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Abstract. Let Γ be a totally ordered abelian group, the topology on primitive ideal

space of Toeplitz algebras Prim T (Γ) can be identified through the upwards-looking

topology if and only if the chain of order ideals is well-ordered. Let I be an order

ideal of such that the chain of order ideals of Γ/I is not well-ordered, we show that

for any order ideal J ' I , the topology on primitive ideal space can be identified

through the upwards-looking topology. Also we discuss the closed sets in Prim T (Γ)

with the upwards-looking topology and characterize maximal primitive ideals.
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Abstrak. Misalkan Γ adalah grup abel terurut total, topologi pada ruang

ideal primitif dari aljabar Toeplitz Prim T (Γ) dapat diidentifikasi melalui topologi

upwards-looking jika dan hanya jika rantai dari ideal urutan adalah terurut dengan

rapi (well-ordered). Misalkan I adalah sebuah ideal urutan sedemikian sehingga

rantai dari ideal urutan dari Γ/I tidak terurut dengan rapi, diperlihatkan bahwa

untuk sembarang ideal J ' I , topologi pada ruang ideal primitif dapat diidentifikasi

melalui topologi upwards-looking. Pada paper ini juga dibahas himpunan-himpunan

tutup di Prim T (Γ) di bawah topologi upwards-looking, dan karakterisasi dari ideal

primitif maksimal.

Kata kunci: Aljabar Toeplitz, grup terurut total, ideal primitif, kuosien, karakter-

isasi
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1. Introduction

Suppose Γ is a totally ordered abelian group. Let Σ(Γ) be the chain of order
ideals of Γ, and X(Γ) denotes the disjoint union⊔

{Î : I ∈ Σ(Γ)} = {(I, γ) : I ∈ Σ(Γ), γ ∈ Î}.

Adji and Raeburn shows that every primitive ideal of Toeplitz algebra T (Γ) of Γ
is of the form

kerQI ◦ αΓ
ν

−1

where I is an order ideal of Γ and ν ∈ Γ̂. They also showed [?, Theorem 3.1] that
there is a bijection L of X(Γ) onto the primitive ideal space Prim T (Γ) of Toeplitz
algebra T (Γ) given by

L(I, γ) := kerQI ◦ αΓ
ν

−1
where ν ∈ Γ̂ satisfies ν|I = γ.

Adji and Raeburn [?] introduced a topology in X(Γ) which is called the
upwards-looking topology. When Σ(Γ) is isomorphic with a subset of N ∪ {∞},
the bijection L is a homeomorphism [?, Proposition 4.7], so the usual hull-kernel
topology of Prim T (Γ) can be identified through the upwards-looking topology in
X(Γ). Later, Raeburn and his collaborators [?] showed that L is a homeomorpism
if and only if Σ(Γ) is well-ordered, in the sense that every nonempty subset has a
least element.

More recently, Rosjanuardi and Itoh [?] characterised maximal primitive
ideals of T (Γ). A series of analysis on subsets of Σ(Γ) implies that any single-

ton set {γ} which consists of a character in Γ̂ is closed. This implies that every
maximal primitive ideal of T (Γ) is of the following form

L(Γ, γ) = kerQΓ ◦ αΓ
γ

−1
.

Given a totally ordered abelian group Γ and an order ideal I. In this paper,
we apply the method in [?] and [?] to characterise maximal primitive ideal of
Toeplitz algebra T (Γ/J) of quotient Γ/J when the chain of order ideal Σ(Γ/I) is
not well-ordered.

2. Upwards-looking Topology

Let Γ be a totally ordered abelian group. The Toeplitz algebra T (Γ) of Γ is
the C*-subalgebra of B(`2(Γ+)) generated by the isometries {Tx = TΓ

x : x ∈ Γ+}
which are defined in terms of the usual basis by Tx(ey) = ey+x. This algebra is
universal for isometric representation of Γ+ [?, Theorem 2.9].

Let I be an order ideal of Γ. Then the map x 7−→ T
Γ/I
x+I is an isometric

representation of Γ+ in T(Γ/I). Therefore by the universality of T (Γ), there is a

homomorphism QI : T (Γ) −→ T (Γ/I) such that QI(Tx) = T
Γ/I
x+I , and that QI is

surjective. Suppose C(Γ, I) denotes the ideal in T (Γ) generated by {TuT ∗u − TvT ∗v :
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v−u ∈ I+} and IndΓ̂
I⊥(T (Γ/I), αΓ/I) is the closed subalgebra of C(Γ̂, T (Γ/I)) sat-

isfying f(xh) = α
Γ/I
h

−1
(f(x)) for x ∈ Γ̂, h ∈ I⊥. It was proved in [?, Theorem 3.1]

that there is a short exact sequence of C∗-algebras:

0→ C(Γ, I)→ T (Γ)
φI→ IndΓ̂

I⊥(T (Γ/I), αΓ/I)→ 0. (1)

in which φI(a)(γ) = QI ◦ (αΓ
γ )−1(a) for a ∈ T (Γ), γ ∈ Γ̂, and αγ is dual action of

Γ̂ on T (Γ) characterized by αΓ
γ (Tx) = γ(x)Tx. The identity representation TΓ/I of

T (Γ/I) is irreducible [?], it follows from [?, Proposition 6.16] that kerQI ◦ (αΓ
γ )−1

is a primitive ideal of T (Γ).

If X(Γ) denotes the disjoint union⊔
{Î : I ∈ Σ(Γ)} = {(I, γ) : I ∈ Σ(Γ), γ ∈ Î},

it was showed in [?, Theorem 3.1] that

L(I, γ) := kerQI ◦ αΓ
ν

−1
where ν ∈ Γ̂ satisfies ν|I = γ, (2)

is a bijection of X(Γ) onto Prim T (Γ).

Using the bijection L, Adji and Raeburn describe a new topology on X which
corresponds to the hull-kernel topology on Prim T (Γ). This new topology, is later
called the upwards-looking topology. They topologise X by specifying the closure
operation as stated in the following definition.

Definition 2.1. [?] The closure F of a subset F of X is the set consisting of

all pairs (J, γ) where J is an order ideal and γ ∈ Ĵ such that for every open

neighbourhood N of γ in Ĵ , there exists I ∈ Σ(Γ) and χ ∈ N for which I ⊂ J and
(I, χ|I) ∈ F .

Example 2.2. [?, Example 3] We are going to discuss some description of sets
in X(Γ) by considering specific cases of Γ. An observation on Γ := Z⊕lex Z gives
interesting results. Let I be the ideal {(0, n) : n ∈ Z}, since I is the only ideal, we

have X(Γ) = 0̂t ÎtΓ̂. Suppose λ0 is a character in Î defined by (0, n) 7→ e2πin, and

let F = {λ0}. Next we consider a character γ in Γ̂ defined by (m,n) 7→ e2πi(m+n).
It is clear that γ|I = λ0. Then γ ∈ F̄ , because every open neighbourhood N of γ

in Γ̂ contains an element λ (which is nothing but γ it self) such that its restriction
on I gives a character in F . It is clear that γ 6∈ F , hence F is not closed in the
upwards-looking topology for X(Γ).

Adji and Raeburn [?] proved that this is the correct topology to identify the
hull-kernel topology of Prim T (Γ) when Γ is a group such that the set Σ(Γ) of
order ideal is order isomorphic to a subset of N ∪ {∞}. In [?], Raeburn and his
collaborators extended the results in [?]. Their main theorem, says that Prim T (Γ)
is homeomorphic to X(Γ) with the upwards-looking topology if and only if the
totally ordered set Σ(Γ) is well-ordered in the sense that every non-empty subset
has a least element. Their technique uses classical Toeplitz operators as well as the



70 R. Rosjanuardi

universal property of T (Γ) which was the main tool in [?]. Then they described
Prim T (Γ) when parts of Σ(Γ) are well-ordered.

Rosjanuardi in [?] improved the results in [?] to the case when Σ(Γ) is not well
ordered. In [?, Proposition 6] it is stated that when Σ(Γ) is isomorphic to a subset
of {−∞} ∪ Z ∪ {∞}, then we can use the upwards-looking topology on X(Γ/I) to
identify the topology on Prim T (Γ/I). For general totally abelian group Γ, as long
as there is an order ideal I such that every order ideal J ⊇ I has a successor, the
upwards-looking topology is the correct topology for Prim T (Γ/I) [?, Proposition
8]. In [?, Theorem 9] it was proved that for any quotient Γ/I such that the chain
Σ(Γ/I) is isomorphic to a subset {−∞} ∪ Z ∪ {∞}, for any order ideal J % I, the
upwards-looking topology on Σ(Γ/J) is the correct topology for Prim T (Γ/J).

3. Characterisation of Primitive Ideals

Example ?? implies that any closed set in the point wise topology is not
necessarily closed in the upwards-looking topology. When it is applied to any
complement FC of a set F , it arrives to a conclusion that any open set in the
point wise topology, is not necessarily open in the upwards-looking topology. This
example motivated Rosjanuardi and Itoh [?] to prove more general cases.

Combining results in [?] with ones in [?] give characterisation results for more
general cases than in [?].

Proposition 3.1. Suppose that Γ is a totally ordered abelian group such that the
chain Σ(Γ) of order ideals in Γ is isomorphic to a subset of {−∞}∪Z∪ {∞}. For
any I ∈ Σ(Γ), the maximal primitive ideals of T (Γ/I) are of the form

kerQΓ/I ◦ (αΓ/I
γ )−1.

Proof. Let I ∈ Σ(Γ). The chain of order ideals in Γ/I is

I ⊂ J1/I ⊂ J2/I ⊂ ...,

where Ji ∈ Σ(Γ) and I ⊂ Ji ⊂ Ji+1 for all i. Hence Σ(Γ/I) is well ordered. Give

the set X(Γ/I) :=
⊔
{Ĵ/I : J ∈ Σ(Γ), I ⊂ J} the upwards-looking topology, hence

LΓ/I is a homeomorphism of X(Γ/I) onto Prim T (Γ/I) by Theorem 3.1 of [?].
Proposition 6 of [?], then implies that X(Γ/I) is homeomorphic with Prim(T (Γ)).
Theorem 11 of [?] then gives the result.

Proposition 3.2. Suppose that Γ is a totally ordered abelian group, and let I be
an order ideal in Γ such that every oreder ideal J ⊇ I has a successor. Then the
maximal primitive ideals of T (Γ/I) are of the form

kerQΓ/I ◦ (αΓ/I
γ )−1.

Proof. Let I ∈ Σ(Γ) such that every order ideal J ⊇ I has a successor. Since
each nontrivial element of Σ(Γ/I) is of the form J/I for J ∈ Σ(Γ) and J ) I, every
element of Σ(Γ/I) has a successor. This implies that Σ(Γ/I) is well ordered. Give

the set X(Γ/I) :=
⊔
{Ĵ/I : J ∈ Σ(Γ), I ⊂ J} the upwards-looking topology, hence
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LΓ/I is a homeomorphism by Theorem 3.1 of [?]. The result then follows from
Theorem 9 of [?].

Theorem 3.3. Suppose that Γ is a totally ordered abelian group, and I ∈ Σ(Γ)
such that Σ(Γ/I) ∼= {−∞} ∪ Z ∪ {∞}. Let J ∈ Σ(Γ) such that J % I. Then the
maximal primitive ideals of T (Γ/J) are of the form

kerQΓ/J ◦ (αΓ/J
γ )−1.

Proof. Since every nontrivial ideal of Γ/I is of the form J/I where J ∈ Σ(Γ) and
J ! I and for ideals J1, J2 such that J1/I ⊆ J2/I implies J1 ⊆ J2, then may write

Σ(Γ/I) := {I = J−∞ ⊆ ... ⊆ Jk/I ⊆ Jk+1/I ⊆ ... ⊆ Γ = J∞}.
Now consider the subset

I := {I = J−∞ ⊆ ... ⊆ Jk ⊆ Jk+1 ⊆ ... ⊆ J∞ = Γ}
of Σ(Γ). If J 6= I is an element of I, i.e J ∈ Σ(Γ) such that J % I, the set

Σ(Γ/J) = {J ⊆ K1/J ⊆ K2/J...}
is well ordered. Hence LΓ/J is a homeomorphism of X(Γ/J) onto Prim T (Γ/J) by
Theorem 3.1 of [?]. The result is then follow from Theorem 9 of [?].
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