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Abstract. The present paper is centered on a class of real quintic moment problem.

We state some conditions for the existence of a representative measure and we

provide it explicitly. We also state some cases where no representative measure

exists. Some numerical examples are presented to illustrate construction of the

representative measure as well as to highlight the conflicts behind the irresolvability.
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1. INTRODUCTION

Given a doubly indexed finite sequence of real numbers

β ≡ β(m) = {βij}0≤i+j≤m = {β00, β10, β01, . . . , βm0, . . . , β0m} ,

with β00 > 0, the truncated moment problem (in short TRMP) associated to β
means to find a Borel positive measure µ supported in R2 such that:

βij =

∫
xiyjdµ (0 ≤ i+ j ≤ m). (1)

A sequence β satisfying (1) is called a sequence of truncated moment and the solu-
tion µ, the representative measure associated to the sequence β. There is an equiv-
alent to the TRMP, that is the TCMP (truncated complex moment problem)[6],
hence we use the term (TMP) problem of shortened moments.

The multidimensional truncated moment problem has been the subject of
several studies, mainly by Curto, Fialkow and others as found for example in [3, 4,
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5, 6, 7, 8, 10, 11, 12, 13, 16, 18, 23, 24, 25]. In 1994 J. Stochel [23] showed that the
truncated moment problem is more general than the full moment problem, i.e. a
solution of the truncated moment problem implies a solution of the full one, which
is widely studied as for instance see e.g [1, 2, 19, 22]. H. Richter pointed out in [20]
that if a sequence of moments admits one or more representative measures, one of
them must be of finite atomic type. So, if a real finite doubly indexed sequence
β(m) has a representative measure µ, it can be of finitely atomic type. That is, we
can write

µ :=

r∑
k=1

ρkδ(xk,yk),

where the positive numbers ρk and the couples (xk, yk), 1 ≤ k ≤ r, are called
respectively weights and atoms of the measure µ which is said r-atomic, and we
have

βij = ρ1x
i
1y
j
1 + · · ·+ ρrx

i
ry
j
r =

∫
xiyjdµ, 0 ≤ i+ j ≤ m.

To solve the TMP for a sequence β = β(m) where m = 2n, Curto and Fialkow
developed an approach based on positivity, on the flat extension theorem of the
moment matrixM(n) associated to the sequence β and on the core variety V ≡ V(β)
which contains the support of each representative measure of β, introduced in [17].
Dio and Shmdgen proved in [14] that if µ is a solution of (1), then the points of
the core variety are exactly the atoms of the atomic measure µ. The problem has
been completely solved for n ∈ {1, 2} in [3, 6, 11]. For n = 3, it has been closely
investigated and in particular the extreme case where the rank of the M(3) matrix
of moments associated to β(6) and the cardinal of the associated core variety are
equal [8, 10, 12, 24, 25]. For m = 3, we can find a complete solution in [18] based
on the commutativity conditions of the matrix associated to the sequence of cubic
moment. In [13], R. Curto and S. Yoo presented an alternative solution for the
non-singular cubic moment problem. For the resolution of the TMP associated to
the β(2n), Curto and Fialkow introduced the notions of the recursively generated
moment matrix and the moment matrix recursively determined.

In general, it is very difficult to prove existence results using the flat exten-
sion theorem. However, there are a number of exceptions and simple cases in the
literature. Using a numerical algorithm, Fialkow [16, Algorithm 4.10] tests the ex-
istence or not of a positive flat extension for the class of moment matrix recursively
determined which has finite core variety. In this paper, we study a class of real
quintic moment problem (m = 5), using an approach based on matrix positivity
and flat extension theorem.
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Let β ≡ β(5) = {βij}0≤i+j≤5 be a doubly indexed finite sequence of real

numbers, with β00 > 0, the following matrices M(2) and B(3) are associated to β.

M(2) :=


β00 β10 β01 β20 β11 β02
β10 β20 β11 β30 β21 β12
β01 β11 β02 β21 β12 β03
β20 β30 β21 β40 β31 β22
β11 β21 β12 β31 β22 β13
β02 β12 β03 β22 β13 β04

 ; B(3) :=


β30 β21 β12 β03
β40 β31 β22 β13
β31 β22 β13 β04
β50 β41 β32 β23
β41 β32 β23 β14
β32 β23 β14 β05

 .

(2)

If there exists a matrix W such that B(3) = M(2)W , which is equivalent to
RangB(3) ⊆ RangM(2) by applying Douglas factorization lemma [15]. Then from
symmetry of M(2), the matrix WTM(2)W is symmetric too and it takes the form:

WTM(2)W =


a b c d
b x y e
c y z f
d e f g

 . (3)

The relations between the entries x and c, y and d and z and e in WTM(2)W
allow us to determine a positive extension M(3) of M(2) and M(3) columns de-
pendence relations, as well as the core variety V of M(3) and the support of the
minimum representative measure associated to the sequence β, when it exists. We
focus on the cases (x, y, z) = (c, d, e), (x = c, y = d, z < e) and (x < c). It is worth
mentioning that the other cases related to (x, y, z) 6= (c, d, e) represent an open
problem that we plan to investigate in future work.
For the case (x, y, z) = (c, d, e), we point out that β admits a unique finite repre-
sentative measure (rankM(2))-atomic. While for the cases (x = c, y = d, z < e)
and (x < c), we establish necessary and sufficient conditions to have M(3) positive
semidefinite, recursively determined and verifying rankM(3) = rankM(2) + 1.
Furthermore, we also state sufficient conditions for the existence of a representative
measure (rankM(2) + 1)-atomic.

Since M(2) � 0 and RangB(3) ⊂ RangM(2) are two necessary conditions for
the resolution of the quintic TRMP, our task is to determine sufficient conditions
for the existence of an extension M(3) of M(2) which is positive semidefinite,
recursively determined and verifying rankM(3) = rankM(2) + 1. Hence, there are
three M(3) columns dependence relations, and we study the possible existence of a
flat extension of M(3). If this process fails, there will be no representative measure
of β which is (rankM(2) + 1)-atomic.

This article is organized as follows. In Section 2, we recall some useful tools
that will be used for the resolution of the TMP. We also recall the notions of
recursively determined matrix and recursively generated matrix according to Curto
and Fialkow. Section 3 is devoted to solving a class of quintic TRMP and to present
some numerical examples to illustrate our findings. The computations are done with
Mathematica software.
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2. PRELIMINARIES

In this section, we recall some results and notations that will be used in the
sequel.
We denote by M(n,p)(K), where K = R or C the set of n × p matrices. For

a sequence of moments β = β(2n) ≡ {βij}0≤i+j≤2n, we associate the matrix of

moment M(n), and if µ is a representative measure of β, then for every polynomial
p ≡

∑
l,k alkx

lyk ∈ R[x, y], the space of polynomials with two indeterminates, we
have

0 ≤
∫
|p(x, y)|2dµ =

∑
l,k,l′,k′

alkal′k′

∫
xl+k

′
yk+l

′
dµ =

∑
l,k,l′,k′

alkal′k′βl+k′,k+l′ .

Hence, if β admits a representative measure then the matrix M(n) is positive
semidefinite. The matrix M(n) admits a decomposition by blocks M(n) =
(B[i, j])0≤i,j≤n

M(n) :=


B[0, 0] B[0, 1] . . . B[0, n]
B[1, 0] M [1, 1] . . . B[1, n]

...
...

. . .
...

B[n, 0] B[n, 1] . . . B[n, n]

 ,

where

B[i, j] =


βi+j,0 βi+j−1,1 . . . βi,j
βi+j−1,1 βi+j−2,2 . . . βi−1,j+1

...
...

. . .
...

βj,i βj−1,i+1 . . . β0,i+j

 , 0 ≤ i, j ≤ n.

Thus, each block B[i, j] has Hankel’s property, i.e. it is constant on
each cross diagonal. If we choose a labelling for the columns and rows
of the moment matrix M(n), considering the lexicographic order of degree
1, X, Y,X2, XY, Y 2, . . . , Xn, Xn−1Y, . . . ,XY n−1, Y n. For example, the matrix
M(2) is written as follows

M(2) =

1 X Y X2 XY Y 2



1 β00 | β10 β01 | β20 β11 β02
−− − −− −− − −− −− −−

X β10 | β20 β11 | β30 β21 β12
Y β01 | β11 β02 | β21 β12 β03

−− − −− −− − −− −− −−
X2 β20 | β30 β21 | β40 β31 β22
XY β11 | β21 β12 | β31 β22 β13
Y 2 β02 | β12 β03 | β22 β13 β04

. (4)

For a symmetric matrix A, we write A � 0 if A is positive semidefinite and A > 0
if A is positive definite.
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In the following theorem, Smul’jan [21] establishes a necessary and sufficient con-
ditions which ensure positive extension and flatness of a positive matrix.

Theorem 2.1. Let A ∈M(n,n)(C), B ∈M(n,p)(C), and C ∈M(p,p)(C) be matri-
ces of complex numbers. We have,

Ã =

(
A B
B∗ C

)
� 0⇐⇒

 A � 0
B = AW ( for some W ∈M(n,p)(C)).
C �W ∗AW

Ã is called an extension of A. Moreover, rank(Ã) = rank(A) ⇐⇒ C = W ∗AW

for some W such that AW = B. If A � 0 then every extension Ã of A satisfying
rank(Ã) = rank(A), is said to be flat and it is necessary positive semidefinite.

According to the Theorem 2.1, M(n) � 0 admits a flat extension M(n+ 1),
which is necessary positive semidefinite, is equivalent to have the both next asser-
tions,

(i) B = M(n)W for some matrix W ;
(ii) C = WTM(n)W is a Hankel matrix.

Let us note also, that for all matrices Ã, B,W,C and A, defined in Theorem 2.1,
with A symmetric we have,(

In 0
−W ∗ Ip

)
Ã

(
In −W
0 Ip

)
=

(
A 0
0 C −W ∗AW

)
, (5)

where In and Ip are the unit matrices with respective orders n and p.
From (5) we deduce that

rank(Ã) = rankA+ rank (C −W ∗AW ) , (6)

Pn will denote the space of polynomials with two indeterminate, and real coefficients
with total degree is lower than or equal to n. We consider the Riesz functional
Lβ : P2n −→ R defined by

Lβ

p =
∑

0≤i+j≤2n

aijx
iyj

 =
∑

0≤i+j≤2n

aijβij.

It is easy to see that if p̂ = (aij) and q̂ = (bij) are respectively the column vectors of
the polynomial p and q in the basis of Pn made up of monomials in lexicographical
order in degrees 1, x, y, x2, xy, y2, · · · , xn, · · · , yn, then the action of the matrix
M(n) on the polynomials p and q is given by 〈Mnp̂, q̂〉 := Lβ(pq) (p, q ∈ Pn), and

therefore the entry of the matrix M(n) relative to the row XkY l and column Xk
′

Y l
′

is βk′+k,l′+l =
〈
Xk

′

Y l
′

, XkY l
〉

.

The correspondence between Pn and CM(n) the column space of the matrix M(n) is

given by p(X,Y ) =
∑

0≤i+j≤2n

aijX
iY j where p =

∑
0≤i+j≤2n

aijx
iyj so that p(X,Y ) =

M(n)p̂ and p(X,Y ) ∈ CM(n). i.e p(X,Y ) is a linear combination of M(n) columns.
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By considering Z(p) the set of zeros of p, we define the core variety of M(n)

by V ≡ V(M(n)) :=
⋂
p∈Pn

Z(p).

The following two results will be useful for determining the representative measure.

Proposition 2.2. ([3, Proposition 3.1]). Suppose that µ is a representative measure
of β for p ∈ Pn. We have,

suppµ ⊆ Z(p)⇐⇒ P (X,Y ) = 0.

So from the Corollary 3.7 in [3],we deduce that

suppµ ⊆ V(M(n)) and rankM(n) ≤ card supµ ≤ v := cardV. (7)

Theorem 2.3. ([3, Theorem 5.13]). The truncated moment sequence β(2n) has
a rankM(n)-atomic representative measure if and only if M(n) � 0 and M(n)
admits a flat extension M(n+ 1).

If M(n) admits positive semidefinite extension M(n+ 1) such that M(n+ 1)
is flat or has a flat extension M(n + 2) then β admits a representative measure µ
which is r-atomic where r = rankM(n+1). By virtue of the flat extension theorem
2.3, the core variety V of M(n+ 1) consists of exactly r points.
Let us put V = {(x1, y1), (x2, y2), · · · , (xr, yr)} and consider the Vandermonde ma-
trix V given by

V =



1 1 1 . . . 1 1
x1 x2 x3 . . . xr−1 xr
y1 y2 y3 . . . yr−1 yr
x21 x22 x23 . . . x2r−1 x2r
x1y1 x2y2 x3y3 . . . xr−1yr−1 xryr

...
...

...
...

...
...

xn+1
1 xn+1

2 xn+1
3 . . . xn+1

r−1 xn+1
r

...
...

...
...

...
...

yn+1
1 yn+1

2 yn+1
3 . . . yn+1

r−1 yn+1
r


. (8)

If we denote by B = {c1, c2, · · · , cr} the basis of CM(n+1), the column space of
M(n + 1), and if V|B is the compression of V at the columns of B then we can
determine the densities ρs of atoms {(xs, ys)}1≤s≤r by solving the following Van-
dermonde system

V|B.(ρ1 ρ2 · · · ρr)
T = (L(c1) L(c2) · · · L(cr))

T . (9)

Hence, the representative measure of β is µ =

r∑
s=1

ρsδ(xs,ys). Let β = β(2n) =

(βij)0≤i+j≤2n with β00 > 0 be a doubly indexed finite sequence of real numbers,
and let M(n) be the matrix of moments associated to β. We denote by CM(n) the
column space of M(n), that is to say,

CM(n) = span{1, X, Y,X2, XY, Y 2, . . . , Xn, . . . , Y n}.
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We express the M(n) columns linear dependence by the following relations

p1(X,Y ) = 0, p2(X,Y ) = 0, . . . , pk(X,Y ) = 0,

for some polynomials p1, p2, . . . , pk ∈ Pn, k ∈ N and k ≤ (n+2)(n+1)
2 .

From [16], M(n) is recursively generated if the following property is verified

p, q, pq ∈ Pn, p(X,Y ) = 0 =⇒ (pq)(X,Y ) = 0, (10)

and M(n) is recursively determined [16] if it has the two following column depen-
dence relations,

Xn = p(X,Y ) =
∑

0≤i+j≤n−1

aijX
iY j ; (11)

Y n = q(X,Y ) =
∑

0≤i+j≤n,j 6=n

bijX
iY j . (12)

or by similar relations when reversing the roles of p and q. By a column dependence
relation we mean a linear dependence relation of the form XiY j = r(X,Y ), where
deg r ≤ i + j and each monomial term in r strictly precedes xiyj in the degree-
lexicographic order. Such relation is said degree - reducing if deg r < i + j. From
[9, Theorem 2.1 and Corollary 2.2], if M(n) is positive semidefinite and generated
entirely by the above relations (11) and (12), then it admits a single extension
M(n+ 1), which is positive semidefinite and recursively generated given by,

M(n+ 1) =

(
M(n) B(n+ 1)

B(n+ 1)T C(n+ 1)

)
, (13)

with Rang(B(n+1)) ⊆ Rang(M(n)), and we have inM(n+1) the following columns
dependence relations,

Xn+iY j = (xiyjp)(X,Y ) (0 ≤ i+ j ≤ 1); (14)

X lY n+m = (xlymq)(X,Y ) (0 ≤ l +m ≤ 1). (15)

Since the columns Xn+1 and Y n+1 in B(n + 1) contain all the new moments of
degree 2n+ 1 and the old moments of degree n+ 1, n+ 2, n+ 3, . . . , 2n, we will be
interested by the new moments of degree 2n+ 1 which are in the block B[n, n+ 1]
distributed on columns Xn+1, XnY,Xn−1Y 2, . . . , Y n+1. We see that the relations
(14), determine in a unique way the moments β2n+1,0, β2n,1, β2n−1,2, . . . , βn+1,n in
the block B[n, n+1], such that the moments belonging to the column Xn+1 except
β2n+1,0, propagate in the most right columns up to the XY n column, accord-
ing to the Hankel structure. Using the relation (15), we determine the moments
βn,n+1, βn−1,n+2, . . . , β0,n+1, which propagate in the most left columns up to the
XnY column, according to the Hankel structure. Hence, the construction of the
block B(n + 1) is completed. Applying the same process on the columns of the
block B(n + 1)T , we determine all the moments of the block C(n + 1). Thus the
positive semidefinite extension M(n+ 1) of M(n) is well determined.

Now, if M(n) is recursively determined and admits, in addition to relations
(11) and (12), a third additional dependence relation between these columns as
XuY v = r(X,Y ) where deg r ≤ u+ v = n, u 6= 0 and v 6= 0, then to determine an
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extension which is recursively generated and positive semidefinite M(n+1) of M(n),
we start by defining the block B[n, n+1] with determining firstly the moments of de-
gree 2n+1 in columnXn+1, then in order those of columnsXnY,Xn−1Y 2, . . . , XY n

and Y n+1. According to the principle of recursivity, if the system of dependence
relations formed by the relations (11), (12) and the third additional relation leads to
different and incompatible expressions for moments of degree 2n+ 1 in B[n, n+ 1],
then by using [16, Corollary 4.6], M(n) does not admit a positive semidefinite ex-
tension M(n + 1). So, the sequence β does not admit a representative measure.
Otherwise, if the block B[n, n+ 1] is well defined in a consistent manner and with-
out conflict, we determine by similar method the block C(n + 1) to achieve the
construction of M(n+ 1). Finally, we test its flatness to ensure the existence of a
representative measure for β.

3. MAIN RESULTS

Let β = β(5) ≡ {βij}0≤i+j≤5 be a real doubly indexed finite sequence with
β00 > 0. The real quintic moment problem, consists in determining the con-
ditions of existence of a Borel positive measure µ supported on R2 such that

βij =

∫
xiyjdµ, 0 ≤ i+ j ≤ 5. From the initial data of β, distributed over two

matrices M(2) and B(3) as in (2) with M(2) � 0 and RangB(3) ⊆ RangM(2),
then to extend M(2) to a positive semidefinite matrix M(3) as described bellow in
(17), we notice that C(3), the block 4× 4 in M(3) at the bottom on the right, con-
tains all the moments of degree six, that remain undefined. In the current section,
we focus on determining these moments to ensure that M(3) is a flat extension or
admits a flat extension M(4).
Put

C(3) =


β60 β51 β42 β33
β51 β42 β33 β24
β42 β33 β24 β15
β33 β24 β15 β06

 , (16)

in a way that M(3) can be written in the form

M(3) =

(
M(2) B(3)
B(3)T C(3)

)
. (17)

As RangB(3) ⊆ RangM(2) then there exists a matrix W such that M(2)W =
B(3). We saw in Section 2 that WTM(2)W is symmetric and is written as:

WTM(2)W =


a b c d
b x y e
c y z f
d e f g

 . (18)

According to Smul’jan Theorem 2.1, the remaining condition which ensures the
positivity of M(3) is C(3)−WTM(2)W � 0.
Now, we are able to state our first main result.
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Theorem 3.1. Let β be a doubly indexed finite sequence of real numbers, with
M(2) � 0 and Rang(B) ⊆ Rang(M(2)). If x = c, y = d and z = e then β admits a
finite (rankM(2))-atomic representative measure.

Proof. If x = c and y = d and z = e, then the matrix WTM(2)W has the Hankel’s
property. So, it suffices to take C(3) = WTM(2)W , and the construction of M(3)
is achieved. According to (6), we deduce that rank(M(3)) = rank(M(2)). Then,
M(3) is a flat extension of M(2). According to Theorem 2.3, β(6), and a fortiori
β = β(5), admits a unique representative measure rank(M(2))-atomic. �

To highlight the efficiency of Theorem 3.1 in solving quintic moment problem,
we present the following numerical example.

Example 3.2. Let β = β(5) be the quintic sequence, whose data are presented by
the two next matrices M(2) and B(3),

M(2) =



3 7
6

5
3

17
6

1
2

16
3

7
6

17
6

1
2

25
6

3
2

3
2

5
3

1
2

16
3

3
2

3
2

23
3

17
6

25
6

3
2

53
6

7
2

5
2

1
2

3
2

3
2

7
2

5
2

1
2

16
3

3
2

23
3

5
2

1
2

52
3


and B(3) =



25
6

3
2

3
2

23
3

53
6

7
2

5
2

1
2

7
2

5
2

1
2

52
3

97
6

15
2

9
2

3
2

15
2

9
2

3
2

3
2

9
2

3
2

3
2

95
3


.

Calculations show that M(2) � 0 and rankM(2) = 6. W and WTM(2)W are
given by

W = M(2)−1B(3) =



0 0 0 0
8
5

1
5

2
5 − 1

5

0 0 0 2
3
5

1
5

2
5 − 1

5
6
5

7
5 − 1

5 − 2
5

0 0 0 1


and WTM(2)W =


197
6

31
2

17
2

7
2

31
2

17
2

7
2

5
2

17
2

7
2

5
2

1
2

7
2

5
2

1
2

196
3

 .
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Since x = c = 17
2 , y = d = 7

2 and z = e = 5
2 , Theorem 3.1 allows to deduce that β

admits a finite representative measure with 6 atoms. The matrix M(3) is given by

M(3) =



3 7
6

5
3

17
6

1
2

16
3

25
6

3
2

3
2

23
3

7
6

17
6

1
2

25
6

3
2

3
2

53
6

7
2

5
2

1
2

5
3

1
2

16
3

3
2

3
2

23
3

7
2

5
2

1
2

52
3

17
6

25
6

3
2

53
6

7
2

5
2

97
6

15
2

9
2

3
2

1
2

3
2

3
2

7
2

5
2

1
2

15
2

9
2

3
2

3
2

16
3

3
2

23
3

5
2

1
2

52
3

9
2

3
2

3
2

95
3

25
6

53
6

7
2

97
6

15
2

9
2

197
6

31
2

17
2

7
2

3
2

7
2

5
2

15
2

9
2

3
2

31
2

17
2

7
2

5
2

3
2

5
2

1
2

9
2

3
2

3
2

17
2

7
2

5
2

1
2

23
3

1
2

52
3

3
2

3
2

95
3

7
2

5
2

1
2

196
3



.

We check that M(3) � 0 and rank(M(3)) = rank(M(2)) = 6 and the M(3) columns
dependence relations are

X3 =
8

5
X +

3

5
X2 +

6

5
XY, Y 3 = −1

5
X + 2Y − 1

5
X2 + Y 2 − 2

5
XY,

XY 2 =
2

5
X +

2

5
X2 − 1

5
XY and Y 2Y = −1

5
X + 2Y +

1

5
X2 +

7

5
XY,

By computations, we get V = {(−1, 0); (0,−1); (0, 0); (0, 2); (1,−1); (2, 1)}, and the
resolution of Vandermonde system (9) gives the densities of atoms, respectivly

ρ1 =
1

3
, ρ2 =

1

3
, ρ3 =

1

3
, ρ4 = 1, ρ5 =

1

2
and ρ6 =

1

2
.

Then the representative measure of β = β(5) is

µ =
1

3
δ(−1,0) +

1

3
δ(0,−1) +

1

3
δ(0,0) + δ(0,2) +

1

2
δ(1,−1) +

1

2
δ(2,1).

Now, we focus on the case where x 6= c or y 6= d or z 6= e. Before stating
our result, let us note that M(3) is recursively determined, with a third additional
relation, and that the matrix WTM(2)W is not Hankel. Then, for each (4×4) ma-
trix C(3) such that M(3) � 0 with three dependence relations between its columns,
it is necessary that rank(C(3) −WTM(2)W ) = 1 and C(3) −WTM(2)W � 0.
Under these conditions, we will define M(3) and check if it admits a flat extension
or not.

Theorem 3.3. If M(2) � 0 and RangB(3) ⊆ RangM(2) then the exten-
sion M(3) of M(2) is semidefinite positive and recursively determined with
rankM(3) = rankM(2)+1 if and only if one of the following conditions is satisfied

• x = c, y = d and z < e
• x < c.
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Proof. Let r = rankM(2) and consider B the basis of CM(2), the space of M(2)
columns. We note that the (r × r) matrix M(2)|B, the restriction of M(2) at the
basis B is invertible. Since rankM(3) = rankM(2) + 1 then there exists in the
matrix M(3) a column in the block B(3) which is linearly independent with the
elements of the basis B. Moreover, M(3) is recursively determined if and only if
the concerned column is X2Y or XY 2 which imposes β60 = a, contrarily we will
have

det

(
M(2)|B (X3)|B(
(X3)|B

)T
β60

)
6= 0, (19)

and then, it is the column X3 which will be linearly independent with the elements
of the basis B.
So, if rankM(3) = r+1 (i.e. rank(C(3)−WTM(2)W ) = 1), then, with β60 = a, we
will have β42 = c. On the other hand, M(3) � 0 implies that C(3)−WTM(2)W �
0.

Therefore, all entries of the main diagonal of C(3)−WTM(2)W are positive,
hence c− x ≥ 0. If we suppose that x = c then necessarily y = d and β24 = e. The
positivity of C(3)−WTM(2)W requires e− z ≥ 0. If e ≤ z then x = c, y = d and
z = e. Hence, e > z. Conversely, let us suppose that (x = c, y = d and z < e) or
(x < c), by simple algebraic techniques we construct explicitly C(3), so that M(3)
is positive semidefinite and rankM(3) = rankM(2) + 1. This construction will be
done in the following five possible cases.

(i). If x = c, y = d and z < e then
• β60 = a, β51 = b, β42 = c, β33 = d, β24 = e, β15 = f and
β06 = g.

(ii). If x < c, y = d and z 6= e then
• β60 = a, β51 = b, β42 = c, β33 = d, β24 = z, β15 = f and

β06 = g + (z−e)2
c−x .

(iii). If x < c, d 6= y and z = e then

• β60 = a, β42 = c, β51 = b, β33 = d, β24 = (d−y)2
c−x + z, β15 =

(d−y)3
(c−x)2 + f and β06 = (d−y)4

(c−x)3 + g.

(iv). If x < c, y 6= d and z 6= e then
• β60 = a, β42 = c, β51 = b, β33 = d, β24 = z + λ, β15 = f + δ

and β06 = α+ g, where λ = (d−y)2
c−x > 0, δ = d−y

(c−x)2 ((c− x)(z − e) +

(d− y)2), α = 1
(c−x)3 ((c− x)(z − e) + (d− y)2)2.

(v). If x < c, y = d and z = e then
• β60 = a, β51 = b, β42 = c, β33 = y, β24 = e, β15 = f and
β06 = g.

Hence, C(3) is well determined such that C(3) − WTM(2)W � 0 and
rank( C(3)− WTM(2)W ) = 1. That is, M(3) is positive semidefinite, recursively
determined and rankM(3) = rankM(2) + 1. �

Under the conditions of the Theorem 3.3, we can always extend M(2) to
a positive semidefinite matrix M(3), recursively determined with rankM(3) =
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rankM(2) + 1. Now, we seek to determine, when it is possible, a positive semi-
definite extension M(4) of M(3) and we check its flatness. The two following
propositions will be useful for further results.

Proposition 3.4. If x = c, y = d and z < e then M(3), the extension of M(2),
admits three linear columns dependence relations, which are degree-reducing as fol-
lows:

X3 =
∑

0≤i+j≤2

aijX
iY j ; (20)

Y 3 =
∑

0≤i+j≤2

cijX
iY j ; (21)

X2Y =
∑

0≤i+j≤2

bijX
iY j . (22)

Proof. As β60 = a and β24 = e 6= z then the column, in B(3) which is linearly
independent with the elements of the basis B of the space CM(2) is XY 2. Since

rank(M(3)|B∪{XY 2}) = rankM(2) + 1 = rankM(3) then the columns X3, X2Y

and Y 3, in the block
(
M(2) B(3)

)
, are linear combination of the elements of

B ∪ {XY 2}. By the extension principle [5, Proposition 3.9], these columns are
linearly dependent of the elements of B ∪ {XY 2} in M(3). So, we can write

X3 = α0XY
2 +

∑
0≤i+j≤2

aijX
iY j ;

X2Y = α1XY
2 +

∑
0≤i+j≤2

bijX
iY j ;

Y 3 = α2XY
2 +

∑
0≤i+j≤2

cijX
iY j .

(23)

with

α0 =

det

∣∣∣∣∣ M(2)|B X3
|B

(XY 2
|B)T β42

∣∣∣∣∣
det

∣∣∣∣∣ M(2)|B XY 2
|B(2)

(XY 2
|B)T β24

∣∣∣∣∣
=

det

∣∣∣∣∣ M(2)|B X3
|B

(XY 2
|B)T c

∣∣∣∣∣+ (β42 − c) det
∣∣M(2)|B

∣∣
det

∣∣∣∣∣ M(2)|B XY 2
|B

(XY 2
|B)T β24

∣∣∣∣∣+ (β24 − z) det
∣∣M(2)|B

∣∣
=

(β42 − c) det
∣∣M(2)|B

∣∣
(β24 − z) det

∣∣M(2)|B
∣∣

=
β42 − c
β24 − z

= 0 (β42 = c and β24 = e).

(24)
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and by similar calculations as in (24), we find α1 =
β33 − y
β24 − z

= 0 and α2 =

β15 − f
β24 − z

= 0. Then, the relations (20), (21) and (22) hold. �

Proposition 3.5. Under the same conditions of the Proposition 3.4 and if M(4)
is positive semidefinite, then M(4) is flat.

Proof. According to the Proposition 3.4, M(3) admits three degree-reducing
relations between its columns. This allows us to express the columns
X4, X3Y,X2Y 2, XY 3 and Y 4 in M(4) as linear combination of columns of strictly
lower degree. So, M(4) is flat. �

Remark 3.6. We have a similar results as in Propositions 3.4 and 3.5 if
x < c, y = d and z = e, except that the relation (22) is changed with

XY 2 =
∑

0≤i+j≤2

bijX
iY j , (25)

since β42 = c 6= x.

As explained in the last paragraph of section 2, we build M(4) following the
next steps. Employing the relations (20), (21) and (22), we can construct the block
B[3, 4], which contains the moments of degree 7. Since the column X3Y can be
obtained using the relation (20) or (22), and since recursivity requires consistency
between these two expressions, we must ensure that the block B[3, 4] is well defined.
Hence the block B(4) is ended. With similar process on the block B(4)T , we build
the block C(4). So, the construction of the matrix M(4) is achieved. If there is any
conflict during the construction of the block B[3, 4], then M(3) does not admit any
positive semidefinite extension M(4). Hence, there is no representative measure
for β. The Example 3.8 illustrates this case. On the other hand, if we succeed
in constructing M(4), positive semidefinite and since the relations (20), (21) and
(22) are degree-reducing then M(4) is necessary flat. Thus, the existence of a finite
representative measure (r + 1)-atomic for β. Examples 3.7 and 3.9 illustrate this
last case.

Example 3.7. Let β = β(5) be the quintic sequence, whose data are presented by
the two matrices M(2) and B(3).

M(2) =


1 0 0 1 0 1
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 0 1
0 0 0 0 1 0
1 0 0 1 0 2

 and B(3) =


0 0 0 0
1 0 1 0
0 1 0 2
0 0 0 0
0 0 0 0
0 0 0 0

 .
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Simple calculations show that M(2) � 0, rank(M(2)) = 5 and M(2)W = B(3) with

W =


0 0 0 0
1 0 1 0
0 1 0 2
0 0 0 0
0 0 0 0
0 0 0 0

 and WTM(2)W =


1 0 1 0
0 1 0 2
1 0 1 0
0 2 0 4

 .

We have x = c = 1, y = d = 0 and z = 1 < e = 2. Computing the moments of de-

gree 6 as pointed out in the proof of Theorem 3.3, we find C(3) =


1 0 1 0
0 1 0 2
1 0 2 0
0 2 0 4

 .

So the matrix M(3), the extension of M(2) is given by

M(3) =



1 0 0 1 0 1 0 0 0 0
0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 1 0 2
1 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 2 0 0 0 0
0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 1 0 2
0 1 0 0 0 0 1 0 2 0
0 0 2 0 0 0 0 2 0 4


.

Calculations lead to M(3) � 0 and rank(M(3)) = 6, with the following columns
dependence relations between M(3),

X3 = X, Y 3 = 2Y, X2Y = Y and X2 = 1.

Thus, by functional calculation, we get,

X4 = X2, X3Y = XY,X2Y 2 = Y 2, XY 3 = 2XY and Y 4 = 2Y 2. (26)
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Thus, the construction of recursively generated extension M(4) of M(3) without
conflict is

M(4) =



1 0 0 1 0 1 0 0 0 0 1 0 1 0 2
0 1 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 2 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 1 0 1 0 2
0 0 0 0 1 0 0 0 0 0 0 1 0 2 0
1 0 0 1 0 2 0 0 0 0 1 0 2 0 4
0 1 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 2 0 0 0 0 0
0 1 0 0 0 0 1 0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 2 0 4 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 1 0 1 0 2
0 0 0 0 1 0 0 0 0 0 0 1 0 2 0
1 0 0 1 0 2 0 0 0 0 1 0 2 0 4
0 0 0 0 2 0 0 0 0 0 0 2 0 4 0
2 0 0 2 0 4 0 0 0 0 2 0 4 0 8



.

As the relations (26) are degree-reducing, then M(4) is flat. Calculations show that
the core variety of V, consists of the atoms,

ω1 = (−1, 0), ω2 = (−1,−
√

2), ω3 = (−1,
√

2), ω4 = (1, 0), ω5 = (1,−
√

2) and ω6 = (1,
√

2).

The resolution of the Vandermonde system (9) gives us the respective densities of
the above atoms, as follows

ρ1 =
1

4
, ρ2 =

1

8
, ρ3 =

1

8
, ρ4 =

1

4
, ρ5 =

1

8
and ρ6 =

1

8
.

Then, a representative measure of β is given by

µ =
1

4
δ(−1,0) +

1

8
δ(−1,−

√
2) +

1

8
δ(−1,

√
2) +

1

4
δ(1,0) +

1

8
δ(1,−

√
2) +

1

8
δ(1,
√
2).

Example 3.8. Let β = β(5) be the sequence constituted by the data of degree 5
represented by the two matrices

M(2) =


1 0 0 1 0 1
0 1 0 0 0 2
0 0 1 0 2 0
1 0 0 2 0 5
0 0 2 0 5 0
1 2 0 5 0 22

 and B(3) =



0 0 2 0

2 0 5 0

0 5 0 22

−1 −2 13 3

−2 13 3 894
13

13 3 894
13

336
13


.
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we have M(2) > 0. Then the matrix W = M(2)−1B(3) and WTM(2)W are given
by

W =



40 35 381
13

501
13

−24 −22 − 267
13 − 360

13

4 −1 −6 − 358
13

−53 −46 − 521
13 − 681

13

−2 3 3 322
13

13 11 166
13

180
13


, WTM(2)W =


178 139 159 1657

13

139 159 1657
13

4298
13

159 1657
13

54427
169

48015
169

1657
13

4298
13

48015
169

16877
13

 .

Therefore, we have x = c = 159, y = d = 1657
13 and z = 54427

169 < e = 4298
13 .

So,

C(3) =


178 139 159 1657

13

139 159 1657
13

4298
13

159 1657
13

4298
13

48015
169

1657
13

4298
13

48015
169

16877
13

 .

Then,

M(3) =



1 0 0 1 0 1 0 0 2 0

0 1 0 0 0 2 2 0 5 0

0 0 1 0 2 0 0 5 0 22

1 0 0 2 0 5 −1 −2 13 3

0 0 2 0 5 0 −2 13 3 894
13

1 2 0 5 0 22 13 3 894
13

336
13

0 2 0 −1 −2 13 178 139 159 1657
13

0 0 5 −2 13 3 139 159 1657
13

4298
13

2 5 0 13 3 894
13 159 1657

13
4298
13

48015
169

0 0 22 3 894
13

336
13

1657
13

4298
13

48015
169

16877
13



.

Calculations show that M(3) � 0, rank(M(3)) = 7 and the columns dependence
relations are,

X3 = p(X,Y ) = 40− 24X + 4Y − 53X2 − 2XY + 13Y 2,

Y 3 = q(X,Y ) =
501

13
− 360

13
X − 358

13
Y − 681

13
X2 +

322

13
XY +

180

13
Y 2,

X2Y = r(X,Y ) = 35− 22X − Y − 46X2 + 3XY + 11Y 2.

When determining the entries of the block B[3, 4] of M(4) we notice that β43 has
two different values obtained by the two expressions of X3Y . In fact, we get〈

yp(X,Y ), XY 2
〉

= −45762

13
6=
〈
xr(X,Y ), XY 2

〉
= −44315

13
.
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Then M(3) does not admit any positive semidefinite extension M(4). Hence, β(5)

does not admit any representative measure.

Example 3.9. Let β = β(5) be represented by M(2) and B(3) as follows

M(2) =


6 1 1 3 1 3
1 3 1 1 1 1
1 1 3 1 1 1
3 1 1 3 1 1
1 1 1 1 1 1
3 1 1 1 1 3

 and B(3) =


1 1 1 1
3 1 1 1
1 1 1 3
1 3

2 1 1
3
2 1 1 1
1 1 1 1

 ,

with M(2) > 0. Computing, we obtain,

W = M(2)−1B(3) =



1
2 − 1

2 0 0
3
4 0 0 0

− 1
4 0 0 1

− 3
4

3
4 0 0

2 1
4 1 0

− 3
4

1
2 0 0


and WTM(2)W =


4 9

8
3
2 1

9
8

11
8 1 1

3
2 1 1 1

1 1 1 3

 .

We have x = 11
8 < c = 3

2 , y = d = 1 and z = e = 1. As quoted in Theorem 3.3,
the moments of degree 6 enable us to construct the following matrix M(3),

M(3) =



6 1 1 3 1 3 1 1 1 1

1 3 1 1 1 1 3 1 1 1

1 1 3 1 1 1 1 1 1 3

3 1 1 3 1 1 1 3
2 1 1

1 1 1 1 1 1 3
2 1 1 1

3 1 1 1 1 3 1 1 1 1

1 3 1 1 3
2 1 4 9

8
3
2 1

1 1 1 3
2 1 1 9

8
3
2 1 1

1 1 1 1 1 1 3
2 1 1 1

1 1 3 1 1 1 1 1 1 3



.

We have M(3) � 0, rank(M(3)) = 7 and the columns dependence relations are,

X3 = −3

4
X2 +

3

4
X + 2XY − 3

4
Y 2 − 1

4
Y +

1

2
; XY 2 = XY ; and Y 3 = Y.

These relations allow to define a recursive extension M(4) of M(3) such that
rank(M(4)) = rank(M(3)) = 7. Then, β(5) admits a representative measure µ
which is 7-atomic. By calculations, we get V = {(xi, yi}i=7

i=1 where, x1 = 0 and
y1 = −1, x2 ' −2, 1425 and y2 = 1, x3 ' 0, 19487 and y3 = 1, x4 ' 1, 1976
and y4 = 1, x5 ' −0, 59307 and y5 = 0, x6 ' 0, 84307 and y6 = 0 and
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x7 = −1 and y6 = 0. Therefore, µ =

i=7∑
i=1

ρiδ(xi,yi) with ρ1 ' 1, ρ2 ' 0, 00951481,

ρ3 ' 0, 00951481, ρ4 ' 0, 630778, ρ5 ' 0, 90051, ρ6 ' 1, 4289 and ρ7 ' 0, 670594.

To end the current paper, we will deal with the cases (x < c, y = d and
z 6= e), (x < c, y 6= d and z = e) and (x < c, y 6= d and z 6= e). In these cases, we
have β42 6= x. Then, the column X2Y is linearly independent of the elements of
the basis B. Consequently, the columns X3, XY 2 and Y 3, of M(3), are in linearly
dependent of elements of B ∪ {X2Y }. So, we can write

X3 = α0X
2Y +

∑
06i+j62

aijX
iY j ;

XY 2 = α1X
2Y +

∑
06i+j62

bijX
iY j ;

Y 3 = α2X
2Y +

∑
06i+j62

cijX
iY j .

(27)

With calculations as in (24), we find α0 =
β51 − b
β42 − x

= 0, α1 =
β33 − y
β42 − x

and

α2 =
β24 − e
β42 − x

.

Moreover, in the case (x < c, y = d and z 6= e), we have α1 = 0 and α2 6= 0. If
(x < c, y 6= d and z = e) then α1 6= 0 and α2 6= 0 and for the case (x < c, y 6= d
and z 6= e), we get α1 6= 0 and α2 is arbitrary chosen.

As done in the case (x = c, y = d and z < e), we construct M(4). If there is
any conflict during the construction then β does not admit a representative mea-
sure. Otherwise, we check whether M(4) is flat. If yes, by Theorem 2.3, β admits
a representative measure (rankM(2) + 1)-atomic. In the following two numeri-
cal examples, we present the case where the doubly sequence has representative
measure.

Example 3.10. Let β = β(5) be the quintic sequence with the following associated
matrices M(2) and B(3),

M(2) =


1 0 0 1 0 1
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 2 0 1
0 0 0 0 1 0
1 0 0 1 0 2

 and B(3) =


0 0 0 0
2 0 1 0
0 1 0 2
0 0 0 0
0 0 0 0
0 0 0 0

 .

We have rankM(2) = 6. Since M(2) > 0 we get,

W = M(2)−1B(3) =


0 0 0 0
2 0 1 0
0 1 0 2
0 0 0 0
0 0 0 0
0 0 0 0

 and WTM(2)W =


4 0 2 0
0 1 0 2
2 0 1 0
0 2 0 4

 .
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We have x = 1 < c = 2, y = d = 0 and z = 1 6= e = 2. Hence, by calculating
the moments of degree 6, given in the proof of Theorem 3.3, we get the following
matrix M(3),

M(3) =



1 0 0 1 0 1 0 0 0 0
0 1 0 0 0 0 2 0 1 0
0 0 1 0 0 0 0 1 0 2
1 0 0 2 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 2 0 0 0 0
0 2 0 0 0 0 4 0 2 0
0 0 1 0 0 0 0 2 0 1
0 1 0 0 0 0 2 0 1 0
0 0 2 0 0 0 0 1 0 5


.

We have rankM(3) = 7 and the M(3) columns dependence relations are

X3 = 2X, Y 3 = −X2Y + 3Y and XY 2 = X.

Then, we obtain M(4),

M(4) =



1 0 0 1 0 1 0 0 0 0 2 0 1 0 2
0 1 0 0 0 0 2 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 2 0 0 0 0 0
1 0 0 2 0 1 0 0 0 0 4 0 2 0 1
0 0 0 0 1 0 0 0 0 0 0 2 0 1 0
1 0 0 1 0 2 0 0 0 0 2 0 1 0 5
0 2 0 0 0 0 4 0 2 0 0 0 0 0 0
0 0 1 0 0 0 0 2 0 1 0 0 0 0 0
0 1 0 0 0 0 2 0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 1 0 5 0 0 0 0 0
2 0 0 4 0 2 0 0 0 0 8 0 4 0 2
0 0 0 0 2 0 0 0 0 0 0 4 0 2 0
1 0 0 2 0 1 0 0 0 0 4 0 2 0 1
0 0 0 0 1 0 0 0 0 0 0 2 0 1 0
2 0 0 1 0 5 0 0 0 0 2 0 1 0 14



.

Calculations show that M(4) � 0 and rankM(4) = 7. So M(4) is flat, and the
existence of a representative measure µ for β with 7 atoms.

The core variety of M(3) is V = {(xi, yi)}i=7
i=1 where (x1, y1) = (0, 0),

(x2, y2) = (0,−
√

3), (x3, y3) = (0,
√

3), (x4, y4) = (−
√

2,−1), (x5, y5) = (−
√

2, 1),

(x6, y6) = (
√

2,−1) and (x7, y7) = (
√

2, 1). Solving the Vandermonde system, we
get the weights of µ,

ρ1 = 1
3 , ρ2 = 1

12 , ρ3 = 1
12 , ρ4 = 1

8 , ρ5 = 1
8 , ρ6 = 1

8 and ρ7 = 1
8 .

Thus, the representative measure of β(5) is

µ =
1

3
δ(0,0)+

1

12
δ(0,−

√
3)+

1

12
δ(0,
√
3)+

1

8
δ(−
√
2,−1)+

1

8
δ(−
√
2,1)+

1

8
δ(
√
2,−1)+

1

8
δ(
√
2,1).
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Example 3.11. Consider β = β(5) a real doubly indexed sequence whose data are,

M(2) =


7 0 0 4 2 4
0 4 2 0 0 0
0 2 4 0 0 0
4 0 0 4 2 2
2 0 0 2 2 2
4 0 0 2 2 4

 and B(3) =


0 0 0 0
4 2 2 2
2 2 2 4
0 0 0 0
0 0 0 0
0 0 0 0

 .

As rankM(2) = 6 and M(2) > 0 then we obtain,

W = M(2)−1B(3) =



0 0 0 0

1 1
3

1
3 0

0 1
3

1
3 1

0 0 0 0

0 0 0 0

0 0 0 0


and WTM(2)W =


4 2 2 2

2 4
3

4
3 2

2 4
3

4
3 2

2 2 2 4

 .

We have x = 4
3 < c = 2, y = 4

3 6= d = 2 and z = 4
3 6= e = 2. Calculations of the

moments of degree 6 given in the proof of Theorem 3.3, we determine C(3) and
then M(3) the extension of M(2) such that,

M(3) =



7 0 0 4 2 4 0 0 0 0
0 4 2 0 0 0 4 2 2 2
0 2 4 0 0 0 2 2 2 4
4 0 0 4 2 2 0 0 0 0
2 0 0 2 2 2 0 0 0 0
4 0 0 2 2 4 0 0 0 0
0 4 2 0 0 0 4 2 2 2
0 2 2 0 0 0 2 2 2 2
0 2 2 0 0 0 2 2 2 2
0 2 4 0 0 0 2 2 2 4


,

with rank(M(3)) = 7 and the M(3) columns dependence relations are

X3 = X, Y 3 = Y, and XY 2 = X2Y.
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From these last relations, we define the moments of degree 7 and 8, without conflict,
and we deduce the construction of the extension M(4) given below

M(4) =



7 0 0 4 2 4 0 0 0 0 4 2 2 2 4
0 4 2 0 0 0 4 2 2 2 0 0 0 0 0
0 2 4 0 0 0 2 2 2 4 0 0 0 0 0
4 0 0 4 2 2 0 0 0 0 4 2 2 2 2
2 0 0 2 2 2 0 0 0 0 2 2 2 2 2
4 0 0 2 2 4 0 0 0 0 2 2 2 2 4
0 4 2 0 0 0 4 2 2 2 0 0 0 0 0
0 2 2 0 0 0 2 2 2 2 0 0 0 0 0
0 2 2 0 0 0 2 2 2 2 0 0 0 0 0
0 2 4 0 0 0 2 2 2 4 0 0 0 0 0
4 0 0 4 2 2 0 0 0 0 4 2 2 2 2
2 0 0 2 2 2 0 0 0 0 2 2 2 2 2
2 0 0 2 2 2 0 0 0 0 2 2 2 2 2
2 0 0 2 2 2 0 0 0 0 2 2 2 2 2
4 0 0 2 2 4 0 0 0 0 2 2 2 2 4



.

We check that rank(M(4)) = rank(M(3)) = 7. So, M(4) is flat and β(5) is a
sequence of moments with a representative measure 7-atomic. The core variety of
M(3) is V = {(0, 0); (1, 0); (−1, 0); (1, 1); (0,−1); (1, 1); (−1,−1)}.
Solving the Vandermonde system, we get the weights of the atoms ρi = 1 for 1 ≤
i ≤ 7. Finally, the measure is

µ = δ(0,0) + δ(1,0) + δ(−1,0) + δ(1,1) + δ(0,−1) + δ(1,1) + δ(−1,−1).

The following example treats the case (x < c, d 6= y and z = e), where there
is no representative measure.

Example 3.12. Let β = β(5) be the quintic sequence, which data are represented
in the two following matrices,

M(2) =


2 1 1 2 1 2
1 2 1 1 1 1
1 1 2 1 1 1
2 1 1 4 1 2
1 1 1 1 2 1
2 1 1 2 1 4

,

 and B(3) =


1 1 1 1
4 1 2 1
1 2 1 4
3 1 1 1
1 1 1 3
1 1 3 2

 .

Calculations show that rankM(2) = 6 and M(2) > 0. So we have,

W = M(2)−1B(3) =



− 7
5 0 −1 − 13

10
13
5 0 1 − 4

5

− 2
5 1 0 11

5

1 0 0 0

− 2
5 0 0 6

5

0 0 1 1
2


and WTM(2)W =


56
5 1 4 − 3

5

1 2 1 4

4 1 4 2

− 3
5 4 2 113

10
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We have x = 2 < c = 4, y = 1 6= d = − 3
5 and z = e = 4 and by calculations of the

moments of degree 6 given in the proof or Theorem 3.3, we determine C(3) then
M(3) with,

M(3) =



2 1 1 2 1 2 1 1 1 1

1 2 1 1 1 1 4 1 2 1

1 1 2 1 1 1 1 2 1 4

2 1 1 4 1 2 3 1 1 1

1 1 1 1 2 1 1 1 1 3

2 1 1 2 1 4 1 1 3 2

1 4 1 3 1 1 56
5 1 4 − 3

5

1 1 2 1 1 1 1 4 − 3
5

132
25

1 2 1 1 1 3 4 − 3
5

132
25

122
125

1 1 4 1 3 2 − 3
5

132
25

122
125

15149
1250



.

We have rank(M(3)) = 7 and the M(3) columns dependence relations are,

X3 = p(X,Y ) = −7

5
+

13

5
X − 2

5
Y +X2 − 2

5
XY,

XY 2 = r(X,Y ) = −1 +X +
4

5
Y + Y 2 − 4

5
X2Y,

Y 3 = q(X,Y ) = −13

10
− 4

5
X +

39

25
Y +

6

5
XY +

1

2
Y 2 +

16

25
X2Y.

When determining the inputs of the block B[3, 4] of M(4), we notice that β34 has
two distinct values, obtained by the two following expressions of XY 3,〈

xq(X,Y ), X2Y
〉

=
3931

625
6=
〈
yr(X,Y ), X2Y

〉
=

4531

625
.

Therefore, M(3) does not admit any positive semidefinite extension M(4). Hence,
β(5) has no representing measure.
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[22] K. Schmüdgen, The moment problem, Graduate Texts in Mathematics, Springer, 277, 2017.
[23] J. Stochel, Solving the truncated moment problem solves the full moment problem , Glasg.

Math. J., 43, no. 3, (2001), 335–341.

[24] S. Yoo, Extremal sextic truncated moment problems , PhD thesis, University of Iowa, 2011
[25] S. Yoo, Sextic moment problems on 3 parallel lines , Bull. Korean Math. Soc., 54, no. 1,

(2017), 299–318.


