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Abstract. We consider a p-dimensional, centered normal population such that all

variables have a positive variance σ2 and any correlation coefficient between different

variables is a given nonnegative constant ρ < 1. Suppose that both the sample

size n and population dimension p tend to infinity with p/n → c > 0. We prove

that the limiting spectral distribution of a sample correlation matrix is Marčenko-

Pastur distribution of index c and scale parameter 1 − ρ. By the limiting spectral

distributions, we rigorously show the limiting behavior of widespread stopping rules

Guttman-Kaiser criterion and cumulative-percentage-of-variation rule in PCA and

EFA. As a result, we establish the following dichotomous behavior of Guttman-

Kaiser criterion when both n and p are large, but p/n is small: (1) the criterion

retains a small number of variables for ρ > 0, as suggested by Kaiser, Humphreys,

and Tucker [Kaiser, H. F. (1992). On Cliff’s formula, the Kaiser-Guttman rule and

the number of factors. Percept. Mot. Ski. 74]; and (2) the criterion retains p/2

variables for ρ = 0, as in a simulation study [Yeomans, K. A. and Golder, P. A.

(1982). The Guttman-Kaiser criterion as a predictor of the number of common

factors. J. Royal Stat. Soc. Series D. 31(3)].
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1. Introduction

For large datasets, it is necessary to reduce the dimensionality from n obser-
vations on p variables. Numerous techniques have been developed, such as principal
component analysis (PCA) [21, 23] and exploratory factor analysis (EFA) [18, 31,
11] for this goal. PCA and EFA discover relationships among a set of potentially
associated variables and merge them into smaller groups called as ‘principal compo-
nents’ (in PCA) or ‘factors’ (in EFA) [21, 31]. The number of non-trivial principal
components or factors is usually suggested by a stopping rule [21, p. 41].

A well-known stopping rule in PCA and EFA is Guttman-Kaiser criterion [16,
24, 42]. This rule may be the most widely used rule to retain principal components
and factors [11] because of its clearness, ease of implementation, and default stop-
ping rule in statistical software such as SPSS and SAS. However, nearly four decades
ago, for independent normal random variables, Yeomans-Golder [41] observed that
Guttman-Kaiser criterion retains a large number of factors at most p/2 by a sim-
ulation study. Moreover, for dependent variables, H. F. Kaiser, who introduced
Guttman-Kaiser criterion, adverted to a dichotomous behavior of the criterion by
reporting the following experience of experts of EFA:

Quotation 1.1 ([26]). ... Humphreys (personal communication, 1984) asserts that,
when the number p of attributes is large and the “average” intercorrelation is small,
the Kaiser-Guttman rule will overfactor. Tucker (personal communication, 1984)
asserts that, when the number of attributes p is small and the structure of the
attributes is particularly clear, the Kaiser-Guttman rule will underfactor. ...

Here, “overfactor” (“underfactor”, resp.) means “overestimate” (“underestimate”,
resp.) the number of factors in the factor model. According to Kaiser [25], ‘the
“average” intercorrelation’ corresponds to a positive constant ρ of the following
correlation matrix

C(ρ) =


1 ρ · · · ρ
ρ 1 · · · ρ
...

...
...

ρ ρ · · · 1

 ∈ Rp×p.

In statistics, Kaiser’s observation in Quotation 1.1 and the simulation study of
Yeomans-Golder [41] showed that Guttman-Kaiser criterion has a considerable risk
of overfactor and underfactor. Consequently, applying this criterion may signifi-
cantly impact the interpretation in PCA and EFA [41, 42]. However, no systematic
analysis of Guttman-Kaiser criterion has been done for datasets that have both
large n and p large. Because of the wide use of Guttman-Kaiser criterion, it is
necessary to verify Kaiser’s observation in Quotation 1.1 and a simulation study of
Yeomans-Golder [41]. Thus, we study the behavior of Guttman-Kaiser criterion to
detect the number of components or factors regarding p/n and ρ (the correlation
coefficient between variables).

In mathematics, the most aforementioned works assume that the p entries of
variables are independent to show the behavior of the largest entries of the sample
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covariance matrices and the sample correlation matrices. Fan-Jiang [12] considered
p-dimensional population such that all the p variables obey normal distributions
where all the correlation coefficients between different variables are ρ (0 ≤ ρ <
1). We call this population an equi-correlated normal population (ENP). Here, we
consider how an ENP impacts the limiting spectral distribution (LSD) of the sample
covariance and the sample correlation matrices.

In this paper, we expound on the behavior of Guttman-Kaiser criterion re-
garding p/n and ρ as n, p → ∞ by verifying the impact of ρ on the LSDs of the
sample covariance matrices and the sample correlation matrices. First of all, we
precisely compute and illustrate q/p in n, p→∞, p/n→ c > 0 by the limit of em-
pirical spectral distribution (ESD) from random matrix theory [4, p. 5]. Here, q is
the number of principal components or factors that Guttman-Kaiser criterion pre-
serves. For a real symmetric matrix M of order p, the ESD of M is, by definition,
a function

FM(x) =
1

p
# { 1 ≤ i ≤ p | λi ≤ x }

where λ1 ≥ λ2 ≥ · · · ≥ λp are the eigenvalues of M. Mathematically speaking,
the proportion of eigenvalues rejected by Guttman-Kaiser criterion is FS(p−1 TrS)
or the sample correlation matrix FR(1) where S denotes sample covariance matrix
and R denotes sample correlation matrix. Here, the LSD is the limit of ESD in
n, p→∞, p/n→ c > 0. From an ENP, we prove that

(1) if the population mean and variance are, moreover, 0 and σ2, then the LSD
of the sample covariance matrix S is the Marčenko-Pastur distribution [40]
with index c and scale parameter by σ2(1− ρ); and

(2) the LSD of sample correlation matrix is the Marčenko-Pastur distribution
with index c and scale parameter 1− ρ. (This answers a question posed in
Fan-Jiang [12, Remark 2.5]).

Thus, by properties of Marčenko–Pastur distribution, we establish the fol-
lowing dichotomous behavior of Guttman-Kaiser criterion when both of n and p
are large, but p/n is small: (1) the criterion retains a small number of variables for
ρ > 0, as suggested by Quotation 1.1; and (2) the criterion retains p/2 variables
for ρ = 0, as suggested by Yeomans-Golder [41].

The organization of this paper. In Section 2, from an ENP with 0 ≤ ρ < 1, we
show that (1) if furthermore the population is centered with positive variance σ2,
then the LSD of the sample covariance matrices is Marčenko-Pastur distribution
scaled by σ2(1 − ρ) and that (2) the LSD of the sample correlation matrices is
Marčenko-Pastur distribution scaled by (1 − ρ). In Section 3, by using Theorems
of Section 2, we compute the limits of q/p from Guttman-Kaiser criterion and
cumulative-percentage-of-variation rule (CPV rule) [23, p. 113] in n, p → ∞ with
p/n → c > 0. The comparison of both limits is also presented. By these results,
we illustrate the limiting behavior of Guttman-Kaiser criterion discuss (1) Kaiser’s
observation [26], that is, Quotation 1.1, and (2) a simulation study of Yeomans-
Golder [41] about how many factors Guttman-Kaiser’s criterion retains in EFA. In
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Section 4, we also study Guttman-Kaiser criterion and CPV rule with datasets from
economics and molecular biology, and discuss future work. Section 5 is conclusion.

2. The spectral analysis of equi-correlated normal population

Let X1, . . . , Xn ∈ Rp be a random sample from a p-dimensional popula-
tion. For the data matrix X = [X1, . . . , Xn] ∈ Rp×n , write X = [xij ]p×n =[
x⊤
1 ,x

⊤
2 , . . . ,x

⊤
p

]⊤
. For 1 ≤ i ≤ p, let x̄i be the sample average of xi ∈ R1×n, that

is, x̄i = n−1
∑n

j=1 xij . We write x̄i for x̄ie, where e = [1, . . . , 1] ∈ R1×n. Let X̄ be

[x̄1, x̄2, . . . , x̄p]
⊤e ∈ Rp×n and E be n−1/2(X − X̄). The p × p sample correlation

matrix is defined as

R = YY⊤ where Y⊤ =

[
(x1 − x̄1)

⊤

∥x1 − x̄1∥
, . . . ,

(xp − x̄p)
⊤

∥xp − x̄p∥

]
.

Here, the notation ∥.∥ is the Euclidean norm. The noncentered sample correlation

matrix is, by definition, R̃ = ỸỸ⊤ with Ỹ⊤ =
[
x⊤
1 /∥x1∥, . . . ,x⊤

p /∥xp∥
]
. The p×p

sample covariance matrix is denoted by S = n−1XX⊤, and the centered sample
covariance matrix by S̃ = EE⊤.

By a distribution function, we mean a nondecreasing, right-continuous func-
tion F : R→ [0, 1] such that limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1. According
to [40, p. 10], the Marčenko-Pastur distribution Fc,σ2 with index c > 0 and scale
parameter σ2 > 0 has a density function

1

2πcσ2x

√
(bσ2(c)− x)(x− aσ2(c))1x∈[aσ2 (c), bσ2 (c)]

and has a point mass of value 1 − 1/c at the origin if c > 1. Here, 1 denotes
the indicator function, aσ2(c) = σ2(1 −

√
c)2, and bσ2(c) = σ2(1 +

√
c)2. The

Marčenko-Pastur distribution has expectation σ2. Moreover, by a random variable
transformation, we can write that Fc,σ2(x) = Fc,1(x/σ

2) for all x ∈ R.
Let F be a distribution function on R and let (Fn : n ∈ N) be a sequence of

distribution functions. We say that Fn weakly converges to a function F : R → R
if Fn(x) converges to F (x) at every point x ∈ R where F is continuous.

Marčenko-Pastur [29] first found the LSD of the sample covariance matrices.
Their result has since been extended in various directions. The following is widely
known.

Proposition 2.1 ([40, p. 12]). Assume that the entries of X = [xij ]p×n are centered
i.i.d. random variables with variance σ2, and n, p → ∞ with p/n → c > 0. Then,
almost surely, FS weakly converges to Fc,σ2 .

Furthermore, Jiang [22] established the LSD of the sample correlation matrix
R.

Proposition 2.2 ([22, Theorem 1.2]). Assume that the entries of X = [xij ]p×n

are i.i.d. random variables. Suppose E |xij |2 <∞ and n, p→∞ with p/n→ c > 0.

Then, almost surely, FR weakly converges to Fc,1. This conclusion is true for F R̃

provided E(xij) = 0 in addition.
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Figure 1. The maximum distance between the graph of F and
G, measured along a 45◦-direction (

√
2L(F,G)) [19, p. 28].

We discuss the LSDs of the sample covariance matrices and the sample cor-
relation matrices formed from an ENP. An ENP is written as Np(µ, DC(ρ)D) for
a deterministic vector µ ∈ Rp and a deterministic nonsingular diagonal matrix
D ∈ Rp×p.

We assume X1, . . . , Xn
i.i.d.∼ Np(µ, DC(ρ)D), 0 ≤ ρ < 1, and n, p→∞ with

p/n → c > 0. Then, in the following section, as n, p → ∞ with p/n → c > 0, we
obtain that (a) the LSD of the sample covariance matrix is Fc,σ2(1−ρ) for centered
random variables and D = σI where I is the identity matrix of order p, (b) the
LSD of the sample correlation matrix is Fc,1−ρ.

2.1. Sample covariance matrices. We recall the following propositions from
Huber-Ronchetti [19], Bai-Silverstein [4], and Anderson et al. [2]. The Lévy distance
between two distribution functions F and G is denoted by L(F,G). By Huber-
Ronchetti [19, Definition 2.7], the L(F,G) is defined as

L(F,G) = inf { ε > 0 | F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε } . (1)

The following proposition means that a distribution function F weakly converges
to a distribution function G if and only if L(F,G)→ 0.

Proposition 2.3 ([19, Lemma 2.9]). The Lévy distance metrizes the weak topology
of the set of distribution functions.

Proof. We just show that the convergence of Fn → F at continuity points of F and
L(Fn, F )→ 0 are equivalent as n→∞. (i) Assume L(Fn, F )→ 0 as n→∞. Let x
be a continuity point of F . Then, F (x±ε)±ε→ F (x) as ε→ 0. By this and (1), we
have Fn(x)→ F (x) as n→∞. (ii) Assume Fn(x)→ F (x) for all continuity points
x of F . Let xi (0 ≤ i ≤ N) be strictly decreasing continuity points of F such that
F (x0) < ε/2 and F (xN ) > 1−ε/2, and that xi+1−xi < ε. Let N ∈ N be sufficiently
large such that |Fn(xi)− F (xi)| ≤ ε/2 for all n ≥ N . By this and monotonicity of
Fn and F , for x ∈ [xi−1, xi], we have Fn(x) ≤ Fn(xi) < Fn(xi)+ε/2 ≤ F (x+ε)+ε
for all n ≥ N . This bound also holds for x < x0 and x > xN . In the same way, we
establish Fn(x) ≥ F (x− ε)− ε. □
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The Kolmogorov distance between two distribution functions F and G is
defined as

K(F,G) = sup
x∈R
|F (x)−G(x)| (2)

do not generate the weak topology, but they possess other convenient properties.
In particular, we have the following inequalities.

Proposition 2.4 ([19, p. 36]). For any distribution functions F and G, L(F,G) ≤
K(F,G).

Proof. Let K(F,G) be a positive a. Then, by (2), F (x) − G(x) ≤ a and G(x) −
F (x) ≤ a for all x ∈ R. By this, for all x ∈ R, we can write F (x−a)−a ≤ F (x)−a ≤
G(x) and G(x) ≤ F (x)+a ≤ F (x+a)+a since F and G are nondecreasing function.
By (1), we have Proposition 2.4. □

In cases where the underlying variables are dependent, the following propo-
sition is powerful.

Proposition 2.5 ([4, Lemma 2.6, the rank inequality]).

K
(
FAA⊤

, FBB⊤
)
≤ 1

p
rank(A−B), (A,B ∈ Rp×n).

We are concerned with a well-known decomposition of a centered, equi-
correlated normal random vector:

Proposition 2.6 ([12, (3.21)]). If X1, . . . , Xn
i.i.d.∼ Np(0, σ

2C(ρ)) for σ > 0 and
0 ≤ ρ < 1, then we can find independent, standard normal random variables ηj , ξij
(1 ≤ i ≤ p, 1 ≤ j ≤ n) such that

Xj = σ
√
ρ [ηj , . . . , ηj ]

⊤ + σ
√
1− ρ [ξ1j , . . . , ξpj ]

⊤. (3)

Then, Proposition 2.1 derives the following:

Theorem 2.7 (Shrinkage). Suppose X1, . . . , Xn
i.i.d.∼ Np(0, σ

2C(ρ)) for σ > 0,
0 ≤ ρ < 1, and n, p→∞ with p/n→ c > 0. Then, it holds almost surely that both

of FS and FEE⊤
weakly converge to Fc,σ2(1−ρ).

Proof. By Proposition 2.6, the data matrix X = [X1, . . . , Xn] satisfies

X = P+U, P = [σ
√
ρηj ]p×n , U =

[
σ
√

1− ρξij

]
p×n

. (4)

All entries of the matrix U are i.i.d. centered random variables with variance σ2(1−
ρ). Hence, by Proposition 2.1, F

1
nUU⊤

weakly converges to Fc,σ2(1−ρ) almost surely,
as p, n→∞, p/n→ c > 0. Thus, by Proposition 2.3,

L
(
F

1
nUU⊤

, Fc,σ2(1−ρ)

)
a.s.→ 0. (5)
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Here, the notation
a.s.→ means almost sure convergence. Recall that S = n−1XX⊤.

Thus, by Proposition 2.4, Proposition 2.5, (4), and rankP ≤ 1,

L
(
FS, F

1
nUU⊤

)
≤ K

(
FS, F

1
nUU⊤

)
≤ 1

p
rank

(
1√
n
X− 1√

n
U

)
=

1

p
rank

(
1√
n
P

)
≤ 1

p
→ 0 (p→∞).

By this and (5), the triangle inequality implies L
(
FS, Fc,σ2(1−ρ)

) a.s.→ 0. By Propo-

sition 2.3, almost surely, FS weakly converges to Fc,σ2(1−ρ).

By E = n−1/2(X− X̄), Proposition 2.4, Proposition 2.5, and rank(X̄) ≤ 1,

L(FEE⊤
, FS) ≤ K

(
FEE⊤

, F
XX⊤

n

)
≤

rank
(
X̄
)

p
≤ 1

p
→ 0,

for p → ∞. Thus, L
(
FS, Fc,σ2(1−ρ)

) a.s.→ 0 ⇐⇒ L
(
FEE⊤

, Fc,σ2(1−ρ)

)
a.s.→ 0. By

Proposition 2.3, almost surely, FEE⊤
weakly converges to Fc,σ2(1−ρ). □

Remark 2.8. By using [37] for Stieltjes transform, we can derive this shrinkage
theorem for the sample covariance matrix C(ρ) from the property: C(ρ) has p− 1
eigenvalues 1−ρ and one eigenvalue 1+(p−1)ρ. As a feature of our proof, it can re-
lease the independence of X1, . . . , Xn in Theorem 2.7, so long as the decomposition
(3) holds. For example, Theorem 2.7 holds for X = [X1, . . . , Xn] = [xij ]p×n such
that xij are standard normal random variables equi-correlated with nonnegative
ρ < 1. For further applications of the propositions of this subsection to establish
LSDs of various random matrices, see [20].

2.2. Sample correlation matrices. In this subsection, we establish that the LSD
of R is the LSD of S for a centered ENP with unit variance and 0 ≤ ρ < 1. To
prove Theorem 2.11, we need the following lemma.

Lemma 2.9. Suppose X1, . . . , Xn
i.i.d.∼ Np(0, σ

2C(ρ)), for σ > 0, 0 ≤ ρ < 1, and
n, p→∞ with p/n→ c > 0. Then, it holds almost surely that 1

p TrS→ σ2.

Proof. By (4), TrS/p is equal to

1

np

p∑
i=1

n∑
j=1

x2
ij =

σ2ρ

n

n∑
j=1

η2j +
2σ2

√
ρ(1− ρ)

np

p∑
i=1

n∑
j=1

ηjξij +
σ2(1− ρ)

np

p∑
i=1

n∑
j=1

ξ2ij .

(6)

Since ηj and ξij are i.i.d. standard normal random variables for all 1 ≤ i ≤
p; 1 ≤ j ≤ n, by the strong law of large numbers, we have

∑n
j=1 η

2
j /n

a.s.→ 1,∑p
i=1

∑n
j=1 ηjξij/(np)

a.s.→ 0, and
∑p

i=1

∑n
j=1 ξ

2
ij/(np)

a.s.→ 1. Therefore, almost

surely, (6) converges to σ2. □

The following is Lemma 2 from [5]. It plays a key role in providing the LSD
of the sample correlation matrices formed from an ENP with 0 ≤ ρ < 1.
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Proposition 2.10 ([5, Lemma 2]). Let {xij | i, j = 1, 2, . . . } be a double array of
i.i.d. random variables and let α > 1/2, β ≥ 0 and M > 0 be constants. Then,

max
i≤Mnβ

∣∣∣∣∣∣
n∑

j=1

xij −m

nα

∣∣∣∣∣∣ a.s.→ 0 (n→∞)

⇐⇒ E |x11|
1+β
α <∞ & m =

{
Ex11, (α ≤ 1),

any, (α > 1).

Theorem 2.11. Suppose X1, . . . , Xn
i.i.d.∼ Np(µ, DC(ρ)D) for a deterministic

vector µ ∈ Rp, a deterministic nonsingular diagonal matrix D ∈ Rp×p, and 0 ≤
ρ < 1. Suppose n, p→∞ with p/n→ c > 0. Then, it holds almost surely that FR

weakly converges to Fc,1−ρ.

Proof. Because the sample correlation matrices R is invariant under scaling of
variables, we can assume D = I without loss of generality. Moreover, we can safely
assume that µ = 0 to prove that FR weakly converges to Fc,1−ρ almost surely,
because R is invariant under sifting.

To prove that FR weakly converges to Fc,1−ρ almost surely, it suffices to show

that L
(
FR, FEE⊤

)
a.s.→ 0, because Theorem 2.7 implies L

(
FEE⊤

, Fc,1−ρ

)
a.s.→ 0.

By R = YY⊤, [4, Lemma 2.7] gives an upper bound on the fourth power of the
Lévy distance

L4
(
FR, FEE⊤

)
≤ 2

p
Tr

(
YY⊤ +EE⊤)× 1

p
Tr

(
(Y −E) (Y −E)

⊤
)
. (7)

In the first factor of the right side, Tr(YY⊤)/p = TrR/p = 1. By E = n−1/2(X−
X̄),

Tr(EE⊤)

p
=

1

np

p∑
i=1

n∑
j=1

(xij − x̄i)
2
=

1

np

 p∑
i=1

n∑
j=1

x2
ij − n

p∑
i=1

x̄2
i

 ≤ p∑
i=1

n∑
j=1

x2
ij

np
.

(8)

Since the last term almost surely converges to a finite deterministic value by
Lemma 2.9, lim sup |Tr(EE⊤)/p| is almost surely finite. Therefore, it is sufficient
to verify that the second factor of the right side of (7) converges almost surely to
0:

1

p
Tr

(
(Y −E) (Y −E)

⊤
)

a.s.→ 0. (9)

Similarly, to prove that F R̃ weakly converges to Fc,1−ρ almost surely under
µ = 0, it also suffices to confirm

1

p
Tr

((
Ỹ − n−1/2X

)(
Ỹ − n−1/2X

)⊤
)

a.s.→ 0. (10)
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(a) The proof of (10). The left side of (10) is d̃1 − 2d̃2 where

d̃1 =
1

np

p∑
i=1

n∑
j=1

x2
ij − 1, d̃2 =

1

p

p∑
i=1

(
∥xi∥√

n
− 1

)
, (11)

because Tr(ỸỸ⊤) = Tr(R̃) = p and Tr(XỸ⊤) = Tr

([
X

x⊤
1

∥x1∥ , . . . ,X
x⊤

p

∥xp∥

])
=∑p

i=1 xix
⊤
i /∥xi∥ =

∑p
i=1 ∥xi∥. Because µ = 0, Lemma 2.9 implies d̃1

a.s.→ 0. On
the other hand, we prove

d̃2 =
1

p

p∑
i=1

∥xi∥√
n
− 1 =

1

p

p∑
i=1

√√√√ 1

n

n∑
j=1

x2
ij − 1

a.s.→ 0. (12)

By the concavity of
√
x and Lemma 2.9,

√∑p
i=1

∑n
j=1 x

2
ij/(np) − 1

a.s.→ 0, so

lim supn,p→∞
p/n→c

d̃2 ≥ 0. Therefore, we have only to demonstrate lim infn,p→∞
p/n→c

d̃2 ≥ 0.

By (12), it suffices to show

lim inf
n,p→∞
p/n→c

1

n

n∑
j=1

x2
ij ≥ 1. (13)

By the decomposition (3),

1

n

n∑
j=1

x2
ij = ρ

1

n

n∑
j=1

η2j + 2
√
ρ(1− ρ)

1

n

n∑
j=1

ηjξij + (1− ρ)
1

n

n∑
j=1

ξ2ij . (14)

Following the strong law of large numbers with ηj
i.i.d.∼ N(0, 1), the first term

1

n

n∑
j=1

η2j
a.s.→ E

(
η21
)
= 1, (15)

as n → ∞. The sum of the second and the third terms of the right side of (14) is
at least

2
√
ρ(1− ρ) min

1≤i≤p

1

n

n∑
j=1

ηjξij + (1− ρ) min
1≤i≤p

1

n

n∑
j=1

ξ2ij . (16)

By Proposition 2.10 with α = β = 1, E(η1ξ11) = 0, and E(ξ211) = 1, as
n→∞, ∣∣∣∣∣∣ min

1≤i≤Mn

1

n

n∑
j=1

ηjξij

∣∣∣∣∣∣ ≤ max
1≤i≤Mn

∣∣∣∣∣∣ 1n
n∑

j=1

ηjξij

∣∣∣∣∣∣ a.s.→ 0 (17)

∣∣∣∣∣∣ min
1≤i≤Mn

1

n

n∑
j=1

ξ2ij − 1

∣∣∣∣∣∣ ≤ max
1≤i≤Mn

∣∣∣∣∣∣ 1n
n∑

j=1

ξ2ij − 1

∣∣∣∣∣∣ a.s.→ 0. (18)
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By (17), almost surely, there exists N0(m,M) ∈ N such that∣∣∣∣∣∣ min
1≤i≤Mn

1

n

n∑
j=1

ηjξij

∣∣∣∣∣∣ ≤ 1

m
(19)

for all m > 0 and for all n ≥ N0(m,M). Since n, p → ∞ with p/n → c > 0, there
exists N1(m) such that (c − 1/m)n < p < (c + 1/m)n. Therefore, by (19), for all
n ≥ max(N1(m), N0(m, (c− 1/m))),

− 1

m
< min

1≤i≤(c+ 1
m )n

1

n

n∑
j=1

ηjξij ≤ min
1≤i≤p

1

n

n∑
j=1

ηjξij ≤ min
1≤i≤(c− 1

m )n

1

n

n∑
j=1

ηjξij <
1

m
.

As a result, for n→∞, min1≤i≤p n
−1

∑n
j=1 ηjξij

a.s.→ 0.

By (18), almost surely, there exists N2(m,M) such that∣∣∣∣∣∣ min
1≤i≤Mn

1

n

n∑
j=1

ξ2ij − 1

∣∣∣∣∣∣ ≤ 1

m

for all m > 0 and for all n ≥ N1(m,M). Hence, for all n ≥ max(N1(m), N2(m, (c−
1/m))),

− 1

m
< min

1≤i≤(c+ 1
m )n

n∑
j=1

ξ2ij − 1

n
≤ min

1≤i≤p

n∑
j=1

ξ2ij − 1

n
≤ min

1≤i≤(c− 1
m )n

n∑
j=1

ξ2ij − 1

n
<

1

m
.

Therefore, as n→∞, min1≤i≤p n
−1

∑n
j=1 ξ

2
ij

a.s.→ 1. As a result, (14)
a.s.→ 1− ρ. By

this and (15), (13) follows. Thus, d̃2
a.s.→ 0. Therefore, (10) is hold.

(b) The proof of (9). First, the left side of (9) is d1 − 2d2 where

d1 =
1

np

p∑
i=1

n∑
j=1

(xij − x̄i)
2 − 1, d2 =

1

p

p∑
i=1

(
∥xi − x̄i∥√

n
− 1

)
, (20)

because Tr(YY⊤) = TrR = p and

Tr(EY⊤) = Tr

([
E
(x1 − x̄1)

⊤

∥x1 − x̄1∥
, . . . ,E

(xp − x̄p)
⊤

∥xp − x̄p∥

])
=

p∑
i=1

(xi − x̄i)(xi − x̄i)
⊤

√
n∥xi − x̄i∥

=

p∑
i=1

∥xi − x̄i∥√
n

.

Secondly, we show d1
a.s.→ 0 and d2

a.s.→ 0. By (11), (20), and (8),

|d1 − d̃1| =
1

np

∣∣∣∣∣∣
p∑

i=1

n∑
j=1

x2
ij −

p∑
i=1

n∑
j=1

(xij − x̄i)
2

∣∣∣∣∣∣
=

1

np

∣∣∣∣∣∣
p∑

i=1

n∑
j=1

x2
ij −

p∑
i=1

n∑
j=1

x2
ij + n

p∑
i=1

x̄2
i

∣∣∣∣∣∣ = 1

p

p∑
i=1

|x̄i|2 .
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Thus, by decomposition (3),

1

p

p∑
i=1

|x̄i|2 ≤
(
max
1≤i≤p

|x̄i|
)2

=

max
1≤i≤p

∣∣∣∣∣∣
n∑

j=1

√
ρηj +

√
1− ρξij

n

∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣
n∑

j=1

√
ρηj

n

∣∣∣∣∣∣+ max
1≤i≤p

∣∣∣∣∣∣
n∑

j=1

√
1− ρξij
n

∣∣∣∣∣∣
2

.

By Proposition 2.10, almost surely, there exists N3(m,M) such that for all n >
N3(m,M), we have |max1≤i≤Mn | n−1

∑n
j=1 ξij || ≤ m−1. Hence, by n, p → ∞

with p/n → c > 0, for all n ≥ max(N1(m), N3(m, (c + 1/m))), we have −m−1 <
max1≤i≤(c−m−1)n |n−1

∑n
j=1 ξij | ≤ max1≤i≤p |n−1

∑n
j=1 ξij | ≤ max1≤i≤(c+m−1)n

|n−1
∑n

j=1 ξij | < m−1. Therefore, as n → ∞, max1≤i≤p |n−1
∑n

j=1 ξij |
a.s.→ 0. As a

result, by the triangle inequality and law of large numbers,

|d1 − d̃1| ≤

∣∣∣∣∣∣
n∑

j=1

√
ρηj

n

∣∣∣∣∣∣+ max
1≤i≤p

∣∣∣∣∣∣
n∑

j=1

√
1− ρξij
n

∣∣∣∣∣∣
2

a.s.→ 0. (21)

Thus, d1
a.s.→ 0 because d̃1 = (np)−1

∑p
i=1

∑n
j=1 x

2
ij − 1

a.s.→ 0.

In contrast,

|d2 − d̃2| ≤
1

p
√
n

p∑
i=1

∣∣∣∣∣∣
√√√√ n∑

j=1

(xij − x̄i)2 −

√√√√ n∑
j=1

x2
ij

∣∣∣∣∣∣ .
Note that |

√
r −
√
s| ≤ |r − s|/

√
s (r, s ≥ 0). Let r = 1

n

∑n
j=1(xij − x̄i)

2 and

s = 1
n

∑n
j=1 x

2
ij . Then, |r − s| = (x̄i)

2. By (14), s ≥(16). Thus,

|d2 − d̃2| ≤
1

p

p∑
i=1

|x̄i|2 ·

 1

n

n∑
j=1

x2
ij

−1/2

.

The first factor 1
p

∑p
i=1 |x̄i|2 on the right side is |d1 − d̃1|, which converges almost

surely to 0 by (21). By (12), almost surely, lim infn,p→∞
p/n→c

(
1
n

∑n
j=1 x

2
ij

)−1/2

≤ 1.

Thus, |d2 − d̃2|
a.s.→ 0. Therefore, d2

a.s.→ 0 since d̃2
a.s.→ 0. □

Proposition 2.2 ([22, Theorem 1.2]) assumes that xij (1 ≤ i ≤ p; 1 ≤ j ≤ n)
are i.i.d. random variables with finite second moments. To prove the proposition,
Jiang directly applied Proposition 2.10 to establish (13). In contrast, Theorem 2.11
assumes E(xijxkj) = ρ, so (13) is not immediate from Proposition 2.10. Therefore,
we take advantage of the decomposition (3) to represent xij as a linear combination
of independent, standard normal random variables ηj and ξij for 1 ≤ i ≤ p, 1 ≤
j ≤ n to prove (13).



A dichotomous behavior of GK criterion from ENP 283

3. Analysis of stopping rules for principal components and factors

In the following subsections, we mathematically formulate the Guttman-
Kaiser criterion and CPV rule. Under an ENP with 0 ≤ ρ < 1, the limiting
proportion of principal components and factors retained by the Guttman-Kaiser
criterion and CPV rule are then examined using the LSDs of sample correlation
matrices and sample covariance matrices. Moreover, we compare these findings to
elaborate on Kaiser’s observation that the Guttman-Kaiser criterion underfactors
for small c.

3.1. Guttman-Kaiser criterion. Guttman-Kaiser criterion is a popular tool for
assessing the dimensionality of empirical data. This criterion is based on the arith-
metical mean of the eigenvalues of a sample covariance matrix [21, p. 47]. The
principal component with an eigenvalue lower than the average will be deleted. Be-
cause the average eigenvalues of a sample correlation matrix are one, any principal
component with the corresponding eigenvalue less than one is discarded. Guttman-
Kaiser criterion asserts that each retained principal component should explain more
variation than a single variable—which will be 1.0 when all variables are standard-
ized. For EFA, Guttman-Kaiser criterion keeps factors corresponding to eigenvalues
larger than 1.0 from the sample correlation matrix R.

Let M be a real symmetric positive semi-definite matrix of order p. Suppose
that Guttman-Kaiser criterion retains q eigenvalues of M. Then, the ratio q/p is
represented as follows. Here, for a distribution function F , F represents 1 − F ,
which is called the complementary distribution function of F .

Definition 3.1. For a real symmetric matrix M of order p, define the following

GKM = FM

(
1

p
TrM

)
.

For M, we consider a sample correlation matrix R and a sample covariance
matrix S. Here, R and S are formed from an ENP with 0 ≤ ρ < 1. We calculate
the limits of random variables GKR and GKS in n, p→∞ with p/n→ c > 0.

Definition 3.2. For c > 0 and 0 ≤ ρ < 1, define the following random variable

GKc,ρ = Fc,1

(
1

1− ρ

)
.

Theorem 3.3. Suppose X1, . . . , Xn
i.i.d.∼ Np(µ, DC(ρ)D) for a deterministic vec-

tor µ ∈ Rp, a deterministic nonsingular diagonal matrix D ∈ Rp×p, and 0 ≤ ρ < 1.
Suppose n, p→∞ with p/n→ c > 0. Then almost surely,

(1) GKR → GKc,ρ,
(2) GKS → GKc,ρ, for µ = 0 and D = σI with σ > 0.

Proof. (1) Because TrR/p = 1 is a continuity point of Fc,1−ρ, Theorem 2.11 implies

that, in limit n, p→∞, p/n→ c > 0, almost surely, GKR = FR(1)→ Fc,1−ρ(1) =
GKc,ρ.
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(2) Because TrS =
∑p

i=1

∑n
j=1 x

2
ij/n = 0 implies xij = 0 and because xij

are continuous random variables, P(TrS/p = 0) = 0. As a result, TrS/p is a
continuity point of the distribution function Fc,σ2(1−ρ) almost surely. Because

GKS = FS (TrS/p) and Theorem 2.7, in the limit of n, p→∞ with p/n→ c > 0,
the following random variable

Zp,ρ := GKS − Fc,σ2(1−ρ)

(
1

p
TrS

)
(22)

converges to 0 almost surely. By Lemma 2.9, TrS/p
a.s.→ σ2. Besides, Fc,σ2(1−ρ)

is continuous at σ2 because σ2 > 0. Thus, Fc,σ2(1−ρ)(TrS/p)
a.s.→ Fc,σ2(1−ρ)(σ

2).
Hence, in the limit of n, p→∞ with p/n→ c > 0, almost surely,

GKS = Zp,ρ + Fc,σ2(1−ρ)(TrS/p)→ Fc,σ2(1−ρ)(σ
2) = Fc,1−ρ(1)

which is GKc,ρ. □

Theorem 3.4. Suppose that xij (1 ≤ i ≤ p; 1 ≤ j ≤ n) are i.i.d. centered random
variables with variance σ2 (0 < σ2 < ∞). Suppose n, p → ∞, and p/n → c > 0.
Then, the following assertions hold:

(1) Almost surely, GKR → GKc,0.
(2) If c ≤ 1, then almost surely, GKS → GKc,0.
(3) If E(x12

ij ) <∞, then, in probability, GKS → GKc,0.

Proof.

(1) The proof is the proof of Theorem 3.3 except that ρ should be 0, and
Theorem 2.11 should be Proposition 2.2.

(2) The proof is the proof of Theorem 3.3 except that ρ should be 0, and
Theorem 2.7 should be Proposition 2.1. The weak convergence to Fc,σ2

becomes the pointwise convergence because Fc,σ2 is continuous by 0 < c ≤
1.

(3) By GKS = FS
(

1
p TrS

)
, E

∣∣∣GKS − Fc,σ2

(
1
p TrS

)∣∣∣ is at most E supx∈R∣∣FS(x)− Fc,σ2(x)
∣∣ . Hence, by the following Proposition 3.5, and Proposi-

tion 3.6, in the limit of n and p, Zp,0 of (22) converges to 0 in mean, and
thus in probability. By the law of large numbers, almost surely, TrS/p
converges to σ2, and thus in probability. Since σ2 > 0, Fc,σ2 is continuous

at σ2. Hence, by [39, p. 7, Theorem 2.3], Fc,σ2(TrS/p) converges in proba-

bility to Fc,σ2(σ2). As a result, in the limit n, p→∞ with p/n→ c > 0, it

holds in probability that GKS = Zp,0+Fc,1(TrS/p)→ Fc,σ2(σ2) = Fc,1(1).

□

Proposition 3.5 ([14, Theorem 1.2]). Assume the following conditions.

(i) xij (1 ≤ i ≤ p, 1 ≤ j ≤ n) are independent, centered random variables.

(ii) M12 := max1≤i≤p, 1≤j≤n E |xij |12 <∞.
(iii) Var(xij) = 1 (1 ≤ i ≤ p, 1 ≤ j ≤ n) and p/n = c.
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Then, if 0 < Θ1 ≤ c ≤ Θ2 < ∞ and |c − 1| ≥ θ > 0 for some constants Θ1,Θ2, θ,
there is an absolute constant C(θ,Θ1,Θ2) such that

E
(
K(FS, Fc,1)

)
≤ C(θ,Θ1,Θ2)M

1/6
12 n−1/2.

Proposition 3.6 ([15, Theorem 1.2]). Assume the premises (i), (ii), and (iii) of
Proposition 3.5. Then, if 1 ≧ c > θ > 0 for some constant θ, there is a positive
constant C(θ) such that

E
(
K(FS, Fc,1)

)
≤ C(θ)M

1/6
12 n−1/2.

Figure 2 is the graphs of GKc,ρ over c ∈ (0, 20), for ρ = 0, 0.3, 0.5, 0.8. This
Figure elucidates Quotation 1.1 and [41].

Figure 2. GKc,ρ

The second sentence of Quotation 1.1 is conformed to the following Theo-
rem 3.7 (1). In view of Theorem 3.3 and Theorem 3.4, one may think ofGKc,ρ ≤ 1/2
for all c > 0 and all ρ ∈ [0, 1). This indeed follows from Theorem 3.7 (2) and The-
orem 3.7 (3).

If n, p are large and p/n is sufficiently large, then Guttman-Kaiser criterion
may retain all the min(n, p) principal components or factors corresponding to pos-
itive eigenvalues, from the sample covariance matrices and the sample correlation
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matrices. Here, p is the dimension of the population, and n is the sample size. See
Figure 3 for pGKR/min(n, p).

Theorem 3.7.

(1) limc↓0 GKc,ρ = 0 (0 < ρ < 1).
(2) limc↓0 GKc,0 = 1/2 (ρ = 0) and GKc,0 is strictly decreasing in c > 0.
(3) For any c > 0, GKc,ρ is nonincreasing in ρ ∈ [0, 1).
(4) If 0 ≤ ρ < 1, then c ≥ (1/

√
1− ρ+ 1)2 ⇐⇒ GKc,ρ = 1/c.

Proof. (1) GKc,ρ = Fc,1(1/(1 − ρ)) = 0 if and only if b1(c) < 1/(1 − ρ). By

limc↓0 b1(c) = 1 < 1/(1− ρ), limc↓0 GKc,ρ = limc↓0 Fc,1(1/(1− ρ)) = 0.

(3) Because GKc,ρ = Fc,1(1/(1 − ρ)), the complementary distribution function

Fc,1(x) is nonincreasing in x, and 1/(1− ρ) is strictly increasing in ρ ∈ [0, 1).

(4) Assume GKc,ρ = Fc,1((1− ρ)−1) = 1/c. Because the mean of Marčenko-Pastur

distribution of index c and scale parameter a > 0 is a, 1 > Fc,1((1−ρ)−1) = GKc,ρ.
Therefore c > 1. Hence, Marčenko-Pastur distribution of index c has the probability
mass 1 − 1/c at 0. Therefore, (1 − ρ)−1 ≤ a(c). The converse is easy. Now, we
solve (1− ρ)−1 ≤ a(c) and c > 1. By taking the square roots of both hand sides of
(1 − ρ)−1 ≤ a(c), (1 − ρ)−1/2 ≤ 1 −

√
c or −(1 − ρ)−1/2 ≥ 1 −

√
c. The former is

impossible, because c > 1. Therefore, we have a solution (1 + (1− ρ)−1/2)2 ≤ c.

(2) If a random variable Xc follows the Marčenko-Pastur distribution Fc,1, then
as c → 0, a random variable X ′

c = (2
√
c)−1(Xc − 1) converges in distribution to

a random variable X ′ that follows Wigner’s semi-circle law with density func-
tion 2π−1

√
1− x2 for |x| ≤ 1 and 0 otherwise. By this, 1 − limc↓0 GKc,0 =

limc↓0 Fc,1(1) = limc↓0 P(Xc ≤ 1) = limc↓0 P(X
′
c ≤ 0) = P(X ′ ≤ 0) = 1/2. Thus,

limc↓0 GKc,0 = 1/2.

Next, we prove that GKc,0 is strictly decreasing in c > 0. By (4) of this
theorem, for c ≥ 4, GKc,0 = 1/c is strictly decreasing in c. One can easily check
that the cumulative distribution function of Marčenko-Pastur distribution Fc,1 is
equal to{

c−1
c 1x∈[0,a1(c)) +

(
c−1
2c + F (x)

)
1x∈[a1(c),b1(c)] + 1x∈[b1(c),∞), (c > 1)

F (x)1x∈[a1(c),b1(c)] + 1x∈[b1(c),∞), (0 < c ≤ 1),

where

F (x) =
1

2πc

(
πc+

√
(b1(c)− x)(x− a1(c))− (1 + c) arctan

r(x)2 − 1

2r(x)

)
+

1

2πc

(
(1− c) arctan

a1(c)r(x)
2 − b1(c)

2(1− c)r(x)

)
and r(x) =

√
(b1(c)− x)/(x− a1(c)). By calculation, −2πc2dFc,1(1)/dc is f(c) for

0 < c ≤ 1 and π + f(c) for 1 < c < 4, by letting f(c) be arctan
(√

c/
√
4− c

)
+

arctan
(√

c (c− 3)/(
√
4− c (−1 + c)

)
−
√
c
√
4− c. Because f(0) = 0 and f ′(c) =
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√
4− c/

√
c > 0 for 0 < c < 4, we have f(c) > 0 for 0 < c < 4. Hence, dGKc,0/dc <

0 for 0 < c < 4. Consequently, Fc,1(1) is strictly decreasing in 0 < c < 4. □
Figure 3 consists of the graphs of pGKR/min(n, p) under assumption The-

orem 3.3 with n = 1000 and p = 50, 70, . . . , 19980, 20000; and ρ = 0 (solid), 0.3
(dashed), 0.5 (dotted), 0.8 (dash-dot). We can find pGKR/min(n, p) is equal to 1
if c > (1/

√
1− ρ+ 1)2 for large n and p.

Figure 3. pGKR/min(n, p)

To expound the first sentence of Quotation 1.1, we compare Guttman-Kaiser
criterion to another stopping rule of the number of principal components and fac-
tors, in the following subsections.



288 Akama and Husnaqilati

3.2. CPV rule (Cumulative-percentage-of-total-variation rule). In PCA
and EFA, each eigenvalue of the sample correlation matrices and the sample covari-
ance matrices represents the level of variation explained by the associated principal
components and factors. A simple and popular stopping rule has been related to
the proportion of the sum of all eigenvalues of the sample correlation matrices or
the sample covariance matrices explained by q number of principal components and
factors retained, say t ∈ (0, 1).

Let M be a real symmetric matrix semi-definite matrix of order p. Let all
the p eigenvalues of M be

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. (23)

For t ∈ (0, 1), the number q of eigenvalues CPV rule retains is, by definition,
the maximum nonnegative integer q < p such that

∑q
i=1 λi

/∑p
i=1 λi ≤ t and

λq > λq+1. For convenience, we set λ0 = λ1+1. Thus, there is indeed the maximum

q, because
∑0

i=1 λi/
∑p

i=1 λi ≤ t and λ0 > λ1. Since we required λq > λq+1, once
CPV rule takes an eigenvalue λ, CPV rule takes all eigenvalues λi such that λi = λ.

Definition 3.8. For a threshold t (0 < t < 1), define the following

CPM(t) = max

{
q

p

∣∣∣∣∣
q∑

i=1

λi

/ p∑
i=1

λi ≤ t, λq > λq+1 and 0 ≤ q < p

}
where we set λ0 = λ1 + 1.

CPM(t) ̸= 1, because t < 1 and M has at least one positive eigenvalue. Since
the eigenvalues of matrix M follows (23), the eigenvalues of matrix kM are (23)
multiplied by k for k > 0. Thus, CP kM = CPM for any k > 0.

We study the limiting proportion of principal components and factors retained
by CPV rule with threshold t ∈ (0, 1).

Definition 3.9. For any c, σ2 > 0, define a function

Gc,σ2(x) =

∫
(−∞,x]

λdµc,σ2(λ)∫
R λdµc,σ2(λ)

(x ∈ R).

A defective distribution function is, by definition, a right-continuous, nonde-
creasing function on R that vanishes at −∞. By the convention that inf ∅ = ∞
and that a set without a lower bound has an infimum −∞, we define the generalized
inverse [9] of a possibly defective distribution function F as

F−(t) = inf { x ∈ R | F (x) ≥ t } , (t ∈ R).

A quantile function is the generalized inverse of a distribution function [39, p. 304].

Let us consider the complementary distribution function Fc,1 = 1 − Fc,1

applied to the quantile function (Gc,1)
− of (1−t)/(1−ρ). Hereafter, for a monotone

function f : R→ R, we set f(−∞) = limx↓−∞ f(x) and f(∞) = limx↑∞ f(x).

Definition 3.10. For c > 0, 0 ≤ ρ < 1, and 0 < t < 1, define a function

CPc,ρ(t) = Fc,1

(
(Gc,1)

−
(
1− t

1− ρ

))
.
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The main theorems of this subsection are the following:

Theorem 3.11. Suppose X1, . . . , Xn
i.i.d.∼ Np(µ, DC(ρ)D) for a deterministic

vector µ ∈ Rp, a deterministic nonsingular diagonal matrix D ∈ Rp×p, and 0 ≤
ρ < 1. Suppose n, p→∞ with p/n→ c > 0. Then almost surely, for any t ∈ [ρ, 1),

(1) CPR(t)→ CPc,ρ(t),
(2) CPS(t)→ CPc,ρ(t), for µ = 0 and D = σI with σ > 0.

Theorem 3.12. Suppose that xij (1 ≤ i ≤ p; 1 ≤ j ≤ n) are i.i.d. random variables
with variance σ2 (0 < σ2 <∞). Suppose n, p→∞ with p/n→ c > 0. Then almost
surely, for any t ∈ (0, 1),

(1) CPR(t)→ CPc,0(t),
(2) CPS(t)→ CPc,0(t), for Exij = 0.

Proof sketch of Theorem 3.11. Let M be R or S.

(1) We define a random distribution function

GM(x) =
∑
λi≤x

λi

/ p∑
i=1

λi, (x ∈ R). (24)

(2) We prove that
(
GM

)−
(1−t) is the threshold of eigenvalues of M that CPV

rule retains. In other words, CPM(t) = FM
((

GM
)−

(1− t)
)
.

(3) By Theorem 2.11 (Theorem 2.7, resp.), we prove that almost surely, GR

(GS, resp.) converges pointwise to a defective distribution function (1 −
ρ)Gc,1−ρ ((1− ρ)Gc,σ2(1−ρ), resp.).

(4) By this, we derive that almost surely, for any u ∈ (0, 1−ρ],
(
GR

)−
(u) tends

to ((1− ρ)Gc,1−ρ)
−
(u) and

(
GS

)−
(u) does to

(
(1− ρ)Gc,σ2(1−ρ)

)−
(u).

(5) Then, we deduce that almost surely, for any t ∈ [ρ, 1),

CPM(t) = FM(
(
GM

)−
(1− t))→ CPc,ρ(t) = Fc,1−ρ

(
(Gc,1−ρ)

−
(
1− t

1− ρ

))
.

For the proofs of Theorem 3.11 and Theorem 3.12, see Appendix.

We contrast Theorem 3.7 for Guttman-Kaiser criterion, against the following
theorem for CPV rule:

Theorem 3.13.

(1) limc↓0 CPc,ρ(t) = 1− 1−t
1−ρ for 0 ≤ ρ < t < 1.

(2) CPc,ρ(t) is nonincreasing in ρ ∈ [0, 1) and nondecreasing in t ∈ (0, 1).
(3) CPc,ρ(t) = 0 if 0 < t < ρ < 1.

Proof. Let s be (1− t)/(1− ρ). (1) By 0 ≤ ρ < t < 1, (Gc,1)
− (s) <∞. Because

of Fc,1(a1(c)) = Gc,1(a1(c)) = 0 and Cauchy’s mean value theorem, there is x′ such
that a1(c) < x′ < (Gc,1)

− (s) and

Fc,1 ((Gc,1)
− (s))

Gc,1 ((Gc,1)− (s))
=

F ′
c,1(x

′)

G′
c,1(x

′)
=

1

x′ .
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This tends to 1 in c ↓ 0, because 1 ← a1(c) < x′ < (Gc,1)
− (s) ≤ b1(c) → 1. By

Gc,1((Gc,1)
−(s)) = s, limc↓0 Fc,1(G

−
c,1(s)) = s for ρ < t.

(2) It is because CPc,ρ(t) = Fc,1 ((Gc,1)
−
(s)), Gc,1 is nondecreasing, and the

complementary distribution function Fc,1 is nonincreasing.

(3) By 1 > ρ > t > 0, s > 1. Because Gc,1 is a distribution function, (Gc,1)
−
(s) =

inf ∅ =∞. Fc,1 is nonincreasing, so CPc,ρ(t) = Fc,1(∞) = 0. □

Because the centered sample covariance matrix S̃ is invariant under shifting

of variables, Figure 4 consists of the the graphs of CP S̃(0.7) under the assumption
of Theorem 3.11 with n = 1000, p = 20, 40, . . . , 19980, 20000; and ρ = 0 (solid), 0.3
(dashed), 0.5 (dotted), 0.8 (dash-dot). By Figure 4, it seems that CPc,ρ(t) is de-
creasing in c.

Figure 4. CP S̃(0.7)

Observation 3.14. When the sample size n and the dimension p are large, we
obtain:

(1) The behavior of Guttman-Kaiser criterion (CPV rule, resp.) corresponds
to GKc,ρ (CPc,ρ(t), resp.), by Theorem 3.3 (Theorem 3.11, resp.).
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(2) Both of GKc,ρ and CPc,ρ(t) are nonincreasing in the equi-correlation coef-
ficient ρ.

(3) The limit of GKc,ρ in c ↓ 0 is 1/2 for ρ = 0 and 0 otherwise, but the limit
of CPc,ρ(t) in c ↓ 0 is continuously nonincreasing in ρ.

(4) From the combined Figure 5 of Figure 2 (GKc,ρ) and Figure 4 (CP S̃(0.7)),
we could say that CPV rule retains sufficiently large number of principal
components or factors in small c. In contrast, Guttman-Kaiser criterion
retains small number of principal components or factors in small c.

Figure 5. Comparison of Guttman-Kaiser criterion (thick curves)
and CPV rule.

4. Empirical study of equi-correlation coefficient and
Guttman-Kaiser criterion

For the scaling parameter 1 − ρ of Marčenko-Pastur distribution of Theo-
rem 2.11, the first author proposed 1− λ1(R)/p in [1]:
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Theorem 4.1 (Akama [1]). Let R be a sample correlation matrix formed from
a population Np(µ, DC(ρ)D) for a deterministic vector µ ∈ Rp, a deterministic
nonsingular diagonal matrix D ∈ Rp×p, and a deterministic constant ρ ∈ [0, 1).
Suppose p, n→∞ and p/n→ c ∈ (0, ∞). Then,

λ1(R)

p

a.s.→ ρ.

With this, we expound Observation 3.14 by real datasets such as a binary
multiple sequence alignment (MSA) dataset [34], the microarray datasets [36], the
returns of S&P500 stocks of specific periods [27], and the households datasets [38].

4.1. Datasets from molecular biology. For vaccine design, Quadeer et al. [34]
considered a multiple sequence alignment (MSA) of a p-residue (site) protein with
n sequences where p = 475 and n = 2815. They converted the MSA into a binary
code following [8, 17], and then considered the correlation matrix R. From this,
Quadeer et al. [34, 35] detected signals by ingenious randomization for the MSA.
At the same time, they considered an alternative method that employs Marčenko-
Pastur distribution. We also examine our study of Guttman-Kaiser criterion with
Marčenko-Pastur distribution, by using their binary MSA dataset of Quadeer et
al. [34, 35].

The binary MSA dataset [34] is sparse by the heat map (Figure 6 (a)) of the
dataset with hierarchical clustering on columns and rows. As for the p2 = 225625
entries of the correlation matrix R, the minimum, the first quantile, the median,
the mean, the third quantile, and the maximum are as in Table 1.

Table 1. The summary of the entries of the correlation matrix of
the binary MSA dataset

Min. 1st Qu. Median Mean 3rd Qu. Max.
−0.2892210 −0.0043780 −0.0017447 0.0068210 −0.0006157 1.0000000

Figure 6 (b) is the heat map of R with hierarchical clustering on columns
and rows.

Figure 6 (c) is the histogram of the eigenvalues of R. The red bins are for
the eigenvalues more than 1 and the blue bins are for the eigenvalues less than 1.
The black solid curve is the density of Marčenko-Pastur distribution with index
p/n = 0.16 and scale 1 − λ1(R)/p = 0.98. There is a bin-width such that the
histogram fits the density well. The GKR = 0.39 has 10% error from the estimated
value GK0.16,0.02 = 0.44. This may be related to Observation 3.14 (3).

Next, we consider 16 microarray datasets from [36]. Table 2 is the list of the
author of a microarray dataset, p/n, λ1(R)/p, GKR, GKp/n,λ1(R)/p, CPR(.7) and
p, in the increasing order of p/n. Here p is the number of features and n is the
number of observations.
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(a) (b)

(c)

Figure 6. The binary MSA dataset. (a) The data matrix, (b) the
correlation matrix R, and (c) the eigenvalues of R.

Table 1 shows that GKR > CPR(.7) and GKR is nonincreasing in p/n as
Figure 5. Moreover, by Theorem 3.7 (4), GKp/n,λ1(R)/p is n/p because all datasets

have p/n more than (1/
√
1− λ1(R)/p + 1)2. Indeed, the empirical values GKR
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Table 2. DNA microarray datasets

No. Name p/n λ1(R)/p GKR GKp/n,λ1(R)/p CPR(.7) p
1 Sorlie 5.4 .110 .16228 .18640 .05044 456
2 Gravier 17.3 .083 .05370 .05783 .01136 2905
3 Alon 32.3 .450 .03000 .03100 .00200 2000
4 Yeoh 50.9 .145 .01956 .01964 .00539 12625
5 Gordon 69.2 .087 .01436 .01444 .00367 12533
6 Tian 73.0 .089 .01362 .01370 .00554 12625
7 Shipp 92.6 .213 .01066 .01080 .00182 7129
8 Chiaretti 98.6 .181 .01006 .01014 .00190 12625
9 Golub 99.0 .149 .00996 .01010 .00351 7129
10 Pomeroy 118.8 .266 .00828 .00842 .00224 7128
11 West 145.5 .162 .00673 .00687 .00224 7129
12 Burczynski 175.5 .115 .00565 .00570 .00193 22283
13 Chin 188.3 .164 .00527 .00531 .00158 22215
14 Nakayama 212.2 .073 .00467 .00471 .00202 22283
15 Chowdary 214.2 .699 .00462 .00467 .00004 22283
16 Borovecki 718.8 .173 .00135 .00139 .00058 22283

are around n/p for all datasets having p/n sufficiently greater than the threshold

(1/
√
1− λ1(R)/p+ 1)2.

4.2. Datasets from economics. We consider the datasets of returns of p S&P500
stocks for n trading days. Laloux et al. [27] fitted the histogram of the correlation
matrix R of such a dataset to the density function of a scaled Marčenko-Pastur
distribution.

Table 3 is the list of p/n, λ1(R)/p, GKR, GKp/n,λ1(R)/p, and p = 212 S&P500
stocks of various periods, in the increasing order of λ1(R)/p.

Table 3. The returns of S&P500 datasets

No Period p/n λ1(R)/p GKR GKp/n,λ1(R)/p p
1 1993-01-04-1995-12-29 .2808 .1103 .3302 .3747 212
2 1993-01-04-2022-08-01 .0285 .3137 .1038 0 212
3 2012-08-01-2022-08-01 .0843 .4026 .0991 0 212
4 2005-01-04-2022-08-01 .0479 .4232 .0849 0 212
5 2005-01-04-2013-12-30 .0938 .4503 .0849 0 212

GKR is decreasing in λ1(R)/p in Table 3, as Observation 3.14 (2). It is worth
noting that the estimator GKp/n,λ1(R)/p is mostly 0.

Next, we consider similar but more categorized datasets. The return of a
stock is more correlated with the return of a stock of the same industry classifi-
cation sector than with the return of a stock of a different industry classification
sector. Table 4 is the list of global industry classification standard (GICS) sector
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of S&P500, p/n, λ1(R)/p, GKR, GKp/n,λ1(R)/p, and p. All the periods are 2012-
01-04/2022-12-31. Table 4 is ordered in the increasing order of λ1(R)/p. All the
p of Table 4 are smaller than the p = 212 of Table 3, but some GICS sectors have
larger λ1(R)/p. In Table 4, GKR is decreasing if we omit the first line (Commu-
nication services, p = 19), the fourth line (Consumer Staples, p = 23), the seventh
line (Material, p = 24), the tenth line (Energy, p = 16) from all the lines. Obser-
vation 3.14 (2) for Guttman-Kaiser criterion holds for p ≥ 28.

Table 4. The returns of S&P500 stocks per GICS

No GICS p/n λ1(R)/p GKR GKp/n,λ1(R)/p p
1 Communication Serv. .0076 .3571 .2105 0 19
2 Consumer Discret. .0207 .3843 .1538 0 52
3 Health Care .0187 .3948 .1489 0 47
4 Consumer Staples .0091 .4302 .1739 0 23
5 Information Tech. .0246 .4648 .0968 0 62
6 Industrials .0258 .4985 .0923 0 65
7 Materials .0095 .4990 .1667 0 24
8 Real estate .0119 .5819 .1000 0 30
9 Financials .0250 .6086 .0794 0 63
10 Energy .0064 .6872 .0625 0 16
11 Utilities .0111 .6897 .0714 0 28

The estimator GKp/n,λ1(R)/p of GKR in Table 3 and Table 4 are all 0 for λ1(R)/p >
0.110. The estimator GKp/n,λ1(R)/p = 1− Fp/n,1 (1/(1− λ1(R)/p)) is 0 if p/n < 1
but λ1(R)/p < 1 is sufficiently large. The first author computed the time series of
equi-correlations for the datasets, by employing GJR GARCH [13] with correlation
structure being dynamic equicorrelation [10]. Then, λ1(R)/p is always larger than
the time averages of the time series of the equi-correlation coefficient.

To detect the correlation structure from stock datasets (Table 3 and Table
4), we apply a hierarchical clustering algorithm to the sample correlation matrices
R of the datasets, and then computed their color heat maps. We found that they
are very different from the heat map Figure 6(b) of the correlation matrix of the
binary MSA dataset. The correlation matrices of the stock returns have diagonal
block structures. Moreover, the sizes of the GICS correlation matrices are small.
By these, GKR of the stock returns datasets may be discrepant from our estimator
GKp/n,λ(R)/p.

Finally, we consider two household datasets in 2019 by area classification,
from [38]. One is for the amount of assets per households and the other is for
the average yearly income. These datasets have response variables: the amount
of assets and liabilities per household and the average yearly income from the
whole of Japan. Meanwhile, the explanatory variables are the amount of assets per
households and the average yearly income from each of 66 regions in Japan. We
can detect the multicollinearity [7, 23] by variance inflation factors (VIFs) [7, 23]
of the explanatory variables. If all the explanatory variables are uncorrelated, then
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all the VIFs are equal to 1, but if severe multicollinearities exist, then the VIFs for
some explanatory variables become very large [7, 23].

Table 5. The household datasets of 2019

Name min VIF R2 λ1(R)/p GKR p p/n
The amount of assets 2019 8.44×102 1 .980 .015 66 .051

The average yearly income 2019 1.47×104 1 .993 .015 66 .048

Table 5 is the list of name, min VIFs, the (adjusted) coefficient R2 of de-
termination, λ1(R)/p, GKR, p = 66 variables, and p/n, in the increasing order
of λ1(R)/p. Since R2 = 1 for both datasets, we can assume that all the explana-
tory variables have the equi-correlation coefficient ρ = 1, which means λ1(R)/p is
approximately 1. One of future work is to discuss the multicollinearity and other
correlation structures [3, 6, 10, 12, 30, 33] among variables with the extreme eigen-
values and the bulk eigenvalues of datasets, by employing random matrix theory.

5. Conclusion

For assessing the (essential) dimensionality of empirical data, the Guttman-
Kaiser criterion is a widely employed criterion. This rule may be the most used
for retaining principal components and factors owing to its clarity, ease of imple-
mentation [11], and default stopping rule in statistical tools such as SPSS and
SAS. In this paper, we have shown the scaling of Marčenko-Pastur distribution
when a dataset is from an ENP and 0 ≤ ρ < 1 by the LSD of the sample corre-
lation matrix. This scaling of Marčenko-Pastur distribution explains the “phase
transitions” of Guttman-Kaiser criterion depending on whether ρ = 0 or not as
n, p → ∞, p/n → c > 0. Moreover, by Observation 3.14, we show the behavior of
Guttman-Kaiser criterion where this criterion retains the small number of principal
components or factors in small c for 0 < ρ < 1 and the limit of GKR is 1/2 in
c ↓ 0 for ρ = 0. In high-dimensional statistics of various fields, when the number
of variables are smaller than the size of a sample, a global correlation among the
variables causes a perceptible global impact, even if the correlation is minute.
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Appendix A. Proofs of Theorem 3.11 and Theorem 3.12

Suppose that M is a positive real symmetric semi-definite matrix of order
p where all p eigenvalues follow (23). For k > 0, the eigenvalues of matrix kM
are (23) multiplied by k because the eigenvalues of matrix M follows (23). Thus,
for a random distribution function GM defined by (24), GkM(kx) = GM(x) for any
x ∈ R. We represent GM by using x ∨ 0 := max(x, 0) and the probability measure
µM corresponding to the distribution function FM.
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Lemma A.1.

GM(x) =

∫
[0,x∨0]

λ dµM(λ)∫
R λ dµM(λ)

, (x ∈ R).

Proof. By (23), µM ((−∞, 0)) = 0. Because FM(x) = p−1
∑p

i=1 1λi≤x for all
x ∈ R, GM(x) =

∑
λi≤x λi/

∑p
i=1 λi. Since

∑
λi≤x λi ≤

∑
λi≤z λi for x ≤ z, GM is

nondecreasing. Since [λi, ∞) has a left endpoint, the right-continuity is clear from
GM. Moreover, limx→−∞ GM(x) = 0 and limx→+∞ GM(x) = 1. Therefore GM is
indeed a random distribution function. □

Lemma A.2. For u ∈ (0, 1), min {λi | λi > 0, 1 ≤ i ≤ p } ≤
(
GM

)−
(u) ≤ λ1.

Proof. By (24),(
GM

)−
(u) = inf

{
x

∣∣∣∣∣ ∑
λi>x

λi

/ p∑
i=1

λi ≤ 1− u

}
. (25)

Because λ1 is the largest eigenvalue of M,
∑

λi>λ1
λi = 0. By 0 < u < 1, λ1

is an element of the set in the right side of (25). Hence,
(
GM

)−
(u) ≤ λ1. On

the other hand, if x = 0 and x < min1≤i≤p λi,
∑

λi>x λi/
∑p

i=1 λi = 1. Thus, by

u ∈ (0, 1), whenever
∑

λi>x λi

/∑p
i=1 λi ≤ 1−u, x ≥ min {λi | λi > 0, 1 ≤ i ≤ p }.

Therefore, min {λi | λi > 0, 1 ≤ i ≤ p } ≤
(
GM

)−
(u) ≤ λ1. □

In sequel, for t ∈ (0, 1), we show that
(
GM

)−
(1− t) is a threshold for eigen-

values CPV rule retains. In Definition 3.10, we gave the representation of CPc,ρ

with the complementary distribution function of Fc,1 and the quantile function of
Gc,1. Like this, but by replacing the subscripts with the superscripts M and by
replacing (1−t)/(1−ρ) with 1−t, we have the following representation of CPM(t):

Lemma A.3. For any real symmetric positive semi-definite matrix M,

CPM(t) = FM(
(
GM

)−
(1− t)), (0 < t < 1).

Proof. Let q = pCPM(t). By
∑

λi>λq+1
λi

/∑p
i=1 λi ≤ t and λq > λq+1, (25)

implies λq+1 ≥
(
GM

)−
(1 − t). If x < λq+1, then

∑
λi>x λi

/∑p
i=1 λi > t by

(25). Thus, λq+1 ≤
(
GM

)−
(1 − t). As a result, λq+1 =

(
GM

)−
(1 − t). Thus, by

Definition 3.8, CPM(t) = 1
p ×#

{
i
∣∣∣ λi >

(
GM

)−
(1− t)

}
= FM(

(
GM

)−
(1− t)).

□
We can readily observe the following:

Lemma A.4. Gc,σ2 is a continuous distribution function which is strictly increas-
ing on (aσ2(c), bσ2(c)), and

Gc,σ2(x) =

∫
[0, x∨0]

λdµc,σ2(λ)∫
R λdµc,σ2(λ)

, (x ∈ R).

Moreover, Gc,σ2(x) = Gc,1(x/σ
2) for all x ∈ R.
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Lemma A.5. The function Gc,σ2 restricted to an open interval J = (aσ2(c), bσ2(c))

has
(
Gc,σ2

)−
as the inverse function. Moreover,

(
Gc,σ2

)−
is a continuous, strictly

increasing function from the unit open interval (0, 1) to J .

Proof. By Lemma A.4, Gc,σ2 is strictly increasing on J . Let x̃ ∈ J . Then(
Gc,σ2

)−
(Gc,σ2(x̃)) = x̃ by

(
Gc,σ2

)−
(Gc,σ2(x̃)) = inf

{
x
∣∣ Gc,σ2(x) ≥ Gc,σ2(x̃)

}
.

For any t ∈ (0, 1),
(
Gc,σ2

)−
(t) = inf

{
x
∣∣ Gc,σ2(x) = t

}
. Since Gc,σ2 is continuous

function, Gc,σ2(
(
Gc,σ2

)−
(t)) = t. Hence,

(
Gc,σ2

)−
is the inverse function of Gc,σ2

restricted to J , and
(
Gc,σ2

)−
is a continuous, strictly increasing function from (0, 1)

to J . □

Lemma A.6. For c, σ2, k > 0, z ∈ R,

(1)
(
kGc,σ2

)−
(z) =

(
Gc,σ2

)−
(z/k) .

(2) Fc,σ2

((
Gc,σ2

)−
(z)

)
= Fc,1

(
(Gc,1)

−
(z)

)
.

(3) Fc,1

(
(Gc,1)

−
(t)

)
∈ (0, 1), if t ∈ (0, 1).

Proof. (1)
(
kGc,σ2

)−
(z) = inf

{
x ∈ R

∣∣ kGc,σ2(x) ≥ z
}
. By k > 0, it is equal to

inf
{
x ∈ R

∣∣ Gc,σ2(x) ≥ z/k
}
=

(
Gc,σ2

)−
(z/k) .

(2) Fc,σ2

((
Gc,σ2

)−
(z)

)
= Fc,1

(
1
σ2

(
Gc,σ2

)−
(z)

)
. By the definition of the quantile

function,
(
Gc,σ2

)−
(z) /σ2 = inf

{
x
∣∣ Gc,σ2(σ2x) ≥ z

}
which is equal to (Gc,1)

−
(z).

Thus, Fc,σ2

((
Gc,σ2

)−
(z)

)
= Fc,1

(
(Gc,1)

−
(z)

)
.

(3) By Lemma A.5, we have (Gc,1)
−

: (0, 1) → (a1(c), b1(c)). Because Fc,1 re-
stricted to (a1(c), b1(c)) is a strictly decreasing function to (0, 1), it follows that

Fc,1

(
(Gc,1)

−
(t)

)
∈ (0, 1) for t ∈ (0, 1). □

The following proposition is Arzelà’s dominated convergence theorem [28]. By
this, we prove that the distribution functionGR (GS, resp.) almost surely converges
pointwise to a defective distribution function (1−ρ)Gc,1−ρ ((1−ρ)Gc,σ2(1−ρ), resp.).

Proposition A.7 ([28, Theorem A]). Let {fn} be a sequence of Riemann-integrable
functions defined on a bounded and closed interval [a, b], which converges on [a, b]
to a Riemann-integrable function f . If there exists a constant M > 0 satisfying

|fn(x)| ≤M for all x ∈ [a, b] and for all n, then limn→∞
∫ b

a
|fn(x)− f(x)| dx = 0.

In particular,

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

lim
n→∞

fn(x)dx =

∫ b

a

f(x)dx.

Lemma A.8. Suppose X1, . . . , Xn
i.i.d.∼ N(µ, DC(ρ)D) for 0 ≤ ρ < 1. Suppose

n, p→∞ with p/n→ c > 0. Then, it holds almost surely that for any x ∈ R,
(1) GR(x)→ (1− ρ)Gc,1−ρ(x),
(2) GS(x)→ (1− ρ)Gc,σ2(1−ρ)(x) for µ = 0 and D = σI with σ > 0.
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Proof. For a symmetric positive semi-definiteM, we know that
∫
[0,x∨0]

λdµM(λ) =∫ x∨0

0
µM ({λ | f(λ) > h }) dh for f : R → R such that f(λ) be λ for 0 < λ ≤ x

and 0 otherwise. For h ≥ 0, f(λ) > h if and only if h < λ ≤ x. Then,
µM ({λ | f(λ) > h }) = FM(x) − FM(h) for 0 ≤ h < x, and 0 otherwise. Sim-
ilarly, µc,σ2({λ | f(λ) > h }) = Fc,σ2(x)− Fc,σ2(h) for 0 ≤ h < x, and 0 otherwise.

(1) Since the sample correlation matrices R are invariant under scaling of variables,
we can write D = I without loss of generality. Moreover, we can assume that
µ = 0 because R is invariant under sifting. Because

∫
R λ dµR(λ) = TrR/p = 1

and
∫
R λdµc,1−ρ(λ) = 1 − ρ, the denominator of GR(x) in Lemma A.1 (Gc,1−ρ(x)

in Lemma A.4, resp.) is 1 (1− ρ, resp.) for all x ∈ R. By this, the representation
of Lebesgue integral with a Riemann integral, Lemma A.1 and Lemma A.4, for all
positive integer p and x ∈ R,

∣∣GR(x)− (1− ρ)Gc,1−ρ(x)
∣∣ = ∣∣∣∣∣

∫
[0,x∨0]

λdµR(λ)−
∫
[0,x∨0]

λdµc,1−ρ(λ)

∣∣∣∣∣
=

∣∣∣∣∫ x∨0

0

(FR(x)− FR(h))− (Fc,1−ρ(x)− Fc,1−ρ(h))dh

∣∣∣∣
≤ |x ∨ 0||FR(x)− Fc,1−ρ(x)|+

∣∣∣∣∫ x∨0

0

FR(h)− Fc,1−ρ(h)dh

∣∣∣∣ . (26)

By Theorem 2.11, for all c > 0, it holds almost surely that for any x ̸= 0 we
have FR(x) → Fc,1−ρ(x). Thus, for any c > 0, it holds almost surely that for
any x, the first term of the right side of (26) converges to 0. Define two functions

F̃R : [0, x] → [0, 1] and F̃c,1−ρ : [0, x] → [0, 1] as follows: F̃R(h) = 0 (h = 0);

FR(h) (0 < h ≤ x); and F̃c,1−ρ(h) = 0 (h = 0); Fc,1−ρ(h) (0 < h ≤ x). The

four functions F̃R, FR, F̃c,1−ρ, and Fc,1−ρ are Riemann-integrable over [0, x], be-

cause they are nondecreasing. Moreover,
∫ x∨0

0
F̃R(h)dh =

∫ x∨0

0
FR(h)dh, and∫ x∨0

0
F̃c,1−ρ(h)dh =

∫ x∨0

0
Fc,1−ρ(h)dh. For any h ∈ [0, x], |F̃R(h)| ≤ 1. By The-

orem 2.11, for all c > 0, it holds almost surely that F̃R converges pointwise to
F̃c,1−ρ. Hence, by Arzelà’s dominated convergence theorem [28], it holds almost
surely that

∫ x∨0

0

FR(h)dh =

∫ x∨0

0

F̃R(h)dh→
∫ x∨0

0

F̃c,1−ρ(h)dh =

∫ x∨0

0

Fc,1−ρ(h)dh.

Thus, the second term of the right side of (26) converges almost surely to 0. There-
fore, for all c > 0, almost surely GR converges pointwise to (1− ρ)Gc,1−ρ.
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(2) By a similar argument to (26),
∣∣∣∫[0,x∨0]

λdµS(λ)−
∫
[0,x∨0]

λdµc,σ2(1−ρ)(λ)
∣∣∣ is

=

∣∣∣∣(x ∨ 0)(FS(x)− Fc,σ2(1−ρ)(x)) +

∫ x∨0

0

(Fc,σ2(1−ρ)(h)− FS(h))dh

∣∣∣∣
≤ |x ∨ 0||FS(x)− Fc,σ2(1−ρ)(x)|+

∣∣∣∣∫ x∨0

0

FS(h)− Fc,σ2(1−ρ)(h)dh

∣∣∣∣ . (27)

By Theorem 2.7, for all c > 0, almost surely, for any x ∈ R, the first term of (27)

converges to 0. Define two functions F̃S : [0, x] → [0, 1] and F̃c,σ2(1−ρ) : [0, x] →
[0, 1] as follows: F̃S(h) = 0 (h = 0); FS(h) (0 < h ≤ x); and F̃c,σ2(1−ρ)(h) =

0 (h = 0); Fc,σ2(1−ρ)(h) (0 < h ≤ x). Note that F̃S, FS, F̃c,σ2(1−ρ), and Fc,σ2(1−ρ)

are Riemann-integrable over [0, x ∨ 0], because they are nondecreasing. Moreover,∫ x∨0

0
F̃S(h)dh =

∫ x∨0

0
FS(h)dh, and

∫ x∨0

0
F̃c,σ2(1−ρ)(h)dh =

∫ x∨0

0
Fc,σ2(1−ρ)(h)dh.

For any h ∈ [0, x], |F̃S(h)| ≤ 1. By Theorem 2.7, for all c > 0, almost surely,

F̃S converges pointwise to F̃c,σ2(1−ρ). Hence, by Arzelà’s dominated convergence
theorem [28], ∫ x∨0

0

FS(h)dh =

∫ x∨0

0

F̃S(h)dh

converges almost surely to∫ x∨0

0

F̃c,σ2(1−ρ)(h)dh =

∫ x∨0

0

Fc,σ2(1−ρ)(h)dh.

As a result, the second term of the right side of (27) converge almost surely to 0.
Thus, for all c > 0, almost surely∫

[0,x∨0]

λdµS(λ)→
∫
[0,x∨0]

λdµc,σ2(1−ρ)(λ), (x ∈ R).

Besides,
∫
R λdµS(λ) → σ2 by Lemma 2.9. Therefore, for all c > 0, almost surely,

for all x ∈ R,

GS(x) =

∫
[0,x∨0]

λdµS(λ)∫
R λdµS(λ)

→

∫
[0,x∨0]

λdµc,σ2(1−ρ)(λ)

σ2
= (1− ρ)Gc,σ2(1−ρ)(x),

as desired. □

Proposition A.9 ([9]). Suppose f : R → R is nondecreasing, and let f(−∞) =
limx↓−∞ f(x) and f(∞) = limx↑∞ f(x). Let x, y ∈ R. Then, f(x) ≥ y implies
x ≥ f−(y). The other implication holds if f is right-continuous. Furthermore,
f(x) < y implies x ≤ f−(y).

Lemma A.10. If a distribution function Hn weakly converges to a defective dis-
tribution function H, then H−

n (t) converges to H−(t) for any continuity point t of
H−.

Proof. This lemma is Theorem 2A [32] when H is not defective. We use The-
orem 2A [32] to prove this lemma. Let 0 < t < 1 be a continuity point of H−.
Then one can pick a sequence ϵk that converges to 0 such that H−(t) − ϵk and
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H−(t)+ ϵk are continuity points of H and H(H−(t)− ϵk) < t < H(H−(t)+ ϵk), for
each fixed k. By the assumption, Nk may be chosen such that Hn(H

−(t) − ϵk) <
t < Hn(H

−(t) + ϵk), for any n > Nk. Therefore, by Proposition A.9, for n ≥ Nk,
H−(t)− ϵk ≤ H−

n (t) ≤ H−(t) + ϵk. H
−
n (t)→ H−(t) can be deduced. □

Lemma A.11. Suppose X1, . . . , Xn
i.i.d.∼ N(µ, DC(ρ)D) for 0 ≤ ρ < 1. Suppose

n, p→∞ with p/n→ c > 0. Then, it holds almost surely that for any u ∈ (0, 1−ρ],

(1)
(
GR

)−
(u)→ ((1− ρ)Gc,1−ρ)

−
(u), and

(2)
(
GS

)−
(u)→

(
(1− ρ)Gc,σ2(1−ρ)

)−
(u) for µ = 0 and D = σI with σ > 0.

Proof. By Lemma A.5, both of ((1− ρ)Gc,1−ρ)
−

and
(
(1− ρ)Gc,σ2(1−ρ)

)−
are

continuous at u ∈ (0, 1−ρ]. Therefore, the conclusion follows from Lemma A.8 and
Lemma A.10. □
Proof of Theorem 3.11. Let M be R or S and let λ1 ≥ · · · ≥ λp be the
eigenvalues of M.

(1) By Lemma A.2,
(
GR

)−
(1− t) > 0. Therefore,

(
GR

)−
(1− t) is a conti-

nuity point of Fc,1−ρ for any c > 0. Thus, by Lemma A.3 and Theorem 2.11, for
all c > 0, it holds almost surely that for any t ∈ [ρ, 1),

CPR(t)− Fc,1−ρ

((
GR

)−
(1− t)

)
= FR

((
GR

)−
(1− t)

)
− Fc,1−ρ

((
GR

)−
(1− t)

)
→ 0.

(28)

By Lemma A.11 and Lemma A.6, we have
(
GR

)−
(1 − t)

a.s.→ ((1− ρ)Gc,1−ρ)
−

(1 − t) = (Gc,1−ρ)
−
(s), where s = (1− t)/(1− ρ). By the premise 0 < ρ ≤ t < 1,

0 < s ≤ 1, (Gc,1−ρ)
−
(s) = inf {x | Gc,1−ρ(x) ≥ s } is positive and finite. Therefore,

(Gc,1−ρ)
−
(s) is a continuous point of Fc,1−ρ. By continuous mapping theorem [39,

Theorem 2.3], it holds almost surely that for any t ∈ [ρ, 1),

Fc,1−ρ

((
GR

)−
(1− t)

)
→ Fc,1−ρ

(
(Gc,1−ρ)

−
(s)

)
.

By this and (28), it holds almost surely that for any t ∈ [ρ, 1), CPR(t) → Fc,1−ρ(
(Gc,1−ρ)

−
(s)

)
= Fc,1

(
(Gc,1)

−
(s)

)
= CPc,ρ(t).

(2) We prove that, it holds almost surely that for any t ∈ [ρ, 1), CPS(t) →
Fc,σ2(1−ρ)

((
Gc,σ2(1−ρ)

)−
(s)

)
. It can be similarly proved as the convergence of

CPR(t) by using Theorem 2.7 instead of Theorem 2.11. By Lemma A.6,

Fc,σ2(1−ρ)

((
Gc,σ2(1−ρ)

)−
(s)

)
= Fc,1

(
(Gc,1)

−
(s)

)
.

Thus, it holds almost surely that for any t ∈ [ρ, 1), CPS(t)→ CPc,ρ(t).

Proof of Theorem 3.12. The proof for the assertion of R (S, resp.) is that
of Theorem 3.11 except that ρ should be 0, t ∈ [ρ, 1) should be t ∈ (0, 1), and
Theorem 2.11 should be Proposition 2.2 (Proposition 2.1, resp.).
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[29] Marčenko, V. A. and Pastur, L. A., “Distribution of eigenvalues for some sets of random

matrices”, Mat USSR-Sborn 1(4) (1967), 457–483.
[30] Morales-Jimenez, D., Johnstone, I. M., McKay, M. R. and Yang, J., “Asymptotics of eigen-

structure of sample correlation matrices for high-dimensional spiked models”, Stat. Sin. 31(2)

(2021), 571–601.
[31] Mulaik, S. A., Foundations of factor analysis, 2nd ed. CRC press, Boca Raton, 2010.

[32] Parzen, E., “Quantile functions, convergence in quantile, and extreme value distribution

theory”, Technical Report No. B-3, Texas A & M University, Institute of Statistics (1980).
[33] Peres-Neto, P. R., Jackson, D. A. and Somers, K. M., “How many principal components?

Stopping rules for determining the number of non-trivial axes revisited”, Comput. Stat. Data

Anal. 49(4) (2005), 974–997.
[34] Quadeer, A. A., Louie, R. H., Shekhar, K., Chakraborty, A. K., Hsing, I. and McKay, M.

R., “Statistical linkage analysis of substitutions in patient-derived sequences of genotype 1a
hepatitis C virus nonstructural protein 3 exposes targets for immunogen design”, J. Virol.

88(13) (2014), 7628–7644.

[35] Quadeer, A. A., Morales-Jimenez, D. and McKay, M. R., “Co-evolution networks of
HIV/HCV are modular with direct association to structure and function”, PLOS Comput.

Biol. 14(9) (2018), 1–29.

[36] Ramey, J., “Datamicroarray”, R package version 1.14.4. (2013).
[37] Silverstein, J. W., “Strong convergence of the empirical distribution of eigenvalues of large

dimensional random matrices”, J. Multivar. Anal. 55(2) (1995), 331–339.

[38] Statistics Bureau, Ministry of Internal Affairs and Communications., “Statistics Bureau home
page/national survey of family income, consumption and wealth”, https://www.stat.go.jp/

english/data/zenkokukakei/index.htm.

[39] Van der Vaart, A. W., Asymptotic statistics, vol. 3. Cambridge University Press, Cambridge,
2000.

[40] Yao, J., Zheng, S. and Bai, Z. D., Sample covariance matrices and high-dimensional data

analysis. Cambridge University Press, New York, 2015.
[41] Yeomans, K. A. and Golder, P. A., “The Guttman-Kaiser criterion as a predictor of the

number of common factors”, J. R. Stat. Soc. 31(3) (1982), 221–229.
[42] Zwick, W. R. and Velicer, W. F., “Comparison of five rules for determining the number of

components to retain”, Psychol. Bull. 99(3) (1986), 432–442.

https://www.stat.go.jp/english/data/zenkokukakei/index.htm
https://www.stat.go.jp/english/data/zenkokukakei/index.htm

	1. Introduction
	The organization of this paper

	2. The spectral analysis of equi-correlated normal population
	2.1. Sample covariance matrices
	2.2. Sample correlation matrices

	3. Analysis of stopping rules for principal components and factors
	3.1. Guttman-Kaiser criterion
	3.2. CPV rule (Cumulative-percentage-of-total-variation rule)

	4. Empirical study of equi-correlation coefficient and Guttman-Kaiser criterion
	4.1. Datasets from molecular biology
	4.2. Datasets from economics

	5. Conclusion
	Acknowledgment
	Appendix A. Proofs of Theorem 3.11 and Theorem 3.12
	REFERENCES

