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Abstract The problem that arises in the Cox model is that there are more than two

types of covariates and the presence of random effects is a non-proportional hazard

(NPH). One example of a case that involves many factors is student retention. Low

student retention can lead to dropping out of college or failure in completing studies.

The purpose of this study is to overcome the problem of NPH caused by the presence

of time-independent covariates, time-dependent covariates, and random effects. The

research method uses simulation. Some of the modified models are the stratified Cox

model, the extended Cox model, and the frailty model. The developed model is

applied to distance education student retention data. The results of the study show

that frailty and study programs provide considerable diversity in explaining the

total diversity of the model. It can be concluded that frailty needs to be considered

by UT to improve the quality of services to students. In addition, other covariates

that have a significant effect on UT student learning retention modeling are age,

domicile, gender, GPA, marital status, employment status, number of credits taken,

and number of registered courses.

Key words and Phrases: Universitas Terbuka, stratified Cox, extended Cox, frailty,

mixed effect model

1. INTRODUCTION

The Cox model assumes that one individual’s hazard rate is proportional
to the hazard rate for other individuals and that the population is homogeneous
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(Weinke [60], Kleinbaum and Klein [32]). This implies that one individual’s haz-
ard rate is proportional to the hazard rate of another individual with a constant
(constant ratio over time). Meanwhile, a homogeneous population means that the
individuals who become the samples have the same hazard factors.

In general, the covariates involved in the Cox model are time-independent
covariates. The major problem in Cox model is the hazard rate of individuals with
other individuals is not proportional (non-proportional hazard) caused by time-
dependent covariates involvement. With time-dependent covariates, the hazard
rate of an individual is not constant and can change with changes in time. The
second problem is heterogeneity. This problem can occur because of the covariate is
a random effect. Random effects can lead to diversity or heterogeneity of individual
populations. This fact means that individuals have different hazards to survive or
experience failure/death from an event. The frailty of the individual the higher
the probability of dead compared to those who are not frail. (Weinke [60]). These
two conditions cause non-proportional hazard problems, making the assumptions
of the Cox model is not met. Several methods have been developed for handling the
non-proportional hazard models, including the stratified Cox model, the extended
Cox model, and the frailty model. The stratified Cox model was proposed by
Abdelaal and Zakaria [1], Ata and Sozer [4], Mehrotra and Su [39]. Gellar et al.
[22], Kleinbaum and Klein [32] and Saegusa et al. [50] proposed the extended Cox
model. Meanwhile, the frailty model is proposed by Callegaro and Iacobelli [9],
Deepapriya and Ravanan [15], Vaupel et al. [58], Wienke [60], and Yadav and
Yadav [63].

In practice, the non-proportional hazard model’s existence is not always sat-
isfy, as in the case with Open and Distance Education (ODE) student retention
data. Existing non-proportional hazard models are not suitable and do not pro-
vide comprehensive information regarding student retention modeling. We define
the student retention is a condition in which students can survive completing their
studies where students are registered continuously per semester (Arifin [3], Belawati
[6]; Berger and Lyons [7], and Sembiring [52]).

Retention data related to time or analysis of time to the event. Low student
retention can lead to dropping out (failure to complete studies). In the statistics
model, failure in completing learning is a failure time. Thus, modeling student
retention can use modeling survival time. The factors affecting student retention
are complex and varied. The covariates involved in modeling student retention
are numerous. These covariates are time-independent covariates, time-dependent
covariates, and random-effect covariates. The survival analysis modeling using the
Cox model and the existing non-proportional hazard is not suitable given these
various covariates. Therefore, it is necessary to develop another non-proportional
hazard modeling that can overcome data application problems, as student reten-
tion data in ODE. With modeling that is close to real conditions, the Universitas
Terbuka as a provider of ODE in Indonesia, with modeling that is close to real con-
ditions, the Universitas Terbuka as a provider of ODE in Indonesia, can increase
student retention by by using appropriate and valid statistical analysis.
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2. MIXED EFFECT MODEL OF NON-PROPORTIONAL HAZARD

2.1. Previously Developed Models.

Ratnaningsih et al. ([47] and [48]) have developed non-proportional hazard
modeling by modifying several existing methods. Ratnaningsih et al. [47]) devel-
oped a model called Stratified Extended Cox (SE Cox) to overcome the existence
of two covariates in the model simultaneously, namely time-dependent covariate
and time-independent covariate. Meanwhile, Ratnaningsih et al. [48]) developed
an advanced model and SE Cox by adding a frailty component called the Strat-
ified Extended with Frailty (SEF) model. The SEF model was designed to over-
come non-proportional hazards because of the time-dependent covariate and time-
independent covariate and the observed random effect (frailty). The two models
are defined as follows.

2.1.1. Model Stratified Extended Cox.

The SE Cox model is defined as follows:

λs(t, x) = λ0s(t) exp

(
p1∑
a=1

βaixai +

p2∑
b=1

αbixbi(tj)

)
(1)

where:
s = the order of stratum;

= 1, 2, ... , m (denoting the number of stratum combination)
λ0s(t) = baseline hazard function on each stratum (s = 1, 2,.., m).
βai = fixed effect coefficient vector for covariate number a of individual number i.
xai = fixed effect coefficient vector for covariate number a of individual number i.
αbi = coefficient vector for time-dependent covariate number b of individual number i.

xbi(tj) = time-dependent covariate of individual number i at time tj .

The parameter estimation in the SE Cox model is likelihood-based by adopting
the model developed by Cox [13] and Keele [31], the stratified Cox model developed by
Dupuy and Leconte [19], and the extended Cox model developed by Fisher and Lin [20].
The method used is the maximum partial likelihood estimation (MPLE). The probability
hazard of individual i at time tj is defined as:

Pi(tj) =

exp

(
p1∑
a=1

βaixai +
p2∑
b=1

αbixbi(tj)

)
∑

j∈R(ti)

exp

(
p1∑
a=1

βajxaj +
p2∑
b=1

αbjxbj(tj)

) (2)

R(ti) is the set of objects that have a hazard of experiencing an event until time t. The
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maximum likelihood function can be expressed as:

Lp(φ) =

m∏
s=1

Ls =

m∏
s=1

ns∏
i=1

Pi(tj) =

m∏
s=1

ns∏
i=1

exp

(
p1∑
a=1

βaixai +
p2∑
b=1

αbixbi(tj)

)
∑

j∈R(ti)

exp

(
p1∑
a=1

βajxaj +
p2∑
b=1

αbjxbj(tj)

) (3)

2.1.2. Model Stratified Extended Cox with Frailty.

The unobserved random effect in the survival model is called frailty (Duchateau
and Janssen [18]; Lee et al. [35]; McGilchrist and Aisbett [38]; Vaupel et al. [?]). Frailty
is an unobserved random proportionality factor that modifies the hazard function of an
individual, or of related individuals. The non-proportional hazard in the SEF model is
due to time-independent covariates, time-dependent covariates, and unobserved random
effects (frailty). There are three-factor causes of non-proportional hazards in the SEF.
They are time-dependent covariates, time-independent covariates, and unobserved random
effects. The SEF model is mathematically defined as follows.

λs(t, x) = λ0s(t) exp

(
p1∑
a=1

βaixai +

p2∑
b=1

αbixbi(tj) + δνs

)
(4)

where:
s = the order of stratum;

λ0s(t) = baseline hazard function on each stratum.
βai = fixed effect coefficient vector for covariate number a of individual number i.
xai = time-independent covariate fixed effect, number a of individual number i.
αbi = coefficient vector for time-dependent covariate number b of individual number i.

xbi(tj) = time-dependent covariate of individual number i at time tj .
δ = frailty coefficient vector.
νs = frailty on stratum number s.

The estimation method used in the SEF model is hierarchical likelihood. The SEF
model estimation method adopts the hierarchical probability (H-likelihood) introduced by
Ha et al. [24], Noh et al. [42], Lee et al. [34], Wang et al. [59], Ha et al. [28] and Christian
et al. [12] with frailty with normal log distribution. The hierarchical likelihood function
is expressed as:

hs =

(∑
i

(δsilog{δ0s(ysi)) + ηsi} − {Λ0s(ysi) exp(ηsi)})

)
− 1

2
log(2πθ)− 1

2θ
v2s . (5)
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where:
hs = a logarithm of the joint probability function (ysi, δs, vs )
δsi = I(Tsi ≤ Csi) where I(.) is indicator function.
ηsi = (

∑p1
a=1 βaixai +

∑p2
b=1 αbixbi(tj)

= the stratified extended Cox model without baseline hazard function
on each stratum.

δ0s(ysi = the baseline hazard function for each observed data stratum
and ysi = min(Tsi, Csi)

Λ0s(ysi) = the baseline cumulative hazard function for each observed data stratum.
vs = frailty on stratum number s.

2.2. The Proposed Model.

The mixed-effect model is a model that involves both fixed and random effects
(McCulloch and Searle [37]; Dobson [17]; Stroup [53]; Goldstein [23]). Demidenco [16]
states that a mixed model is used as repetitive data measurement models or hierarchical
models. The mixed-effect model is used to analyze cluster or panel data, longitudinal
data. The mixed-effect model is the best used in biology and medical studies where
there is a heterogeneity of responses. In medicine, mixed modeling plays a significant
role in modeling a case of disease or genetics (Brown and Prescott [8]). The advantage of
the mixed-effect model is its ability to combine data by introducing hierarchical random
effects.

The mixed influence model in survival analysis has multiple random effects (Crowther
et al. [14]; Therneau and Clinic [56]; Austin [5]). The mixed-effect model developed in
this study is the mixed effect model with the non-proportional hazard (MEM-NPH).

The MEM-NPH model is an extension of the SEF model (Ratnaningsih et al. [47])
by adding one observed random effect component. Thus, there are two random effects
involved in the MEM-NPH model, namely frailty and random effect (observed random
effect).

Mathematically, the MEM-NPH model is defined as follows.

λs(t, xai, x(t), zbi, vs) = λ0s(t) exp

(
p1∑
a=1

βaixai +

p2∑
b=1

γbizbi +

p3∑
c=1

αcixci(tj) + υνs

)
(6)

where:
s = the order of stratum;

λ0s(t) = baseline hazard function in each stratum.
βai = fixed effect coefficient vector for covariate number a of individual number i.
xai = time-independent covariate fixed effect) number a of individual number i.
γbi = random effect coefficient vector for covariate number b of individual number i.
zbi = observed random effect covariate number b of individual number i.
αci = time-dependent coefficient vector for covariate number c of individual number i.

xci(tj) = time-dependent covariate of individual number i at time tj .
νs = frailty (unobserved random effect) on stratum number s.
υ = frailty on stratum number s.

Let Tsi(s = 1, 2, ...,m, i = 1, 2, ..., ns) is survival time of individual number i on
stratum number s and Csi is censored time for the individual number i on stratum number
s, so that the observed data is ysi = min(Tsi, Csi) and δsi = I(Tsi ≤ Csi) where I(.) is
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the indicator function. The indicator function has two values, 0 if censored data and 1 if
uncensored. Suppose that:

η∗si =

p1∑
a=1

βaixai +

p2∑
b=1

γbizbi +

p3∑
c=1

αcixci(tj) + υνs. (7)

Defined of νs is log-observed frailty. Let us is variable random of unobserved frailty
on stratum number s, then νs = log us . Yau [64], Ha et al. [25], Ha et al. [26], Ha et al.
[27], Wu [61] , and Jeon et al. [29] assume that frailty is as follows.

(1) Assumption 1. Given Ui = ui, {(Tsi, Csi), i = 1, 2, ..., ns} are conditionally
independent and Tsi and Csi also conditionally independent for s = 1, 2, ...,m; i =
1, 2, ..., ns

(2) Assumption 2. Given Ui = ui, {(Tsi, Csi), i = 1, 2, ..., ns} is non-informative
with respect to us

(3) Assumption 3. Variable νs are conditionally independent about other covari-
ates.

The likelihood function approach uses hierarchical likelihood. Let ys = (ys1, ..., ysns)
T

and δs = (δs1, ..., δsns)
T The hierarchical likelihood function denoted by h is sum of

hs, s = 1, 2, ...,m (Lee and Nelder [33], and Lee et al. [34]). Therefore,

h =
∑
s

hs (8)

where hs is a logarithm of the joint probability function (ys, δs, zbi, νs).

hs can be represented in the following equation:

hs(β, α,Λs, γ, υ
., ys, δs, zbi, νs) = log{L1s(β, α,Λs, γ, υ

., ys, δs|zbi, us)
× L2s(γ; zbi)L3s(υ; νs)}

(9)

where:
L1s = conditional probability function of (ys, δs) with condition zbi and us
L2s = probability function from zbi
L3s = probability function from us

Because they are assumed conditionally independent and unknown parameter, for
example ω = (β, γ, α, υ, θ)T then L1s in equation (9) can be represented in the following
equation (10).

L1s(ω,Λs; ys, δs|zbs, us) =
∏
i

L1si(ω,Λs; ys, δs|zbs, us)

=

(∑
i

(δsi{log(λ0s(ysi) + (η∗si))} − {Λ0s(ysi exp(η∗si))})

) (10)

Assumed that γbi ∼ N(0, ϕ) νs ∼ N(0, θ) then L2s and L3s are:

L2s(ϕ; zsi) = (2πϕ)
1
2 exp

(
− 1

2ϕ
z2si

)
,−∞ < zsi < ∞ (11)

L3s(θ; νs) = (2πθ)
1
2 exp

(
− 1

2θ
ν2s

)
,−∞ < νs < ∞ (12)
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So that equation (9) can be written as:

hs =

(∑
i

(δsi{log(λ0s(ysi) + (η∗si))} − {Λ0s(ysi) exp(η∗si)})

)

− 1

2
{log(4π2)(ϕθ)} − 1

2

(
z2si
ϕ

+
ν2s
θ

) (13)

Because h =
∑
s hs then equation (9) can be written as:

h =
∑
s

hs

=
∑
si

(δsi{log(λ0s(ysi) + (η∗si))} − {Λ0s(ysi) exp(η∗si)})−

p

2
log(2πϕ)− 1

2ϕ

∑
s

z2si −
m

2
log(2πθ)− 1

2θ

∑
s

ν2s .

(14)

2.3. Parameter Estimation.

In the model definition section, it has been suggested that mixed models are also
called hierarchical models (Demidenco [16]). Therefore, the estimation of MEM-NPH
model parameters uses a hierarchical likelihood. The hierarchical likelihood function for
the model in equation (6) is as follows:

h =
∑
s

hs =
∑
si

l1si +
∑
s

l2s +
∑
s

l3s. (15)

In the hierarchical probability approach procedure, to estimate parameter α, β, γ, υ using
profile hierarchical likelihood h∗ by replacing λ0 with λ̃0s.

h∗ = h|λ0=λ̃0s
(16)

where λ̃0s obtained from the results of solving the estimation equation:

∂h

∂λ̂0s
= 0

∂λ̂0s =
d(i)∑

(i,j)∈Ri
exp(η∗si)

so that equation (16) can be expressed in equation (17) as follows.

h∗ = h|λ0=λ̃0s
=
∑
sj

l1sj +
∑
s

l2s +
∑
s

l3s (17)

where:
∑
sj

l1sj∗ =
∑
i

d(i) log λ̂0i +
∑
sj

δsjη
∗
si −

∑
i

d(i). To obtain an estimate we use the

Newton-Raphson numerical method.
To obtain an estimate β, γ, α, υ what maximizes the function h∗ an be done by solving

the equation ∂h∗

∂β
= 0, ∂h

∗

∂γ
= 0, ∂h

∗

∂α
= 0 and ∂h∗

∂υ
using the Newton-Raphson numerical

method.
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2.4. Estimation of Model Variance Component.

Estimation of model variance component for β̂ and υ̂ is:

V ar(β̂, υ̂) = −

(
− ∂2h∗

∂βa∂βp
− ∂2h∗

∂βa∂υp

− ∂2h∗

∂υa∂βq
− ∂2h∗

∂υa∂υq

)−1

(18)

To estimate variance of frailty (θ) uses adjusted profile hierarchical likelihood as equation
(19).

h∗A = h∗ − 1

2
log

{
det

(
J

2π

)}
|β=β̂,ν=υ̂ (19)

where J = −[H(φ)].
The maximum adjusted profile hierarchical likelihood estimation for θ can be obtained by

solving the equation
∂h∗A
∂θ

= 0 using Newton-Raphson method.

∂h∗A
∂θ

= −m
2θ

+
1

2

∑
s

ν2s
θ2

+(
−1

2
tr

(
J−1

[
0 0
0 1

]))
(20)

Let J−1

[
0 0
0 1

]
= Q then second derivate of h∗A with respect to θ is:

∂h∗A
∂θ

=
∂

(
−m

2θ
+ 1

2

∑
s

ν2s
θ2

+(− 1
2
tr(Q))

)
∂θ

= m
2θ2

+
∑
s

ν2s
θ3
− tr(Q)

2θ2
+ tr(Q)

θ3
.

Variance of θ̂ is:

V ar(θ̂) = −
(
−∂

2h∗A
∂θ2

)−1

. (21)

2.5. Simulation Design.

The simulation design for the non-proportional hazard model is as follows.

(1) Determine the components needed in the simulation, namely:
(a) The stratum of the covariates are time-independent (stratum). The stratum

used are educational backgrounds categorized into three categories, namely:
(1) High School, (2) Diploma, and (3) Bachelor’s Degree. These stratum
were not entered into the model and were assumed uniform (1,3) or written,
stratum ∼ Uniform(1, 3).

(b) Time-dependent covariate (x1). This covariate is analogous to the number
of semester credit units taken by students which are assumed to be uniformly
distributed (0, 100) or written as x1 ∼ Uniform(0, 100).

(c) Time-independent covariate (x2). In this simulation, the time-independent
covariate is analogous to gender which is assumed Binom(1, 0.6), or written
as x2 ∼ Binom(1; 0.6).

(d) The covariate which functions as the unobserved random effect (frailty)
is given the symbol ν. Frailty in the simulation is assumed N(0, θ) with
θ = 10, 14, 16, and 20. Written, ν ∼ N(0, θ).

(e) The covariate which functions as the observed random effect (random effect)
is given the symbol z. In this simulation, the random effect is analogous
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to a study program that students are interested in. in the simulation it is
assumed N(0, 20) or written, z ∼ N(0, 20).

(f) The sample sizes tested (n) were 100, 500, and 2,000. The sample size
selection is following the variation in the number of UT students representing
each faculty.

(2) Generating data for stratum and covariates (x1, x2, v, and z). The generation
of time-dependent covariates (x1) using the PermAlgo package developed by
Sylvestre et al. [54].

(3) Determining the initial initials (the model parameter coefficient values for time-
independent covariates, time-dependent covariates, frailty, and random effects)
are β, α, υ, and γ, respectively. The initial initial values for β = 2 and α =
log(1, 04), υ = 1, and γ = 1.

(4) Determining the value of the survival time (Tji), namely the length of time until
the individual gets an event for the jth individual in the i-stratum. The event
is analogous to the status of non-active students, namely students who do not
re-register during four consecutive semesters. Thus the value of Tji is set equal
to 4 (Tji =4).

(5) Determining the censored time, Cji is the length of time until an individual is
observed (censored) for the jth in the ith stratum. The Cji score is 20 semesters
(Cji =20). This value determination is based on the assumption that the average
study completion rate of UT students is between 8 and 10 years.

(6) Generating a proportion of censored data (cji). cji= I(Tji|Cji) is an indicator
function. The indicator function has a value of 1 if the data is uncensored (ob-
served) and has a value of 0 if the data is censored. In this study, there are three
types of proportion of censored data, namely 0%, 30%, and 50%. The censored
data generation is as follows. Censored data 0%, c0 ∼ Uniform(6, 8); censored
data 30%, c30 ∼ Uniform(2, 5); and 50% censored data, c50 ∼ Uniform(0, 5).

(7) The number of treatments tested in the simulation is a combination of sample size
and sensor type. The number of replications for each treatment is 1,000 times.

(8) The response data (yji) is yji = min{Tji, Cji} obtained from the generation of
time-dependent covariate data using the syntax: Surv(Start, Stop,Event) as
practiced by Therneau et al. [55] and Thomas and Reyes [57]. The response data
in this study is analogous to student learning retention measured in semester
units.

2.6. The Goodness of Fit Model.

The measure of the goodness of fit model uses the bias and MSE value resulted
from the model simulation (Polat and Gunay [45]).

Bias(τ) =

(
1

r

r∑
i=1

τ̂ (i)
)
− τ (22)

MSE(τ) =
1

r

r∑
i=1

(τ − τ̂ (i))2 (23)

where r is the number of replications,τ is the predetermined initial model parameter
estimate, and τ̂ (i) is the estimated model parameter resulting from the model simulation.
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3. RESULT AND DISCUSSION

3.1. Simulation Results.

In the simulation, frailty is assumed to be normally distributed with ν ∼ N(0, θ),
and the random effect is assumed to be normally distributed with z ∼ N(0, 20). In the
SEF and MEM-NPH models, there were four types (θ) tested, namely: θ = 10, 14, 16,
and 20. The censorship and sample size used were the same as in the SE Cox model,
namely: three types of censoring (c = 0%; c = 30%; c = 50%) and three sample sizes,
namely n = 100, 500, and 2,000. The simulation results of the three models are presented
in Table 1 and Table 2.

Table 1 presents the percentage of parameter estimation bias (β, α, υ, dan γ) gen-
erated by each model in various treatment combinations. The ratio of bias in estimating
the SEF model parameters is lower than that of the Cox SE model. The portion of bias in
estimating the parameters of the MEM-NPH model is lower than that of the SEF model.
Graphically, the parameter coefficient γ in the MEM-NPH model is relatively smaller
(Figure 1). The simulation results show that the rate of bias in parameter estimation
made by the MEM-NPH model is lower than the other models.
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Table 1. Percentage of Parameter Bias of Models in Various Cen-
soring and Variance

Percentage of Parameter Bias

n θ c SE Cox Model SEF Model MEM-NPH Model

β α υ β α υ β α υ γ

100 10 0 11.615 15.083 12.206 4.008 9.518 8.542 1.958 1.851 1.799 0.692

500 10 0 10.202 15.677 11.311 3.417 8.673 8.171 1.552 0.881 0.926 0.743
2000 10 0 9.778 14.412 11.256 3.198 8.000 8.012 1.351 0.868 0.978 0.706

100 14 0 11.533 15.608 11.203 3.893 9.518 8.777 1.948 1.873 1.499 0.683
500 14 0 10.180 14.597 12.117 3.385 9.216 7.813 1.936 0.866 0.928 0.697

2000 14 0 9.738 14.347 11.011 3.198 8.818 8.879 1.355 0.850 0.925 0.731

100 16 0 12.338 14.254 10.507 3.943 9.436 8.452 1.948 1.853 1.466 0.692
500 16 0 11.210 13.498 11.472 3.383 9.351 7.677 1.916 0.858 0.880 0.743

2000 16 0 10.696 14.401 11.358 3.194 8.348 8.375 1.455 0.857 0.839 0.706

100 20 0 12.257 14.495 11.495 4.004 8.672 6.883 1.949 1.898 1.367 0.683
500 20 0 11.174 14.992 10.712 3.403 7.676 7.913 1.935 0.893 0.899 0.784

2000 20 0 10.651 13.853 10.616 3.193 8.672 7.818 1.522 0.862 0.826 0.697

100 10 30 10.249 15.078 10.383 3.423 8.818 6.883 1.951 1.855 1.456 0.738
500 10 30 9.797 14.949 9.701 3.199 8.347 6.840 1.958 0.897 0.999 0.787

2000 10 30 11.615 13.824 11.001 4.008 7.412 8.542 1.552 0.862 0.725 0.706

100 14 30 11.621 14.986 11.613 3.981 6.677 8.661 1.934 1.861 1.359 0.680
500 14 30 10.249 14.424 10.383 3.423 7.818 6.883 1.925 0.868 0.926 0.764

2000 14 30 9.797 14.117 9.701 3.199 7.347 6.840 1.652 0.855 0.849 0.742
100 16 30 11.615 14.913 12.311 4.008 8.412 8.542 1.922 1.877 1.598 0.683

500 16 30 12.421 14.521 12.119 4.025 7.302 6.469 1.934 0.869 0.965 0.784

2000 16 30 11.263 14.256 11.211 3.409 8.397 5.270 1.453 0.850 0.839 0.697
100 20 30 10.759 14.707 10.577 3.194 8.671 5.805 1.928 1.869 1.697 0.731

500 20 30 12.361 13.982 12.465 3.925 8.934 6.962 1.922 0.886 0.925 0.692

2000 20 30 11.228 13.598 11.368 3.412 8.346 8.948 1.052 0.850 0.833 0.743
100 10 50 10.715 15.08 11.608 3.194 9.397 8.457 1.924 1.907 1.262 0.706

500 10 50 9.857 14.95 11.368 3.465 9.346 7.992 1.915 0.975 0.855 0.683

2000 10 50 9.252 14.62 11.011 3.218 8.609 7.595 0.758 0.871 0.766 0.784
100 14 50 10.877 15.49 12.465 4.163 9.609 7.303 1.921 1.897 1.265 0.697

500 14 50 9.796 14.69 11.854 3.469 8.357 7.178 1.925 0.893 0.855 0.764

2000 14 50 11.263 14.47 10.577 3.409 8.231 6.720 0.858 0.851 0.766 0.742
100 16 50 10.759 15.18 11.522 3.194 8.978 7.172 1.931 1.889 1.324 0.683

500 16 50 12.361 14.98 11.454 3.925 8.673 8.220 1.924 0.871 0.856 0.784
2000 16 50 11.228 14.64 10.761 3.412 8.171 7.195 0.951 0.869 0.765 0.697

100 20 50 10.715 14.97 11.600 3.194 9.027 7.948 1.931 1.868 0.803 0.731

500 20 50 9.757 14.51 10.596 3.440 8.909 8.110 0.953 0.873 1.360 0.692
2000 20 50 9.161 14.25 10.454 0.217 8.534 7.962 0.651 0.865 0.762 0.696
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Table 2 shows the MSE values of the three models. The simulation results show
that the MSE value of the MEM-NPH model is lower than the other two models. The SEF
model has a lower MSE value than the SE Cox model. The MSE value of the parameter
estimator in the MEM-NPH model is presented in Figure 2.

Figure 1. The Percentage of Bias Parameter for γ in Various Censoring

Figure 2. The Percentage of MSE Value for γ in Various Censoring

Based on two model criteria, bias and MSE, it shows that the MEM-NPH model
provides a percentage of bias and smaller parameter estimator MSE values than the SEF
model and the SE Cox model. In modeling involving two types of covariates and random
effects, the MEM-NPH model provides better model merit. Thus, the MEM-NPH model
can be used to model the unmatched risk caused by the presence of time-independent
covariates and time-dependent covariates, and random effects.
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Table 2. Percentage of MSE Value of Models in Type of Censor-
ing and Variance

MSE Value of Parameter of Models

n θ c SE Cox Model SEF Model MEM-NPH Model

β α υ β α υ β α υ γ

100 10 0 0.529 0.636 0.558 0.374 0.488 0.451 0.209 0.321 0.325 0.554

500 10 0 0.578 0.621 0.548 0.329 0.469 0.404 0.189 0.320 0.311 0.689
2000 10 0 0.595 0.608 0.552 0.337 0.482 0.402 0.123 0.294 0.304 0.814

100 14 0 0.537 0.651 0.550 0.386 0.493 0.448 0.152 0.312 0.298 0.658
500 14 0 0.578 0.642 0.512 0.361 0.431 0.425 0.131 0.291 0.265 0.466

2000 14 0 0.595 0.570 0.563 0.324 0.428 0.410 0.113 0.261 0.292 0.659

100 16 0 0.536 0.591 0.547 0.374 0.474 0.468 0.133 0.310 0.297 0.592
500 16 0 0.580 0.556 0.517 0.290 0.470 0.457 0.193 0.313 0.242 0.889

2000 16 0 0.595 0.565 0.528 0.321 0.410 0.416 0.193 0.290 0.256 0.509

100 20 0 0.517 0.578 0.569 0.362 0.451 0.457 0.193 0.259 0.286 0.866
500 20 0 0.578 0.574 0.568 0.363 0.385 0.437 0.235 0.272 0.272 0.459

2000 20 0 0.595 0.543 0.526 0.314 0.375 0.428 0.204 0.251 0.258 0.806

100 10 30 0.537 0.596 0.495 0.399 0.466 0.394 0.285 0.314 0.289 0.666
500 10 30 0.577 0.593 0.481 0.386 0.448 0.373 0.288 0.335 0.274 0.797

2000 10 30 0.595 0.556 0.474 0.377 0.471 0.336 0.262 0.310 0.271 0.441

100 14 30 0.533 0.597 0.468 0.393 0.475 0.373 0.288 0.305 0.260 0.696
500 14 30 0.577 0.591 0.435 0.374 0.452 0.347 0.271 0.282 0.283 0.897

2000 14 30 0.595 0.585 0.462 0.369 0.435 0.324 0.254 0.295 0.193 0.294
100 16 30 0.530 0.594 0.467 0.333 0.485 0.380 0.285 0.256 0.231 0.924

500 16 30 0.577 0.574 0.412 0.337 0.469 0.329 0.271 0.293 0.243 0.641

2000 16 30 0.595 0.589 0.396 0.393 0.454 0.320 0.263 0.258 0.196 0.364
100 20 30 0.539 0.549 0.456 0.373 0.474 0.374 0.287 0.265 0.258 0.850

500 20 30 0.580 0.579 0.442 0.326 0.464 0.320 0.294 0.249 0.197 0.686

2000 20 30 0.595 0.566 0.428 0.333 0.432 0.290 0.239 0.237 0.184 0.270
100 10 50 0.521 0.637 0.389 0.415 0.384 0.367 0.233 0.292 0.217 0.646

500 10 50 0.573 0.598 0.374 0.371 0.371 0.357 0.182 0.257 0.207 0.509

2000 10 50 0.593 0.580 0.371 0.425 0.349 0.317 0.145 0.261 0.167 0.460
100 14 50 0.518 0.680 0.360 0.367 0.376 0.318 0.115 0.215 0.168 0.642

500 14 50 0.573 0.571 0.383 0.358 0.293 0.323 0.173 0.202 0.173 0.539

2000 14 50 0.593 0.599 0.373 0.422 0.358 0.310 0.122 0.190 0.150 0.304
100 16 50 0.525 0.620 0.341 0.311 0.366 0.324 0.125 0.215 0.164 0.537

500 16 50 0.576 0.585 0.343 0.365 0.352 0.316 0.183 0.199 0.166 0.758
2000 16 50 0.593 0.564 0.364 0.432 0.270 0.301 0.115 0.214 0.151 0.246

100 20 50 0.525 0.599 0.328 0.365 0.368 0.303 0.151 0.236 0.153 0.657

500 20 50 0.575 0.581 0.347 0.363 0.356 0.283 0.124 0.194 0.153 0.897
2000 20 50 0.543 0.552 0.324 0.431 0.358 0.292 0.196 0.190 0.152 0.654
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3.2. An Application on Real Data.

Universitas Terbuka (UT) is a public university in Indonesia that implements a
ODE system. As a higher education institution, UT can expand the reach of learning
assistance services and address gaps in access to education constrained by distance, space,
time, geographical conditions, and heterogeneous communities. One indicator of insti-
tutional accountability in implementing educational programs is the student retention.
Low student retention indicates the inability of the institution to improve the quality of
educational services.

UT can view student retention problems as problems related to timing or analysis
of time events (time to event). Low student retention can lead to dropping out (failure to
complete studies). The students who fail to complete the course can be viewed as failure
times. Therefore, UT can use the MEM-NPH model for modeling student retention. The
random effect observed in the student retention data was the study program that students
took. The treatment given by study programs to students varies. Therefore, the student
graduation rate in the course or student retention in each study program also varies.

The following describes the application of the MEM-NPH model to UT student
retention data. The data used in this study is the retention data of UT students who
made their first registration in 2008 semester 1 (2008.1) to 2015 semester 2 (2015.2). The
amount of data observed was 4,483 students from 10 study programs. The study programs
used as examples in this research are 10 of the 27 undergraduate study programs offered.
The sampling of these 10 study programs is based on considering that survival analysis
will produce good predictions if the percentage of censorship is at least 50%.In this study,
the sample study program is a study program that has a censoring of 65%. Of the ten
selected study programs, the number of students observed was 4,483 students consisting
of 1,574 people (35.11%) who were censored and 2,909 (64.89%) uncensored. Students are
said to be censored if they are still actively studying or have graduated or moved study
programs. Meanwhile, students who are uncensored are non-active students.

Meanwhile, the unobserved random effect (frailty), ν is assumed that the random
effect follows the normal distribution with an average of 0 and a range of 20 or written
as ν ∼ N(0, 20). Frailty in UT student retention can be considered motivation, inde-
pendent learning culture, management of study time, availability of learning facilities,
or historical participation in tutorials face-to-face and online), student social interaction,
student learning styles, institutional understanding of needs. Students and the culture or
organizational culture in the institution affects UT student retention.

The response variable in this study was student retention which is measured in
semester units. UT student retention data is observed from the time the student registers
the first until the event occurs. In this study, an event is defined as a change in students’
academic status from active students to non-active students. The censoring level is cen-
sored (given a 0) score if the student is active or graduated, while uncensored (provided
a score of 1) if the student is non-active.

MEM-NPH mathematical model used for modeling UT student retention data is as
follows.

λs(t, x(t), zbi, νs) = λ0s(t) exp

(
4∑
a=1

βaixai +

10∑
b=1

γbizbi +

4∑
c=1

αcixci(tj) + υνs

)
, (24)
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The program used in the MEM-NPH model data analysis is the R program with the
frailtyHL program package. Testing of hypothesis of the equation (24) with a significance
level of 10% for each parameter is stated as follows.

(1) At the time-independent covariate coefficient, the hypothesis test is:
H0 : βa = 0
H1 : βa 6= 0
This hypothesis test is intended to determine whether time-independent covari-
ates such as gender, domicile, employment status, and marital status affect UT
student retention.

(2) At the time-dependent covariate coefficient, the hypothesis test is:
H0 : γa = 0
H1 : γa 6= 0
Hypothesis testing is intended to determine whether time-dependent covariates
such as age, credits taken per semester, number of courses registered per semester,
and GPA affect UT student retention.

(3) At the observed random effect coefficient, the hypothesis test is:
H0 : αc = 0
H1 : αc 6= 0
This hypothesis test is intended to determine whether covariates that have an
observed random effect, such as the study program of interest, affect UT student
retention.

(4) At the unobserved random effect (frailty) coefficient, the hypothesis test is:
H0 : υ = 0
H1 : υ 6= 0
Hypothesis testing is intended to determine whether covariates that have an unob-
served random effect. Such as motivation, independent learning culture, manage-
ment of learning time, availability of learning facilities, or historical participation
in tutorials (both face-to-face and online, student social interaction, style student
learning, institutional understanding of student needs, and organizational culture
or culture in the institution affect UT student retention.

The coefficient or estimator value generated from modeling is then compared with
the p-value. If the p-value < significance level, the observed covariate is significant. This
value means that the covariate effects UT student retention.

Using MEM-NPH in the model is adequately applied to UT student learning re-
tention data. It can be seen from the value of the correlation coefficient in the classroom
(intraclass correlation coefficient, ICC). The ICC value can indicate whether or not a
mixed-effect model is required in modeling. McCulloch and Searle [37] stated that the
ICC value shows the proportion of random influence on the model’s total variability. The
greater the ICC value, the units in the same group/cluster have the same characteristics.
This fact shows that the grouping in the model is exact.

Table 3 shows the ICC values. From Table 3, the ICC value for the study program
is 0.5690 and for frailty is 0.4307. The total random effect ICC value is 0.9997. This
shows that the mixed effect model in this case is very adequate and the grouping in this
model is very precise.
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Table 3. Variance component of MEM-NPH model

Model Effect Std. Error Variance ICC

Fixed effect 70.12501
Random effect
- Study Program 22.7112 515.7989 0.5690
- Frailty 19.7585 390.3976 0.4307
Residual 0.2861 0.0003

Total 906.4826

The estimation of UT student retention data parameters using the MEM-NPH
model is presented in Table 4. Table 4 shows the results of parameter estimation using
the MEM-NPH model. The most significant factors on UT students’ retention are study
programs, frailty, work status, marital status, age, cumulative grade point average (GPA),
number of course credits (credit hours, CH), and the number of courses registered per
semester.

Table 4. The result of parameter estimation uses the MEM-NPH model

Parameter Estimate Value Hazard Ratio Std.Error Z-Value Pr (> |Z|)
Fixed effect

(Intercept) 0.5472 1.7284 0.0409 13.373 < 2e− 16***
Age 35-45 years old 0.0032 1.0032 0.0287 −0.113 0.9103

Age > 45 years old −0.1082 0.8975 0.0354 3.054 0.0023**

Home area (city) 0.0038 1.0038 0.0185 0.206 0.8367
Gender (male) −0.0264 0.9739 0.0150 −1.762 0.0780*

1,00 < GPA ≤ 2,00 −0.5811 0.5593 0.0221 26.256 < 2e− 16***

2,00 < GPA ≤ 3,00 0.4487 1.5663 0.0284 15.782 < 2e− 16***
GPA > 3,00 0.1907 1.2100 0.0798 2.390 0.0168*

Employed −0.0102 0.9898 0.0286 0.357 0.0721*

Married -0.0187 0.9814 0.0176 1.064 0.0287*
75 ≤ CH ≤ 120 0.8460 2.3304 0.0254 33.355 < 2e− 16***

CH > 120 1.2392 3.4528 0.0207 59.972 < 2e− 16***
5 ≤ Courses ≤ 8 −0.0097 0.9903 0.0205 −0.474 0.6355

Courses > 8 −0.0275 0.9729 0.0323 −6.228 4.73e− 10***

Random effect
(Intercept) −9.4295 0.0001 3.4605 −3.881 0.0001***

Study Program 0.8014 2.2287 0.3392 2.735 0.0062**

Frailty 1.5816 4.8627 0.2951 −0.521 0.0603*

The estimated value of the study program is 0.8014 (e0.8014). This value means
that management in the study program provides high learning retention for UT students
or the risk of student learning retention by 2.23 times. This value indicates that students
who choose a study program according to their interests or educational background will
survive to continue their studies 2.23 times than students who prefer a study program not
according to their interests and educational experience. This fact is following Olliveira
[43] course at the Open University of Brazil, which states that students’ study program
significantly affects the sustainability of student studies.
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The frailty component has a significant influence on the learning retention of UT
students. The estimated parameter value for frailty is 1.5816. That is, frailty has a risk of
4.86 times compared to other UT students’ learning retention. This condition is consistent
with the statements of Merriam and Caffarella [40], Cercone [11], and Kara et al. [30]
that learners in ODE are unique and follow adult learning styles. Adults learn according
to their needs and responsibilities. Furthermore, Merriam and Caffarella [40] state that
adult learning needs to consider various aspects, such as the learning environment, student
characteristics, and student learning styles. This fact supports the statement of Schuemer
[51], who argues that in the ODE system, the student learning process is more complicated
because, in general, ODE students are elderly, work, and have families.

The age of UT students over 45 years influences student retention. The estimated
parameter value of −0.1082 indicates that students who is 45 years old or above at risk
of having low learning retention of 0.8975 times compared to other generations. This
condition is following the study of Xenos et al. [62] and Pierrakeas et al. [44] in Greece
as well as Schuemer [51] and Rovai [49]. Rovai [49] states that one of the reasons for
dropping out of college at ODE is old age.

Gender is quite influential if the alpha level used is 10%. From Table 3, it can be
seen that the gender parameter estimator coefficient is −0.0264. This value shows that
male students tend to have low learning retention or 0.97 times compared to women. This
condition is possible because male students generally work. They may find it difficult to
divide their time between work and study.

The Grade Point Average (GPA) has a significant influence on student retention.
Student with GPA between 1.00 and 2.00 tend to have low retention of learning. His
learning retention risk was 0.5593 compared to other GPAs. However, students who have
a GPA of more than 2.00 tend to have a high retention of learning. From Table 4, it can
be seen that the coefficient is positive. This coefficient means that student retention of
learning in the GPA range above 2.00 (2.00 < GPA ≤ 3.00) has a risk of surviving to learn
by 1.57 times, and for students who have a GPA > 3.00, the risk of surviving to learn is
equal to 1.21 times. Student work has a significant effect on learning retention. Students
who work tend to have lower retention than students who do not work. The value risk of
learning is 0.99 times that of students who do not work. This reality is very reasonable
because, in general, UT students work. According to Schuemer [36] and Rovai [49], the
ODE system allows a more involved student learning process because, in general, ODE
students are elderly, work, and have families. The uniqueness of ODE students’ condition
can cause problems because they are required to be able to coordinate various aspects,
such as family, work, and free time with study time.

Marriage also has a significant contribution to student retention. Students who
are married have low learning retention (e0.0187) or have 0.98 times lower risk of learning
retention than unmarried students. The number of credits taken has a significant con-
tribution to student learning retention. Students who have taken 75 to 120 credits have
a high retention of learning (e0.8460). This means that the risk of having high learning
retention is 2.33 times. Meanwhile, students who had taken more than 120 credits had a
higher tendency to survive. The risk of students who have taken more than 120 credits
has a high retention of learning of 3.45 times compared to students who have just taken
less than 75 credits.

The number of courses registered per semester also has a significant influence on
learning retention. Students who take more than eight courses per semester tend to have
low retention of learning. In other words, the risk of having low retention of knowledge
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(e0.0275) or 0.97 times compared to students who take less than eight courses per semester.
This fact is in line with the study conducted by Cambruzzi et al. [10] in Brazil, which
states that many students drop out of college because the credit load does not match the
students’ abilities. For example, the institution recommends that the credits taken per
semester are only 12 credits. However, many students take up to 20 credits because they
consider learning with the ODE system easy and can speed up their studies. Allen et al.
[2] state that many students take courses, pay tuition fees, and then drop out.

3.3. Discussion.

The application of the MEM-NPH model to UT students’ learning retention data
indicates that the mixed effect model is perfect for describing the real data retention
phenomenon of UT students. Through MEM-NPH modeling, it is appropriate. This fact
is evident from the ICC value of 0.4307 for frailty and 0.5690 for the study program. With
this grouping, most of the members in the group have similar characteristics.

By using the MEM-NPH model, it can be shown that frailty and study programs
play a huge role in modeling UT student learning retention. The contribution of frailty and
study programs provides considerable diversity in explaining the total variety of models.
Thus, through this modeling, UT needs to consider random effects as the ODE orga-
nizing institution to increase UT students’ retention. UT should pay more attention to
unexpected influences in developing programs to improve services for students.

The application of the MEM-NPH model to UT student retention data shows that
the random effect, both unobserved (frailty) and unobserved, contributes quite a lot to the
total model’s diversity. The existence of frailty and study programs needs to be considered
and get special attention from the ODE organizing institutions to provide services to
students. Based on the MEM-NPH model, other covariates that affect UT student learning
retention modeling at the alpha level of 10% are age, domicile, gender, GPA, marital
status, employment status, number of credits taken, and number of registered courses.
Greece, Pierrakeas et al. [44] said that younger students (<30 years) tend to drop out of
school. This fact is understandable because they may not have had independent study
experience, and they tend to underestimate the effort and workload required for university
studies. Meanwhile, Gaytan [21], McCormic and Lucas [36], and Ratnaningsih [46] argued
that the GPA greatly influences student retention and is a determining factor for the
sustainability of university studies. In addition, concerning marital status Rovai [49],
states that in general, the factors that cause dropouts experienced by ODE students
include advanced age, lack of study time, difficulties in accessing the internet, lack of
feedback from tutors, work, family, external stimuli, and personal financial problems

In this study, the frailty used is assumed to be a regular spread. In the future, it
is necessary to conduct research where the frailty model uses other distributions closer
to the data case, for example, the Gamma or Weibull distribution. Besides, there needs
to be a unique study involving a spatial component. This condition is possible because
UT is located in 39 cities of the Distance Learning Program Unit and one of the Distance
Learning Program Unit in Abroad, which manages UT students in 39 countries. The
spatial component needs to be considered in the development of the next model.
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4. CONCLUSION

Student retention problems can be viewed as problems related to timing or analysis
of the timing of events. Retention is related to the success or failure of completing a
study. Success and failure in completing the survey can be viewed as modeling survival
time, which can be analyzed using survival analysis.

To model retention data, ODE students can use an unequaled risk model, namely
the mixed effect model on non-proportional hazard, abbreviated as MEM-NPH. This
model is an extension of the existing Cox model and peer-to-peer risk models. The MEM-
NPH model is a combination of the stratified Cox model and the extended Cox model
by adding two random effect components, namely the observed random effect and the
unobserved random effect.

The MEM-NPH model can determine the variability of random effects on the total
model variability. Based on the MEM-NPH model analysis, it can be shown that frailty
and study programs provide a reasonably large diversity in explaining the complete variety
of the model. From the results of this analysis, it can be concluded that UT’s random effect
needs to be considered to improve students’ quality of service. Besides, other covariates
that significantly affect modeling UT student learning retention at the alpha level of 10%
are age, domicile, gender, GPA, marital status, employment status, number of credits
taken, and number of registered courses.
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