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Abstract. The present paper is centered on a class of real quintic moment problem.
We state some conditions for the existence of a representative measure and we
provide it explicitly. We also state some cases where no representative measure
exists. Some numerical examples are presented to illustrate construction of the

representative measure as well as to highlight the conflicts behind the irresolvability.
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1. INTRODUCTION

Given a doubly indexed finite sequence of real numbers

ﬁ = ﬁ(m) = {B”}Ogl-i-jgm = {500751075017 s 7Bm07 s 750m} ’

with Bpo > 0, the truncated moment problem (in short TRMP) associated to 3
means to find a Borel positive measure u supported in R? such that:

Bij = /xiyjd,u (0<i+j<m). (1)

A sequence f satisfying (1) is called a sequence of truncated moment and the solu-
tion u, the representative measure associated to the sequence 3. There is an equiv-
alent to the TRMP, that is the TCMP (truncated complex moment problem)[6],
hence we use the term (TMP) problem of shortened moments.

The multidimensional truncated moment problem has been the subject of
several studies, mainly by Curto, Fialkow and others as found for example in [3, 4,
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5,6,7,8,10, 11, 12, 13, 16, 18, 23, 24, 25]. In 1994 J. Stochel [23] showed that the
truncated moment problem is more general than the full moment problem, i.e. a
solution of the truncated moment problem implies a solution of the full one, which
is widely studied as for instance see e.g [1, 2, 19, 22]. H. Richter pointed out in [20]
that if a sequence of moments admits one or more representative measures, one of
them must be of finite atomic type. So, if a real finite doubly indexed sequence
B™) has a representative measure p, it can be of finitely atomic type. That is, we
can write

poi= Z PO (2 y1)
k=1

where the positive numbers pg and the couples (z,yx),1 < k < r, are called
respectively weights and atoms of the measure p which is said r-atomic, and we
have

Bij = maiyl + -+ praiy] =/wiyjdu, 0<itj<m.

To solve the TMP for a sequence 8 = (™) where m = 2n, Curto and Fialkow
developed an approach based on positivity, on the flat extension theorem of the
moment matrix M (n) associated to the sequence 3 and on the core variety V = V()
which contains the support of each representative measure of 8, introduced in [17].
Dio and Shmdgen proved in [14] that if u is a solution of (1), then the points of
the core variety are exactly the atoms of the atomic measure p. The problem has
been completely solved for n € {1,2} in [3, 6, 11]. For n = 3, it has been closely
investigated and in particular the extreme case where the rank of the M (3) matrix
of moments associated to 5% and the cardinal of the associated core variety are
equal [8, 10, 12, 24, 25]. For m = 3, we can find a complete solution in [18] based
on the commutativity conditions of the matrix associated to the sequence of cubic
moment. In [13], R. Curto and S. Yoo presented an alternative solution for the
non-singular cubic moment problem. For the resolution of the TMP associated to
the ("), Curto and Fialkow introduced the notions of the recursively generated
moment matrix and the moment matrix recursively determined.

In general, it is very difficult to prove existence results using the flat exten-
sion theorem. However, there are a number of exceptions and simple cases in the
literature. Using a numerical algorithm, Fialkow [16, Algorithm 4.10] tests the ex-
istence or not of a positive flat extension for the class of moment matrix recursively
determined which has finite core variety. In this paper, we study a class of real
quintic moment problem (m = 5), using an approach based on matrix positivity
and flat extension theorem.
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Let § = B0 = {5ij}o<z‘+j<5 be a doubly indexed finite sequence of real
numbers, with Byp > 0, the following matrices M (2) and B(3) are associated to 3.

Boo Bio Por P20 P11 Bo2 B30 P21 P12 Pos

Bio P20 P11 Pzo B21 B2 Bao P31 P22 Bis

o Bor P11 Poz P21 P12 Bos . o B31 B22 P13 Poa

M(2) = B20 PBso P21 Pao Bz1 B2z » B(3) = Bso  Pa1 Pz2 Bos
Bi1 P21 P12z P31 P2z B3 Ba1 PBz2 P23 Pua

Boz P12 Poz P22 Biz  Boa B2 P23 Bia  Bos

(2)

If there exists a matrix W such that B(3) = M (2)W, which is equivalent to
Rang B(3) C Rang M (2) by applying Douglas factorization lemma [15]. Then from
symmetry of M(2), the matrix W71 M (2)W is symmetric too and it takes the form:

a b ¢ d

T bz oy e
W M(2)W = c oy =z f (3)

d e f g

The relations between the entries x and ¢, y and d and z and e in W1 M (2)W

allow us to determine a positive extension M (3) of M(2) and M (3) columns de-
pendence relations, as well as the core variety V of M(3) and the support of the
minimum representative measure associated to the sequence 8, when it exists. We
focus on the cases (z,y, z) = (¢,d,e), (r =c,y =d,z < e) and (z < ¢). It is worth
mentioning that the other cases related to (z,y,z) # (¢, d,e) represent an open
problem that we plan to investigate in future work.
For the case (x,y,z) = (¢,d, e), we point out that S admits a unique finite repre-
sentative measure (rank M (2))-atomic. While for the cases (z = ¢,y = d,z < ¢)
and (z < ¢), we establish necessary and sufficient conditions to have M (3) positive
semidefinite, recursively determined and verifying rank M(3) = rank M (2) + 1.
Furthermore, we also state sufficient conditions for the existence of a representative
measure (rank M (2) + 1)-atomic.

Since M (2) > 0 and Rang B(3) C Rang M (2) are two necessary conditions for
the resolution of the quintic TRMP, our task is to determine sufficient conditions
for the existence of an extension M(3) of M(2) which is positive semidefinite,
recursively determined and verifying rank M (3) = rank M (2) + 1. Hence, there are
three M (3) columns dependence relations, and we study the possible existence of a
flat extension of M (3). If this process fails, there will be no representative measure
of § which is (rank M (2) + 1)-atomic.

This article is organized as follows. In Section 2, we recall some useful tools
that will be used for the resolution of the TMP. We also recall the notions of
recursively determined matrix and recursively generated matrix according to Curto
and Fialkow. Section 3 is devoted to solving a class of quintic TRMP and to present
some numerical examples to illustrate our findings. The computations are done with
Mathematica software.
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2. PRELIMINARIES

In this section, we recall some results and notations that will be used in the

sequel.
We denote by M, ;) (K), where K = R or C the set of n x p matrices. For
a sequence of moments g = 27 = {Bij}0<i+j<2n’ we associate the matrix of

moment M (n), and if i is a representative measure of 3, then for every polynomial
p = > pane'y® € Rlz,y], the space of polynomials with two indeterminates, we
have

2 Itk Rl
0< /|P(=’Cay)\ dp = E alkal'k//$+ y*Hdp = E Ay ke Bik! et -
Ll ! Ll i/ k!

Hence, if 8 admits a representative measure then the matrix M(n) is positive
semidefinite. The matrix M(n) admits a decomposition by blocks M(n) =

(Bli, j)o<i,j<n

B0,0] B[0,1] B0, n]
B[L,0] ML, 1] B[1,n]
M(n) = . ,
B[n,0] Bin,1] Bln,n]
where
Bivjo  Bixj—11 - Bi.;
o Bivj—11 Bitj—22 .- Bic1j41 o
Bli, j] = . . . . , 0<14,5<n.
Bji Bi-1i+1 -+ Bojit+j

Thus, each block BJi,j] has Hankel’s property, i.e. it is constant on
each cross diagonal. If we choose a labelling for the columns and rows
of the moment matrix M (n), considering the lexicographic order of degree
LX)V, X2 XY, Y2 ..., X® X"Y,..., XY" 1, Y”. For example, the matrix
M (2) is written as follows

1 X Y X2 Xy Y?
1 /Boo | P Bor | P P Boz
X | Bio | B B | PBso Bar Pz
L @
X2 B | Bso Bor | Bao B3 P
XY\ B | Bar Bz | Bs1 P2 Sis
Y2 \Boz | Biz Bos | B2 Bz Boa

For a symmetric matrix A, we write A > 0 if A is positive semidefinite and A > 0
if A is positive definite.
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In the following theorem, Smul’jan [21] establishes a necessary and sufficient con-
ditions which ensure positive extension and flatness of a positive matrix.

Theorem 2.1. Let A € M, »)(C), B € M, )(C), and C € M, ,)(C) be matri-
ces of complex numbers. We have,

. A B A=0
A= ( Bt C ) =0 <= B =AW ( for some W € M, ;,)(C)).
C = W**AW
A is called an extension of A. Moreover, rank(A) = rank(A) — C = WrAW
for some W such that AW = B. If A = 0 then every extension A of A satisfying

rank(A) = rank(A), is said to be flat and it is necessary positive semidefinite.

According to the Theorem 2.1, M (n) > 0 admits a flat extension M(n+ 1),
which is necessary positive semidefinite, is equivalent to have the both next asser-
tions,

(i) B = M(n)W for some matrix W;

(ii) C = WTM(n)W is a Hankel matrix.
Let us note also, that for all matrices A, B, W, C' and A, defined in Theorem 2.1,
with A symmetric we have,

Ly 0 \s(I, -W)\_[A 0
(5 2)46 7 )=(0 coweaw ) ®
where I,, and I, are the unit matrices with respective orders n and p.
From (5) we deduce that

rank(A) = rank A + rank (C' — W*AW), (6)
P, will denote the space of polynomials with two indeterminate, and real coefficients
with total degree is lower than or equal to n. We consider the Riesz functional
Lg : Py, — R defined by

Lg|p= Z aiz'y’ | = Z a;i;5i;.

0<i+j<2n 0<i+j<2n

It is easy to see that if p = (a;;) and § = (b;;) are respectively the column vectors of
the polynomial p and ¢ in the basis of P,, made up of monomials in lexicographical
order in degrees 1,z,v, 22, zy,y%,---,2", ---,y", then the action of the matrix
M (n) on the polynomials p and ¢ is given by (M,p,q) := Lg(pq) (p,q € Py), and
therefore the entry of the matrix M (n) relative to the row X*Y! and column X* Y
is By = (XY XRYT),

The correspondence between P, and Cj;(;,) the column space of the matrix M (n) is
given by p(X,Y) = Z al-inYj where p = Z aijxiyj so that p(X,Y) =

0<i+j<2n 0<i+j<2n
M(n)p and p(X,Y) € Cpyeny. i.e p(X,Y) is a linear combination of M (n) columns.
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By considering Z(p) the set of zeros of p, we define the core variety of M (n)
by V=V(M(n) = ) Z(@p).

PEPn
The following two results will be useful for determining the representative measure.

Proposition 2.2. ([3, Proposition 3.1]). Suppose that p is a representative measure
of B for p € P,. We have,

suppu C Z(p) < P(X,Y)=0.

So from the Corollary 3.7 in [3],we deduce that

supppu C V(M (n)) and rank M(n) < cardsup p < v := card V. (7)

Theorem 2.3. ([3, Theorem 5.13]). The truncated moment sequence 3™ has

a rank M (n)-atomic representative measure if and only if M(n) = 0 and M(n)
admits a flat extension M(n + 1).

If M (n) admits positive semidefinite extension M (n + 1) such that M (n+ 1)
is flat or has a flat extension M (n + 2) then § admits a representative measure u
which is r-atomic where r = rank M (n+1). By virtue of the flat extension theorem
2.3, the core variety V of M (n + 1) consists of exactly r points.
Let us put V = {(x1,v1), (x2,¥2), -+ , (r,yr)} and consider the Vandermonde ma-
trix V' given by

1 1 1 - 1 1
T ) T3 . Tr—1 Ty
Y1 Y2 Ys Yr—1 Yr
x x T cer Tp_1Yr_1 T
V= 1.?/1 2‘1/2 3‘3/3 . r l.yr 1 T.yr (8)
gt gt ogntl o gl gt
» » Lo » :
ittt s !
If we denote by B = {c1,c2, -+, ¢} the basis of Cps(p41), the column space of

M(n + 1), and if V| is the compression of V' at the columns of B then we can
determine the densities p; of atoms {(zs,¥s)}1<s<r by solving the following Van-
dermonde system

Vis-(or p2 -+ p)t =(Lla) Lle) - Lie)" (9)
Hence, the representative measure of 5 is u = Zpsé(w&ys). Let 8 = g =
s=1

(Bij)o<itj<on With Boo > 0 be a doubly indexed finite sequence of real numbers,
and let M(n) be the matrix of moments associated to 5. We denote by Cps(y,) the
column space of M (n), that is to say,

Cr(ny =span{l, X, Y, X? XY, Y? ... X" .. Y"}
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We express the M (n) columns linear dependence by the following relations
(X, Y)=0, p2(X,Y)=0, ..., p(X,Y) =0,
for some polynomials py,pa,...,pr € Pn,k € Nand k < W%ﬁ
From [16], M (n) is recursively generated if the following property is verified
P,4:pq € Pn,p(X,Y) = 0= (pg)(X,Y) =0, (10)

and M (n) is recursively determined [16] if it has the two following column depen-
dence relations,

X"=pX,Y)= > a; X'V (11)
0<i+j<n—1
Yr=q(X,Y)= > b X'V (12)

0<i+j<n.j#n

or by similar relations when reversing the roles of p and ¢. By a column dependence
relation we mean a linear dependence relation of the form X'Y7 = r(X,Y), where
degr < i+ j and each monomial term in r strictly precedes x’y’ in the degree-
lexicographic order. Such relation is said degree - reducing if degr < i + j. From
[9, Theorem 2.1 and Corollary 2.2], if M(n) is positive semidefinite and generated
entirely by the above relations (11) and (12), then it admits a single extension
M (n 4+ 1), which is positive semidefinite and recursively generated given by,

M(n)  Bn+1)
M(n +1) = ( Bn+1)T Cn+1) )’

with Rang(B(n+1)) C Rang(M (n)), and we have in M (n+1) the following columns
dependence relations,

XY = ('Y p)(X,Y) (0<i+4j<1); (14)
Xy = (aly™q)(X,Y) (0<l4+m<1). (15)

(13)

Since the columns X"*! and Y"*! in B(n + 1) contain all the new moments of
degree 2n + 1 and the old moments of degree n+1,n+2,n+3,...,2n, we will be
interested by the new moments of degree 2n+ 1 which are in the block B[n, n+ 1]
distributed on columns X"+, X"y, X"~1y2 | Y™+l We see that the relations
(14), determine in a unique way the moments Ban+t1.0, B2n,1; B2n—1,2; - - - » Bnt1,n 1L
the block B[n,n+ 1], such that the moments belonging to the column X"*! except
Ban+1,0, propagate in the most right columns up to the XY™ column, accord-
ing to the Hankel structure. Using the relation (15), we determine the moments
Brnn+1s Bn—1,n+2, - - - » Bo,n+1, Which propagate in the most left columns up to the
X™Y column, according to the Hankel structure. Hence, the construction of the
block B(n + 1) is completed. Applying the same process on the columns of the
block B(n + 1)T, we determine all the moments of the block C(n + 1). Thus the
positive semidefinite extension M (n + 1) of M (n) is well determined.

Now, if M (n) is recursively determined and admits, in addition to relations
(11) and (12), a third additional dependence relation between these columns as
X"Y? =r(X,Y) where degr < u+v =mn, u# 0 and v # 0, then to determine an
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extension which is recursively generated and positive semidefinite M (n+1) of M (n),
we start by defining the block B[n,n+1] with determining firstly the moments of de-
gree 2n+1 in column X" T, then in order those of columns X™Y, X"~1Y?2, ... XY"
and Y"1, According to the principle of recursivity, if the system of dependence
relations formed by the relations (11), (12) and the third additional relation leads to
different and incompatible expressions for moments of degree 2n+1 in Bn,n + 1],
then by using [16, Corollary 4.6], M (n) does not admit a positive semidefinite ex-
tension M (n + 1). So, the sequence 8 does not admit a representative measure.
Otherwise, if the block B[n,n + 1] is well defined in a consistent manner and with-
out conflict, we determine by similar method the block C(n + 1) to achieve the
construction of M(n + 1). Finally, we test its flatness to ensure the existence of a
representative measure for 3.

3. MAIN RESULTS

Let g = g0 = {Bij}o<i+j<s be a real doubly indexed finite sequence with
Boo > 0. The real quintic moment problem, consists in determining the con-
ditions of existence of a Borel positive measure u supported on R? such that

Bij = /xiy-jdu, 0 <i+j <5. From the initial data of 3, distributed over two

matrices M (2) and B(3) as in (2) with M(2) > 0 and Rang B(3) C Rang M (2),
then to extend M (2) to a positive semidefinite matrix M (3) as described bellow in
(17), we notice that C(3), the block 4 x 4 in M (3) at the bottom on the right, con-
tains all the moments of degree six, that remain undefined. In the current section,
we focus on determining these moments to ensure that M (3) is a flat extension or
admits a flat extension M (4).
Put

Beo Bs1 Paz Ps3

Bs1 Baz Bsz DBaa

ce) = Paz B3z Paa Pis |’ (16)
B3z Baa Pis Pos

in a way that M(3) can be written in the form

M(©2) B(3)
M(3) = ( B(3)T C(3) ) (17)

As Rang B(3) C Rang M(2) then there exists a matrix W such that M(2)W =
B(3). We saw in Section 2 that W M (2)W is symmetric and is written as:

a b ¢ d
b x e

wIME@W = | ) Z ; (18)
d e f g

According to Smul’jan Theorem 2.1, the remaining condition which ensures the
positivity of M(3) is C(3) — WTM(2)W = 0.
Now, we are able to state our first main result.
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Theorem 3.1. Let 8 be a doubly indexed finite sequence of real numbers, with
M(2) = 0 and Rang(B) C Rang(M(2)). If x = ¢,y = d and z = e then B admits a

finite (rank M (2))-atomic representative measure.

Proof. If x = c and y = d and z = e, then the matrix W7 M (2)W has the Hankel’s
property. So, it suffices to take C(3) = WT M (2)W, and the construction of M(3)
is achieved. According to (6), we deduce that rank(M(3)) = rank(M(2)). Then,
M (3) is a flat extension of M(2). According to Theorem 2.3, 3 and a fortiori
B = B®), admits a unique representative measure rank(M (2))-atomic. O

To highlight the efficiency of Theorem 3.1 in solving quintic moment problem,
we present the following numerical example.

Example 3.2. Let 8 = 80 be the quintic sequence, whose data are presented by
the two next matrices M(2) and B(3),

and B(3) =

vlo vl o|F wiw o og
NI— NOT NN N|W N|W N~
w|& ol ol w|2 vl w5
vie 5 oS viw ol ol
@l wolee wlew w|F ol ol 3

wlm vk ol wloralw W
vl viw o vi= o] el
B3 ol olee wo5 ol colen
Nl NIo N‘cHn NS IIENENIIY
NI BILo NIO Bl NIt BOIw

Calculations show that M(2) = 0 and rank M(2) = 6. W and WTM(2)W are
given by

00 0 0
g 1 2 _1 197 31 17
5 5 5 5 6 2 2
00 0 2 3111 7
W=M2"'BG)=|, , , | |emdWw'MeWw=| 2 2 2
5 5 5 5 2 2 2
6 7 _1 _2 T 5 1
5 5 5 5 2 2 2

o
o
o
—

—_
w‘g SIS NTEN]
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Since v = ¢ = %, y=d= % and z = e = %, Theorem 8.1 allows to deduce that 3

admits a finite representative measure with 6 atoms. The matriz M (3) is given by

3 7 5 11 1 16 25 3 3 23

6 3 6 2 3 6 2 2 3

7 17 1 2 3 3 5 71 5 1

6 6 2 6 2 2 6 2 2 2

5 1 16 3 3 2 7 5 1 52

3 2 3 2 2 3 2 2 2 3

17 25 3 5 7 5 97 15 9 3

6 6 2 6 2 2 6 2 2 2
13 3 7 5 1 15 9 3 3

— 2 2 2 2 2 2 2 2 2 2
M(3) = 6 3 2 5 1 52 9 3 3 95
3 2 3 2 2 3 2 2 2 3

25 53 T 97 15 9 197 31 17 7

6 6 2 6 2 2 6 2 2 2

3 7 5 1, 9 3 31 17 7 5

2 2 2 2 2 2 2 2 2 2

3 5 1 9 3 3 17 7 5 1

2 2 2 2 2 2 2 2 2 2
23 1 52 3 3 9 7 5 1 19

3 2 3 2 2 3 2 2 2 3

We check that M (3) = 0 and rank(M
dependence relations are

—~

3)) = rank(M (2)) = 6 and the M (3) columns

. 8 3 6 1 1 2
X3=ZX+SX24 XY, Y =-ZX+2Y —-X?+Y?2-ZXY
sttt Tt T 5 T 5577
2 2 1 1 1
XY? = gX + gX2 — 5XY and Y?Y = —gX +2Y + 5X2 + gXY,

=

5 0; _1)7 (Oa O)a <Oa 2)7 (17 _1)7 (27 1)}7 and the
gives the densities of atoms, respectivly

1 1

v opa=1 ps=5 andps= .

By computations, we get V = {(—1,0
resolution of Vandermonde system (9
1 1 -
37 P2 = 37 p3 =

Then the representative measure of = B®) is

~

P1 =

Wl =

1 1 1 1 1
B= 55(—1,0) + 55(0,—1) + §5(0,0) +0(0,2) + 55(1,—1) + 55(2,1)~

Now, we focus on the case where x # ¢ or y # d or z # e. Before stating
our result, let us note that M (3) is recursively determined, with a third additional
relation, and that the matrix W7 M (2)W is not Hankel. Then, for each (4 x 4) ma-
trix C(3) such that M (3) > 0 with three dependence relations between its columns,
it is necessary that rank(C(3) — WTM(2)W) = 1 and C(3) — WTM((2)W = 0.
Under these conditions, we will define M (3) and check if it admits a flat extension
or not.

Theorem 3.3. If M(2) = 0 and Rang B(3) C RangM(2) then the exten-
sion M(3) of M(2) is semidefinite positive and recursively determined with
rank M (3) = rank M (2)+1 if and only if one of the following conditions is satisfied

erx=cy=dandz<e
o r <c.
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Proof. Let r = rank M(2) and consider B the basis of Cps(2), the space of M (2)
columns. We note that the (r x r) matrix M (2)|z, the restriction of M(2) at the
basis B is invertible. Since rank M (3) = rank M(2) + 1 then there exists in the
matrix M (3) a column in the block B(3) which is linearly independent with the
elements of the basis B. Moreover, M (3) is recursively determined if and only if
the concerned column is X2Y or XY?2 which imposes Bgo = a, contrarily we will

have M) (%)
1B 1B
det < ((X3)|B)T Bso > 70 (19)
and then, it is the column X3 which will be linearly independent with the elements
of the basis B.
So, if rank M (3) = r+1 (i.e. rank(C'(3)—WTM(2)W) = 1), then, with Bs9 = a, we
will have 342 = c. On the other hand, M (3) = 0 implies that C(3) — WT M (2)W =
0.

Therefore, all entries of the main diagonal of C(3) — W M (2)W are positive,
hence ¢ — x > 0. If we suppose that = ¢ then necessarily y = d and 524 = e. The
positivity of C(3) — WT M (2)W requires e — z > 0. If e < z then x = ¢,y = d and
z = e. Hence, e > 2. Conversely, let us suppose that (x = ¢,y =d and z < e) or
(z < ¢), by simple algebraic techniques we construct explicitly C(3), so that M(3)
is positive semidefinite and rank M (3) = rank M (2) + 1. This construction will be
done in the following five possible cases.

(7). f e =¢,y=dand z < e then
® Bso =a, Ps1 =0b, Paz=c, Psz3=4d, Paa=¢ 15 =[ and
Bos = g
(#9). f x < ¢, y=d and z # e then
® Boo =a, Ps1 =b Puz=c fp=d Pfu=z fis=[ and
06 = g+ %
(#6i). If x < ¢, d # y and z = e then
® Bso =a, Paz=c¢, Ps1=0b, B33 =d, Pos= %-ﬁ-z, P15 =
- 4 f and  fos = {4z +g.
(). If x < ¢, y #d and z # e then
® Boo =a, Bz=c, Ps1=0b, Paz=d, Pau=z+A Pis=[f+0
and  fos = a+ g, where \ = % >0,0= (i;w”gz,((c—x)(z—e)—l—
(d=v)*), a=Zs(lc—a)(z —e) + (d - y)*)*.
(v). If x < ¢, y=d and z = e then
® Bso =a, Bs1 =0b, Pa2=c Psz3=vy, Paa=¢ Ppi5=[ and
Bos = g
Hence, C(3) is well determined such that C(3) — WIM((2)W = 0 and
rank( C(3) — WTM(2)W) = 1. That is, M(3) is positive semidefinite, recursively
determined and rank M (3) = rank M (2) + 1. O

Under the conditions of the Theorem 3.3, we can always extend M (2) to
a positive semidefinite matrix M (3), recursively determined with rank M (3) =
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rank M(2) + 1. Now, we seek to determine, when it is possible, a positive semi-
definite extension M (4) of M(3) and we check its flatness. The two following
propositions will be useful for further results.

Proposition 3.4. If x = ¢, y = d and z < e then M(3), the extension of M(2),
admits three linear columns dependence relations, which are degree-reducing as fol-
lows:

X'= )" a4 XY (20)
0<i+5<2

V8= > ;XYY (21)
0<i45<2

XY = > by XY (22)
0<i+j<2

Proof. As Bgp = a and fog = e # z then the column, in B(3) which is linearly
independent with the elements of the basis B of the space Cps(2) is XY?2. Since
rank(M (3)|pugxy2}) = rank M(2) + 1 = rank M(3) then the columns X?3, X?Y
and Y?, in the block ( M(2) B(3) ), are linear combination of the elements of
BU{XY?}. By the extension principle [5, Proposition 3.9], these columns are
linearly dependent of the elements of BU {XY?} in M(3). So, we can write

X3 = qpXY?2 + Z aij XY

0<i45<2
XY = XY24 Y by XYY (23)
0<i45<2
Y3 =0 XY2+ ) o XY
0<i45<2
with
M2)ps X}
det .
¢ (XY‘%)T Baz
B B(2)
det
(XY)" B
M2 X}
det B\ 1 (Bag — ¢) det |M(2)5
ot e e =)
= M(2 XY?2
det (2);5 B |+ (B4 — z) det | M (2),5]

(XYR)" B
_ (Baz — ¢) det | M (2) 5]
(B24 — 2) det | M(2)5]

:%:O (542:cand524:e).
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and by similar calculations as in (24), we find oy = gBB Y%~ 0 and ay =
24 — %
?5 _ic = 0. Then, the relations (20), (21) and (22) hold. O
24 —

Proposition 3.5. Under the same conditions of the Proposition 3.4 and if M(4)
is positive semidefinite, then M(4) is flat.

Proof. According to the Proposition 3.4, M(3) admits three degree-reducing

relations between its columns. This allows us to express the columns
X4 X3V, X?Y2 XY? and Y in M(4) as linear combination of columns of strictly
lower degree. So, M (4) is flat. d

Remark 3.6. We have a similar results as in Propositions 3.4 and 3.5 if
x < ¢,y =d and z = e, except that the relation (22) is changed with

Xy?= > b XY, (25)
0<i+5<2

since By = ¢ # x.

As explained in the last paragraph of section 2, we build M (4) following the
next steps. Employing the relations (20), (21) and (22), we can construct the block
B[3,4], which contains the moments of degree 7. Since the column XY can be
obtained using the relation (20) or (22), and since recursivity requires consistency
between these two expressions, we must ensure that the block B[3, 4] is well defined.
Hence the block B(4) is ended. With similar process on the block B(4)T, we build
the block C(4). So, the construction of the matrix M (4) is achieved. If there is any
conflict during the construction of the block B[3,4], then M (3) does not admit any
positive semidefinite extension M (4). Hence, there is no representative measure
for 8. The Example 3.8 illustrates this case. On the other hand, if we succeed
in constructing M (4), positive semidefinite and since the relations (20), (21) and
(22) are degree-reducing then M (4) is necessary flat. Thus, the existence of a finite
representative measure (r + 1)-atomic for 8. Examples 3.7 and 3.9 illustrate this
last case.

Example 3.7. Let 3 = 3©) be the quintic sequence, whose data are presented by
the two matrices M(2) and B(3).

—_ O = O O
SO o OO
OO O = OO
[ e B S e Bl Y
O—RH OO OO
N O~ OO
[N NNl el
SO OO = OO
[N NoeNel e
O OO NO O
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Simple calculations show that M(2) = 0, rank(M (2)) = 5 and M(2)W = B(3) with

and WTMQ2)W =

SO o OO
OO O = OO
SO OO —=O
OO O NOO
O = O
N O = O
O = O =
= o N O

We havex =c=1,y=d =0 and z =1 < e = 2. Computing the moments of de-

1010

, . 01 0 2

gree 6 as pointed out in the proof of Theorem 3.3, we find C(3) = 10 2 0
0 2 0 4

So the matriz M (3), the extension of M(2) is given by

1001010000
010000710710
00100007102
1001010000
0000100000

MB)=1197 001020000
010000710710
0010000710 2
01000071020
00200007204

Calculations lead to M(3) > 0 and rank(M (3)) = 6, with the following columns
dependence relations between M(3),

X=X, Y¥=2Y, XY =Y and X’=1.

Thus, by functional calculation, we get,

X=X XY = XY, X?Y?=Y? XY®=2XY and Y* =2Y?.  (26)
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Thus, the construction of recursively generated extension M(4) of M(3) without
conflict is

1001010O0O0OO01O0T1TO0 2
010000101 O0O0O0O0CTO0OGO
001 00OO0OO0OT1O020O0O0O0O0
1 001010O0O0OO0O01O0T1O0 2
0 0001O0O0OO0O0OO0OO0OT1TQO0OTZ2FO0
100102 0O0O0O01O020 4
0 1000O01O01O0O0O0O0TO0OGO0
M4)=|001000O010200O0O0T0
010000102 0O0O0O0O0O0
002000020 40UO0O0O0O0
1001010O0O0OO01O0T1TO0 2
0 0001O0O0OO0O0ODO0OO0OT1ITQO0TZ2FO0
10010200O0O0O0T1O0Z20 4
00002 0O0O0O0O0O0Z2TQO040O0
2002046000020 4°0 8

As the relations (26) are degree-reducing, then M (4) is flat. Calculations show that
the core variety of V, consists of the atoms,

wi = (=1,0),ws = (=1, —V2), w3 = (=1,v2),ws = (1,0),ws = (1, —V/2) and ws = (1,V2).

The resolution of the Vandermonde system (9) gives us the respective densities of
the above atoms, as follows

1 1 1 1

1 d 1
—_ — = — _ — — — = — an = —.
P1 47p2 85p3 87p4 47p5 ] 145 )

Then, a representative measure of B is given by

1 1 1 1 1 1
p= 700101 g01,-ve) T g0-1va) T 7000 + g0u-v T g0u.va)-

Example 3.8. Let § = ) be the sequence constituted by the data of degree 5
represented by the two matrices

1 0 01 0 1

01 0 0 0 2 2 0 o 0

0O 01 0 2 0 0 5 0 22
M(2) = and B(3) =

1 0 0 2 0 5 -1 -2 13 3

00 2 0 5 0 o 13 5 894

1 2 0 5 0 22 13

894 336
13 3 33 3
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we have M(2) > 0. Then the matriz W = M(2)"1B(3) and WT M (2)W are given
by

0 35 F 4

13 13
-24 —22 20 _360 178 139 159 1637
358 1657 4298
— 4 -1 -6 38 WTM@W = 139 159 1657 4298
521 681 ’ 1657 54427 48015
—53  —46 13 T 13 159 13 169 169
_9 3 3 322 1657 4298 48015 16877
13 13 13 169 13
166 180
13 11 8 1%
Therefore, we havex:c=159,y=d=%g7 andz=5‘1lé§7< :%.
So,
178 139 159 1657
1657 4298
o(3) = 139 159 1657 4298
1657 4298 48015
159 13 13 169
1657 4298 48015 16877
13 13 169 13
Then,
100 1 0 1 2
01 0 0 0 2
00 1 0 2 0 0 5 0 22
100 2 0 5 -1 -2 13 3
00 2 0 5 0 -2 13 3 834
M(3) = 894 31336
12 0 5 0 2 13 3 894 336
02 0 -1 -2 13 178 139 159 16
00 5 -2 13 3 139 159 1057 4298
894 1657 4298 48015
2 5 0 13 3 5% 159 1657 4295 48015
894 336 1657 4298 48015 16877
0022 3 33 39 T3 13 160 13

Calculations show that M(3) = 0, rank(M(3)) = 7 and the columns dependence
relations are,

X3 =p(X,Y) =40 — 24X +4Y — 53X?% — 2XY + 13Y2,

1 1 22 1
Y3 =q(X,Y)= 50t —@X— @Y—@XQ—&-?’—XY—&-@YQ,
13 13 13 13 13 13

X%Y =r(X,Y) =35 —-22X — Y —46X? +3XY +11Y2
When determining the entries of the block B[3,4] of M(4) we notice that Baz has
two different values obtained by the two expressions of X3Y . In fact, we get

(1), xv2) = =000 4 v, ) = A5
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Then M (3) does not admit any positive semidefinite extension M(4). Hence, 3
does mot admit any representative measure.

Example 3.9. Let 8 = ) be represented by M(2) and B(3) as follows

6 1 1313 1111
131111 31 11
113111 1113
M@ =13 11311 and  BE) =\ 5 1 1 |
111111 81 11
311113 1111

with M(2) > 0. Computing, we obtain,

5300
50 00 4 2 3
_1 0 0 1 9 11 9

W=M2)'B@3) = 4 and WTMQQW =] & 8
53 00 51 1
i 4 2
2 1 10 111
13 00

We have x = % <c= %, y=d=1and z=e=1. As quoted in Theorem 3.3,
the moments of degree 6 enable us to construct the following matriz M(3),

6 1 1 3 1 3 1 1 1 1
1311 113 111
1131 111113
3113111 2 11
M(3) = 1111 11321 11
3111 13 1 1 11
1311 314 2 31
11131 1% 311
1111 1132111
1131 111113
We have M(3) = 0, rank(M (3)) = 7 and the columns dependence relations are,
X3=—%X2+ZX+2XY—ZY2—£Y+%; XY?=XY; and Y3?=Y.

These relations allow to define a recursive extension M(4) of M(3) such that
rank(M(4)) = rank(M(3)) = 7. Then, B®) admits a representative measure u
which is T-atomic. By calculations, we get V = {(z;,vi}:=] where, z1 = 0 and
y1 = —1, g ~ —2,1425 and yo = 1, 3 ~ 0,19487 and y3 = 1, 4 ~ 1,1976
and y4 = 1, x5 ~ —0,59307 and y5 = 0, z¢ ~ 0,84307 and y¢ = 0 and

W = =
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=7
x7 = —1 and y¢ = 0. Therefore, u = Zpﬁ(%yi) with p1 >~ 1, pa ~ 0,00951481,

=1
ps3 ~ 0,00051481, ps ~ 0, 630778, ps ~ 0,90051, pg ~ 1,4289 and py ~ 0,670594.

To end the current paper, we will deal with the cases (z < ¢,y = d and
z#e), (x<cy#dand z=-¢e) and (z < ¢,y # d and z # e). In these cases, we
have 842 # x. Then, the column X?2Y is linearly independent of the elements of
the basis B. Consequently, the columns X3, XY? and Y3, of M (3), are in linearly
dependent of elements of BU {X?2Y'}. So, we can write

X3 =X + Y X'V,
0<it5<2

XY2? = X2Y + Z bij XYY, (27)
0<i+j<2
Y3 =0 XY + Y e XY
0<i+j<2
—b g —
With calculations as in (24), we find ag = Fs1 =0, g = Pas —y and
Paz — Paz —x

oy — Pos — €
2 — .
Baz —

Moreover, in the case (x < ¢,y = d and z # ¢), we have a; = 0 and ap # 0. If
(r < c,y # dand z = e) then a7 # 0 and as # 0 and for the case (z < ¢,y # d
and z # e), we get oy # 0 and ap is arbitrary chosen.

As done in the case (z = ¢,y = d and z < e), we construct M (4). If there is
any conflict during the construction then 8 does not admit a representative mea-
sure. Otherwise, we check whether M (4) is flat. If yes, by Theorem 2.3, 8 admits
a representative measure (rank M(2) + 1)-atomic. In the following two numeri-
cal examples, we present the case where the doubly sequence has representative
measure.

Example 3.10. Let 3 = ) be the quintic sequence with the following associated
matrices M (2) and B(3),

1 0 01 01 0 0 0 O
01 0 0 0O 2 010
0 01 0 0O 01 0 2
M2=11 00201 | ™ BB=14900
0 000T1FO0 0 0 0O
1 0 01 0 2 0 0 0O
We have rank M (2) = 6. Since M(2) > 0 we get,

00 00
2 010 40 20
_ 01 0 2 010 2
W =M(2)"'B(@3)= 000 0 and WTMQ)W = 5 0 1 0
0000 02 0 4

0000
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We have x =1 <c=2, y=d=0and z=1%# e = 2. Hence, by calculating
the moments of degree 6, given in the proof of Theorem 3.3, we get the following
matric M(3),

1001010000
01000020710
0010000710 2
1002010000
0000100000

MB)=19 901020000
0200004020
00100007201
01000020710
00200007105

We have rank M (3) = 7 and the M (3) columns dependence relations are
X3=2X, Y3=-X%Y+3Y and XY?=X.

Then, we obtain M(4),
1 0 061010 0002 010 2
01 00O0O0OZ2010O0O0O0O0°0O0
001 0O0O0OO0OT1ITO0TZ2O0O0O0O0°0O0
100 2 01 0O0O0O0M40 20 1
00 0O0O1O0O0OO0OO0DO0ODO0OZX2OQO0T1I 0
1 0 06102 0 0 0O02 010 5
02 0 000402 00O0©O0O0OTO0
M@4=]100100002010O0UO0O0O0
01 00O0O0OZ201O0O0O0O0O0°0O0
00 200O0O0OT1O0D50O0O0O0°0
2 00402 00O0O0S80 40 2
00 00 2 0O0UO0O0OO0UO0TM4°0 2 o0
100 201 0O0O0O0M40 20 1
00 00O1O0O0O0O0OO0DO0ODO0OZ2OUO0T1I0
2 0010500002010 14

Calculations show that M(4) = 0 and rank M(4) = 7. So M(4) is flat, and the
existence of a representative measure p for B with 7 atoms.

The core variety of M(3) is V = {(x;,y:)}Z] where (z1,y1) = (0,0),
(55272/2) = (07_\/3)7 (55372/3) = (07 \/5)7 (334»y4) = (_\/5; _1)7 (55571/5) = (_\/571)7
(z6,v6) = (V2,—1) and (z7,y7) = (V/2,1). Solving the Vandermonde system, we
get the weights of pu,

p1:%7 P2=$7 P3=T12; P4=§; pPs =
Thus, the representative measure of 5%) is

1 1 1 1 1 1 1
1= 3%00+75%0,-v3 T R0%0ve T 30va -t glvan Tgdva-n T glvan

1 1
» pe =5 and p7 = 3.

oo|—
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Example 3.11. Consider = %) a real doubly indexed sequence whose data are,

700 4 2 4 0000
042000 42 2 2
024000 2 2 2 4
MR)=1 400 4 2 2 and = BB)=1 ¢ o o
2.0 02 2 2 0000
400 2 2 4 0000
As rank M(2) =6 and M(2) > 0 then we obtain,
00 00
1+ 10 4 2 2 2
L 04 , 2 4 4
W =M(2)"'B(3) = and WTM@2)W =
00 00 2 3 3 2
00 00 2 2 2 4
00 0 0

We have x = % <c:2,y:%7éd:2 and z = % # e = 2. Calculations of the
moments of degree 6 given in the proof of Theorem 3.3, we determine C(3) and
then M (3) the extension of M(2) such that,

7004240000
042000422 2
0240002224
4004220000
2002220000

MB)=14 002240000 ]|
042000422 2
02200022 2 2
022000222 2
02400022 24

with rank(M (3)) = 7 and the M(3) columns dependence relations are

X=X, Y*=Y, and XY?=X?Y.
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From these last relations, we define the moments of degree 7 and 8, without conflict,
and we deduce the construction of the extension M(4) given below

\]
o
o
S
o
()
S
[N}
[N}

NN NNDNOOOOODONNNOONN
NN OOOO NN OO
SO OONNNDNOOONNO
NDNNNNNOODOONNDNOON

NN OOOORNNOO

NN RO OOO RN OO
NN OOOONNROO
NNNDNREOOOONN OO
NN NONDNOOOODONNDNOO
NN NNDNOOOONNNOO

=~

O OO OO HENNNOOORNO
[N}

O OO OO NNNEBROOONK
O OO OO HRENNNOOOIN
O OO OO NNN KR OOON K
OO OO ONNNDNOOONN

o

We check that rank(M(4)) = rank(M(3)) = 7. So, M(4) is flat and B®) is a
sequence of moments with a representative measure T-atomic. The core variety of
M(3) is V = {(0,0); (1,0); (=1,0); (1,1); (0, —1); (1, 1); (-1, —1)}.

Solving the Vandermonde system, we get the weights of the atoms p; = 1 for 1 <
i < 7. Finally, the measure is

—

B = 00,0y + 1,0y + d(=1,0) + S1,1) + I0,—1) + (1,1) + (—1,—1)-

The following example treats the case (z < ¢,d # y and z = e), where there
is no representative measure.

Example 3.12. Let 3 = ) be the quintic sequence, which data are represented
in the two following matrices,

21 1 2 1 2 1111
1211 1 1 41 2 1
112111 1 21 4
M= 49 11 41 2° and  B@)=1 4 1 |
111121 111 3
211 2 1 4 11 3 2

Calculations show that rank M (2) = 6 and M(2) > 0. So we have,

-0 -1 -1

20 1 -3 ¥ 14

-2 1 0 U 1 21
W =M(2)"'B(3) = 5 5 and WITMQ)W =

1 0 0 0 4 1 4

-2 9 o ¢ -3 4 2

0 0 1 3

e

—
= N
w
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We have x =2 <c=4,y=1#d= —% and z = e = 4 and by calculations of the
moments of degree 6 given in the proof or Theorem 3.3, we determine C(3) then
M (3) with,

211212 1 1 1 1
121111 4 1 2 1
112111 1 2 1 4
211 4 1 2 3 1 1 1
1 111 2 1 1 1 1 3
M(3) =
211214 1 1 3 2
141311 % 1 4 =2
3 132
112111 1 4 -3 1
3 132 122
121113 4 -3 12 12
3 132 122 15149
1141 3 2 -5 55 135 71250
We have rank(M (3)) = 7 and the M (3) columns dependence relations are,
7 13 2 2
XP=pX,Y)=—C-+—X - Y +X*- ZXY,
pPXY)=—c++ Yt = XY,

4 4
XY?=r(X,Y)=-1+X+ gY+Y2 - 5X2Y7

13 4 39 6 16

V3i=qX,)Y)=—" - X+ _Y+_ 5F

WXY) =58 57 15 T35

When determining the inputs of the block B[3,4] of M(4), we notice that B34 has
two distinct values, obtained by the two following expressions of XY3,

2o\ 3931 por 4531
(zq(X,Y),X?Y) = 3 # (yr(X,Y),X?Y) = 5

Therefore, M(3) does not admit any positive semidefinite extension M (4). Hence,
BC) has no representing measure.

1
XY + 5Y2 X2y,
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