum dominating distance
energy of a graph. Let G be the graph with vertex set V = {v1, v2, . . . , vn}. Let D
be a minimum dominating set of a graph G. The minimum dominating distance
matrix of G is the square matrix ADd(G) := (d′ij) where

d′ij =

{
1 if i = j and vi ∈ D

d(vi, vj) otherwise.

Let δ1, δ2, . . . , δn be the eigenvalues of ADd(G). Then the minimum dominating
energy EDd(G) of G is

EDd(G) =

n∑
j=1

|δj |.

In this paper, we introduce the concept of minimum roman dominating dis-
tance energy of a graph in section 2. In Section 3, we find the minimum roman
dominating distance energy of some standard graphs. In section 4, we discussed
the properties of eigenvalues of a minimum roman dominating distance matrix
ARDd(G). We derived the upper and lower bounds for ERDd(G) in Section 5.
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2. The Minimum Roman Dominating Energy

In this section, we introduce the concept of minimum roman dominating
energy of a graph.

Let f = (V0, V1, V2) be a γR-function of a graph G. The minimum roman
dominating distance matrix ARDd(G) of G is defined as ARDd(G) := (d̄ij) where

d̄ij =


2 if i = j and vi ∈ V2

1 if i = j and vi ∈ V1

d(vi, vj) otherwise.

Let ρ1, ρ2, . . . , ρn be the eigenvalues of ARDd(G). Then the minimum roman domi-
nating distance energy ERDd(G) of G is defined as

ERDd(G) =

n∑
k=1

|ρk|.

Note that tr(ARDd(G)) = γR(G).

Example 2.1. The minimum roman dominating function of the following graph
G

r r r r r
r r
r r

v7 v1

v3 v2

v4 v5

v8 v9v6

is f = (V0, V1, V2) where V2 = {v1}, V1 = {v7, v9} and V0 = {v2, v3, v4, v5, v6, v8}.
Then the minimum roman dominating distance matrix is

ARDd(G) =



2 1 1 1 1 1 2 1 2
1 0 1 2 2 2 3 2 3
1 1 0 2 2 2 3 2 3
1 2 2 0 1 2 3 2 3
1 2 2 1 0 2 3 2 3
1 2 2 2 2 0 1 2 3
2 3 3 3 3 1 1 3 4
1 2 2 2 2 2 3 0 1
2 3 3 3 3 3 4 1 1


9×9

.

Then the characteristic equation of ARDd(G) is

ρ9 − 4ρ8 − 171ρ7 − 1034ρ6 − 2339ρ5 − 1284ρ4 +2659ρ3 +4438ρ2 +2410ρ+444 = 0

and the eigenvalues are ρ1 = −3, ρ2 = −1, ρ3 = −1, ρ4 ≈ −4.5615, ρ5 ≈ −0.4384, ρ6 ≈
−3.9721, ρ7 ≈ −0.8397, ρ8 ≈ 1.2642, and ρ9 ≈ 17.5476. Hence the minimum roman
dominating energy of G is ERDd(G) ≈ 33.6237.

Note that this graph has unique minimum roman dominating function.
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3. Minimum Roman Dominating Distance Energy of Some Standard
Graphs

In this section, we studied the minimum roman dominating distance energy
of complete, complete bipartite, crown, star and healthy spider graphs.

Denote Jn is an n× n all ones matrix, In is an n× n identity matrix, Dk is
a diagonal matrix whose kth diagonal entry is zero and other diagonal entries are
two, an is a 1× n row vector [a, a, . . . , a] and a′n is the transpose of an.

Theorem 3.1. For any integer n ≥ 3, ERDd(Kn) = 2n− 2.

Proof. For a complete graph Kn, the minimum roman dominating function is
f = (V0, V1, V2) where V2 = {vi} for any i, V1 = ∅ and V0 = V \ V2. Then the
minimum roman dominating distance matrix ARDd(Kn) = (aij) where

aij =


2 if i = j and vi ∈ V2

0 if i = j and vi ∈ V0

1 otherwise

One can easily show that the characteristic polynomial ofARDd(Kn) is (ρ+1)n−2(ρ2−
nρ+n− 3). Hence the eigenvalues are -1 with multiplicity n− 2 and n±

√
n2−4n+12

2 .

Since for n ≥ 3, n ≥
√
n2 − 4n+ 12. Therefore, the eigenvalues n+

√
n2−4n+12

2 and
n−

√
n2−4n+12

2 are positive. Hence the sum of absolute values of all eigenvalues is
2n− 2. That is, ERDd(Kn) = 2n− 2.

Corollary 3.2. For any integer n ≥ 3, ERDd(Kn) = Ed(Kn) = E(Kn).

Proof. Let n ≥ 2 be an integer. The adjacency matrix of a complete graph Kn is
Jn − In and the eigenvalues are n − 1 and −1 with multiplicity n − 1, the energy
of Kn is 2n− 2.

Theorem 3.3. For any integer r ≥ 2,

ERDd(Kr,r) = 2(2r − 4) +
√
(r − 2)2 + 8 +

√
(3r − 2)2 + 24.

Proof. Let X = {v1, v2, . . . , vr} and Y = {w1, w2, . . . , wr} be a partition of the
vertex set of a complete bipartite graphKr,r. Then the minimum roman dominating
function is f = (V0, V1, V2) where V2 = {vi, wj} for any 1 ≤ i, j ≤ r, V1 = ∅ and
V0 = V \ V2. Then the minimum roman dominating distance matrix is

ARDd(Kr,r) =

[
2Jr −Di Jr

Jr 2Jr −Dj

]
2r×2r

.

One can easily show that the characteristic equation ofARDd(Kr,r) is (ρ+2)2r−4(ρ2−
(r − 2)ρ − 2)(ρ2 − (3r − 2)ρ − 6) = 0. Then the eigenvalues are −2 with multi-

plicity 2r− 4,
(r−2)±

√
(r−2)2+8

2 and
(3r−2)±

√
(3r−2)2+24

2 . Therefore, the eigenvalues
(r−2)−

√
(r−2)2+8

2 ,
(3r−2)−

√
(3r−2)2+24

2 are negative and the eigenvalues
(r−2)+

√
(r−2)2+8

2 ,
(3r−2)+

√
(3r−2)2+24

2 are positive.
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Hence the sum of absolute values of all eigenvalues is 2(2r−4)+
√
(r − 2)2 + 8+√

(3r − 2)2 + 24. That is, ERDd(Kr,r) = 2(2r−4)+
√

(r − 2)2 + 8+
√

(3r − 2)2 + 24.

Theorem 3.4. For any n ≥ 3, ERDd(K1,n−1) = 4n− 6.

Proof. Consider the star graph K1,n−1 with vertex set V = {v0, v1, v2, . . . , vn−1},
where deg(v0) = n− 1. The minimum roman dominating distance function is f =
(V0, V1, V2) where V2 = {v0}, V1 = ∅ and V0 = V \ V2 = {v1, v2, . . . , vn−1}. Then
the minimum roman dominating distance matrix is

ARDd(K1,n−1) =

[
2 1n−1

1′
n−1 2Jn−1 − 2In−1

]
n×n

.

The characteristic equation is (ρ+ 2)n−2(ρ2 − (2n− 2)ρ+ 3n− 7) = 0. Then

the eigenvalues are −2 with multiplicity n− 2, (n− 1)±
√
n2 − 5n+ 8. Hence the

sum of absolute values of all eigenvalues is 4n−6. That is, ERDd(K1,n−1) = 4n−6.

Theorem 3.5. For an odd integer n ≥ 4,

11n− 19 ≤ ERDd(K
∗
1,n−1) ≤ 6n2 − 4n− 16.

Proof. Consider the healthy spider graphK∗
1,n−1 with vertex set V = {v0, v1, v2, . . . , vn−1,

u1, u2, . . . , un−1}. The vertex v0 is adjacent with v1, v2, . . . , vn−1 and for 1 ≤ i ≤
n−1, ui is adjacent with vi. Then the minimum roman dominating function is f =
(V0, V1, V2) where V2 = {v0}, V1 = {u1, u2, . . . , un−1} and V0 = {v1, v2, . . . , vn−1}.

q q q q
q

q q q q
p p p
p p p

v0

v1 v2 vn−1vn−2

u1 u2 un−1un−2

Then the minimum roman dominating distance matrix is

ARDd(K
∗
1,n−1) =

 2 1n−1 2n−1

1′
n−1 2Jn−1 − 2In−1 3Jn−1 − 2In−1

2′
n−1 3Jn−1 − 2In−1 4Jn−1 − 3In−1


2n−1×2n−1

.

The characteristic equation of ARDd(K
∗
1,n−1) is

(ρ2 + 5ρ+ 2)n−2[ρ3 − (6n− 9)ρ2 − (n2 − 7n+ 14)ρ+ 2n2 − 3n− 3] = 0.

The sum of absolute values of the roots of (ρ2+5ρ+2)2 = 0 is 5n−10 and the sum
of absolute values of roots of the ρ3−(6n−9)ρ2−(n2−7n+14)ρ+2n2−3n−3 = 0
is greater than or equal to 6n− 9. Therefore,

ERDd(K
∗
1,n−1) ≥ 11n− 19.

By Cauchy’s bound for roots of a polynomial, all the roots of ρ3−(6n−9)ρ2−
(n2 − 7n + 14)ρ + 2n2 − 3n − 3 = 0 lies in the closed interval [−(M + 1),M + 1]
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where M = 2n2 − 3n − 3. Therefore, the sum of absolute values of these roots is
bounded above by 3(2n2 − 3n− 2) = 6n2 − 9n− 6. Thus,

ERDd(K
∗
1,n−1) ≤ 5n− 10 + 6n2 − 9n− 6 = 6n2 − 4n− 16.

Theorem 3.6. For any integer k ≥ 2, ERDd(S
0
k) = 7k − 6 +

√
k2 − 4k + 12.

Proof. Consider the crown graph S0
k with vertex set V = X ∪ Y where X =

{v1, v2, . . . , vk} and Y = {w1, w2, . . . , wk}. The minimum roman dominating dis-
tance function is f = (V0, V1, V2) where V2 = {vi, wi} for any 1 ≤ i ≤ k, V1 = ∅
and V0 = V \ V2. Then the minimum roman dominating distance matrix is

ARDd(S
0
k) =

[
2Jk −Di Jk + 2Ik
Jk + 2Ik 2Jk −Di

]
2k×2k

.

The characteristic equation of ARDd(S
0
k) is

ρ2k−2(ρ+ 4)2k−2[ρ2 − (3k + 2)ρ+ 6(k − 1)][(ρ2 + (6− k)ρ− 2k + 6] = 0.

Then the eigenvalues are −4 with multiplicity k − 2, 0 with multiplicity k − 2,
(−6+k)±

√
k2−4k+12
2 and (3k+2)±

√
9k2−12k+28
2 . Hence the sum of absolute values of all

eigenvalues is 7k−6+
√
k2 − 4k + 12. That is, ERDd(S

0
k) = 7k−6+

√
k2 − 4k + 12.

Theorem 3.7. Let G and H be two disjoint graphs. Then ERDd(G ∪ H) =
ERDd(G) + ERDd(H).

Proof. Let A and B be the minimum roman dominating distance matrix of G and
H, respectively. Then the minimum roman dominating distance matrix of G ∪H
is

ARDd(G ∪H) =

[
A 0
0 B

]
.

The characteristic polynomial of ARDd(G ∪ H) is the product of characteristic
polynomial of A and B. Therefore, ERDd(G ∪H) = ERDd(G) + ERDd(H).

4. Properties of Eigenvalues of Minimum Roman Dominating
Distance Matrix ARDd(G)

In this section, we discussed the relation between the eigenvalues of the mini-
mum roman dominating distance matrix ARDD(G) and the minimum roman domi-
nating energy γR of G.

Theorem 4.1. Let G = (V,E) be a graph and let f = (V0, V1, V2) be a γR-function.
If ρ1, ρ2, . . . , ρn are the eigenvalues of minimum roman dominating distance matrix
ARDd(G), then

(i)
n∑

i=1

ρi = γR(G)

(ii)
n∑

i=1

ρ2i = γR(G)+2m+2M where M =
∑

i<j, d(vi,vj )̸=1

d(vi, vj)
2 and m = |E|.
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Proof. (i) The sum of the eigenvalues of ARDd(G) is the trace of ARDd(G).
Therefore,

n∑
i=1

ρi =

n∑
i=1

d(vi, vi) = 2|V2|+ |V1| = γR(G).

(ii) The sum of squares of the eigenvalues of ARDd(G) is trace of (ARDd(G))2.
Therefore,

n∑
i=1

ρ2i =

n∑
i=1

n∑
j=1

d(vi, vj)d(vj , vi)

=

n∑
i=1

d(vi, vi)
2 +

∑
i ̸=j

d(vi, vj)d(vj , vi)

=

n∑
i=1

d(vi, vi)
2 +

∑
i<j

d(vi, vj)
2

= γR(G) + 2
∑
i<j

d(vi, vj)
2

= γR(G) + 2m+ 2M.

Corollary 4.2. Let G be a graph with diameter 2 and let f = (V0, V1, V2) be a γR-
function. If ρ1, ρ2, . . . , ρn are eigenvalues of minimum roman dominating distance
matrix ARDd(G), then

n∑
i=1

ρ2i = γR(G) + 2(2n2 − 2n− 3m).

Proof. We know that in ARDd(G) there are 2m elements with 1 and n(n−1)−2m
elements with 2 and hence corollary follows from the above theorem.

5. Bounds for Minimum Roman Dominating Energy

In this section, we discussed the bounds for minimum roman dominating
energy.

The proofs of the following Theorems are similar to the proofs in [9].

Theorem 5.1. Let G be a graph. If f = (V0, V1, V2) is a γR-function and P =
|det(ARDd(G)|, then√

(2m+ 2M + γR) + n(n− 1)P
n
2 ≤ ERDd(G) ≤

√
n(2m+ 2M + γR(G))

where γR is a roman domination number.
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By Theorem 1.1,we have the following corollary.

Corollary 5.2. Let G be a graph. If f = (V0, V1, V2) is a γR-function and P =
|det(ARDd(G))| then√

(2m+ 2M + γ) + n(n− 1)P
n
2 ≤ ERDd(G) ≤

√
n(2m+ 2M + 2γ(G)),

where γ is a minimum domination number of G.

Remark 5.3. In Theorem 3.5, for the healthy spider graph K∗
1,n−1, m = 2n −

2,M = (n−1)(19n−6) and γR(K
∗
1,n−1) = n+1. Hence

√
n(2m+ 2M + γR(G)) =√

(2n− 1)(38n2 + 31n− 3) > 6n2 − 4n− 16.

Theorem 5.4. If ρ1(G) is the largest eigenvalue of a minimum roman dominating
distance matrix ARDd(G), then

ρ1(G) ≥ 2W (G) + γR(G)

n
,

where W (G) is the Wiener index of G.

Proof. Let X be any nonzero vector. Then, we have

ρ1(G) = max
X ̸=0

{X ′ARDdX

X ′X

}
≥ J ′ARDdJ

J ′J
where J = [1, 1 · · · , 1]

=

2
∑
i<j

d(vi, vj) + γR(G)

n

=
2W (G) + γR(G)

n
.

Theorem 5.5. Let G be a graph of diameter 2 and ρ1(G) is the largest eigenvalue
of a minimum roman dominating distance matrix ARDd(G), then

ρ1(G) ≥ 2n2 − 2m− 2n+ γR(G)

n
.

Proof. Let G be a connected graph of diameter 2 and let d(vi) = di. Then
i-th row of ARDd consists of di one’s and n− di − 1 two’s except in the ith column,
also tr(ARDd) = γR(G). By using Raleigh’s principle, for J = [1, 1, · · · , 1], we have

ρ1(G) ≥ J ′ARDdJ

J ′J
=

n∑
i=1

[di + 2(n− di − 1)] + tr(ARDd)

n
=

2n2 − 2m− 2n+ γR(G)

n
.
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Conclusion

In this paper, we introduced the concept of minimum roman dominating
distance energy ERDd(G) of a graph G and computed minimum roman dominating
distance energy of complete, complete bipartite, crown, star and healthy spider
graphs. Also, we discussed the properties of eigenvalues of a minimum roman
dominating distance matrix ARDd(G). Finally, we derived the upper and lower
bounds for ERDd(G).
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