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Abstract. Let R be a ring with unity. Taloukolaei and Sahebi [2] introduced

the Von Neumann regular graph GV nr+ (R) of a ring, whose vertex set consists of

elements of R and two distinct vertices x and y are adjacent if and only if x+ y is a

Von Neumann regular element. In this article, we investigate some new properties of

GV nr+ (R) such as the traversability, pancyclic, unicyclic, chordal and perfect. We

also investigate the domination parameters of GV nr+ (R) such as the dominating set,

the domination number, the total domination number, the connected domination

number and give the condition when the GV nr+ (R) is an excellent graph. Finally

we determine the bondage number.

Key words and Phrases: Von Neumann regular ring; Von Neumann regular graph;
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1. Introduction

Let R be a ring with unity. An element x ∈ R is called Von Neumann regular
if there exists r ∈ R such that x = xrx (If R is commutative then x = x2r). The
set of all Von Neumann regular elements of R is denoted by V nr(R). Clearly 0
and units of R are Von Neumann regular elements of R. Von Neumann regular
ring is a ring where all the elements of R are Von Neumann regular element. Von
Neumann regular graphs associated with rings was first introduced by Taloukolaei
and Sahebi [2]. The Von Neumann regular graph of a ring R denoted by GV nr+(R)
is the graph with R as the vertex set and distinct u, v ∈ R are adjacent if and only
if u + v ∈ V nr(R). The unit graphs studied in [3] are subgraphs of GV nr+(R).
In this article, we consider all the rings R to be generated by V nr(R) as a group,
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and we denote U(R), m and I as the set of units, maximal ideal and an ideal of R
respectively. We refer [5], for undefined terminology of ring theory.

Let G = (V (G), E(G)) be an undirected graph with vertex set V (G) and
edge set E(G). The number of vertices in G denoted by |G| is called the order of
G, and the number of edges of G denoted by |E(G)| is called the size of G. For
v ∈ V (G), we denote degree of v by deg(v). The minimum degree and maximum
degree of G is denoted by δ(G) and ∆(G) respectively. A closed trail of length
three or more in a graph G is called circuit. A circuit C in a graph G is called an
Eulerian circuit if C contains every edge of G. A connected graph G is said to be
Eulerian if it contains an Eulerian circuit. A graph G is said to be Hamiltonian if
it has a circuit which contains all the vertices of G. A graph G of order n ≥ 3 is
called pancyclic if G has cycles of all lengths from 3 to n. A graph G is said to be
unicyclic if G contains exactly one cycle. A simple graph G is said to be a chordal
graph if every cycle in G of length 4 and greater has a chord. A graph G is perfect
if and only if no induced subgraph of G is an odd cycle of length at least five or
the complement of one. A nonempty subset D of V is called a dominating set if
every vertex in V \D is adjacent to at least one vertex in D. A subset D of V is
called a total dominating set if every vertex in V is adjacent to some vertex in D.
A dominating set D is called a connected dominating set if the subgraph induced
by D is connected. The domination number γ(G) is the minimum cardinality of
a dominating set in G. In a similar way we define the total domination number
γt(G) and the connected domination number γc(G). A Graph G is called excellent
if for every vertex x ∈ V (G), there is a dominating set D which contain x. The
bondage number b(G) is the minimum number of edges whose removal increases
the domination number. A domatic partition of G is a partition of V (G) into dom-
inating sets in G. The maximum number of classes of a domatic partition of G is
called the domatic number of G and is denoted by d(G). A graph G is said to be
domatically full if d(G) = δ(G) + 1. We refer [6] and [11] for undefined terminology
of graph theory.

The organisation of this paper is as follows: In Section 2, we begin with
an obvious remark that GV nr+(R) is a complete graph if and only if R is a Von
Neumann regular ring, we also investigate the traversibility of GV nr+(R) for certain
conditions. Finally, we characterize all the rings for which GV nr+(R) is pancyclic,
unicyclic, chordal and perfect. In Section 3, we attempt to study the domination
numbers in the graph GV nr+(R) and we prove the domination number of GV nr+(R)
is 1 if and only if either R is a Von Neumann regular ring or R ∼= Z4. We also
determine that domination number is 2 if R is a local ring (not Von Neuman regular
ring) and R×S, where R is a Von Neumann regular ring and S is a local ring which
is not a Von Neumann regular ring. Finally, we determine the bondage number of
GV nr+(R).
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2. Some results of GV nr+(R)

In this section, we attempt to study some new results of GV nr+(R) such as
the traversability, pancyclic, unicyclic, chordal and perfect. In order to study some
new results of GV nr+(R), we state the following Theorem 2.1 from [2].

Theorem 2.1. [2, Proposition 2.2] Let R be a finite ring and GV nr+(R) be a Von
Neumann regular graph of R. Then the following hold:

(1) If 2x /∈ V nr(R), then deg(x) = |V nr(R)|.
(2) If 2x ∈ V nr(R), then deg(x) = |V nr(R)| − 1.

Therefore ∆ = |V nr(R)| and δ = |V nr(R)| − 1.

Remark 2.2. Let R be a finite ring. Then GV nr+(R) is a complete graph if and
only if R is Von Neumann regular ring.

In the following, we characterize the ring whose Von Neumann regular graph
GV nr+(R) is Eulerian and Hamiltonian.

Remark 2.3. Let R be a Von Neumann regular ring. Then GV nr+(R) is Eulerian
if and only if |R| = odd.

Theorem 2.4. Let (R,m) be a local ring with m 6= 0. Then GV nr+(R) is not
Eulerian.

Proof. Let (R,m) be a local ring and m 6= 0. Then by Theorem 2.1 deg(0) =
|V nr(R)|−1. Also there exist x ∈ m such that deg(x) = |V nr(R)|, hence GV nr+(R)
is not Eulerian. �

Theorem 2.5. Let R be a finite ring such that |R| ≥ 3. If GV nr+(R) is connected,
then GV nr+(R) is Hamiltonian.

Proof. Let R be a finite ring such that |R| ≥ 3. Then the following two cases
complete the proof:
Case 1. If R is a Von Neumann regular ring, then GV nr+(R) is a complete graph
and so GV nr+(R) is Hamiltonian.
Case 2. If R is a non-Von Neumann regular ring, then GV nr+(R) is not a complete
graph. Now by Theorem 2.1, deg(x) = |V nr(R)| or |V nr(R)| − 1. Let x, y ∈
V (GV nr+(R)) such that x � y in GV nr+(R), then we have the following conditions:

(1) deg(x) + deg(y) = 2|V nr(R)|, for all 2x, 2y /∈ V nr(R).
(2) deg(x) + deg(y) = 2|V nr(R)| − 2, for all 2x, 2y /∈ V nr(R).
(3) deg(x) + deg(y) = 2|V nr(R)| − 1, for 2x ∈ V nr(R) and 2y /∈ V nr(R).

It is clear that deg(x) + deg(y) ≥ |V (GV nr+(R))| since 2|V nr(R)| > |R|. Hence by
Ore’s theorem of Hamiltonian, GV nr+(R) is Hamiltonian. �

Bondy [8] gave us a useful little theorem that relate Hamiltonicity and pancyclicity
of a graph, which is stated in the following in a more modified version as per our
need to prove the next Theorem:
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Theorem 2.6. [8] Every Hamiltonian non-bipartite graph G of order n with δ(G) ≥
n
2 is pancyclic.

Remark 2.7. We make the following observations about GV nr+(R) which in turn
will help us in proving Theorem 2.8.

(1) By using Proposition 4.4 in [2] we conclude that GV nr+(R) is not bipartite
for |R| ≥ 3.

(2) Also δ(GV nr+(R)) = |V nr(R)| − 1 ≥ |R|
2 .

Theorem 2.8. Let R be a finite ring. Then GV nr+(R) is pancyclic if and only if
|R| ≥ 3.

Proof. ⇒ Let GV nr+(R) be a pancyclic graph. If |R| = 2, then R ∼= Z2. Therefore
GV nr+(R) = K2 which is not a cycle and so it contradict our assumption.
⇐ Assume that |R| ≥ 3. Then by Theorem 2.5 and Remark 2.7, we see that

GV nr+(R) is a Hamiltonian and non-bipartite graph with δ(GV nr+(R)) ≥ |R|
2 .

Therefore, by Theorem 2.6 the proof follows directly. �

Theorem 2.9. GV nr+(R) is a unicyclic graph if and only if either R ∼= Z3 or

R ∼=
Z2[x]

x2
.

Proof. If either R ∼= Z3 or R ∼=
Z2[x]

x2
, then GV nr+(R) is isomorphic to K3 and

C4 (cycle graph of length four) respectively. Conversely, let GV nr+(R) be a uni-
cyclic graph. From [[5], p.95], we may write R ∼= R1 × ... × Rn, where Ri is
a local ring with maximal ideal mi. If i ≥ 2, then Von Neumann regular ele-
ments (0, ..., 0), (1, 0, ..., 0), ..., (0, 0, ..., 1), (1, 1, ..., 1) form a complete sub graph of
GV nr+(R), which contradict our assumption. Therefore, R is a local ring. If
|R| = 2, then GV nr+(R) is K2. If |R| = 3, then GV nr+(R) is K3. If |R| = 4, then

R is a Von Neumann regular ring, Z4,
Z2[x]

x2
. The cases that R is a Von Neumann

regular ring and R ∼= Z4 are ruled out since GV nr+(R) is not unicyclic graph. If
|R| ≥ 5, and R is a Von Neumann regular ring then GV nr+(R) is a complete graph,
and hence it is not unicyclic. If |R| ≥ 5, and R is not a Von Neumann regular
ring, then there exist x ∈ V nr(R) \ {0, 1} and y /∈ V nr(R) such that the induced
subgraphs form by the sets S1 = {0, x,−x} and S2 = {1,−1, y} are two different
cycles of length 3 in GV nr+(R). Therefore, GV nr+(R) is not unicyclic. Hence, the
result. �

Theorem 2.10. Let R be a ring such that |R| ≥ 4. Then GV nr+(R) is a chordal
if and only if either R is a Von Neumann regular ring or R ∼= Z4.

Proof. ⇒ Assume that GV nr+(R) is a chordal graph. If R ∼=
Z2[x]

x2
, then GV nr+(R)

is C4. If |R| > 5, let us take the set S = {0, 1, z, u} where z /∈ V nr(R) and
u ∈ U(R) ⊂ V nr(R). Then < S >= C4 is a chordless cycle in GV nr+(R),
which contradict our assumption. However, if R a Von Neumann regular ring,
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then GV nr+(R) is a complete graph which implies that GV nr+(R) is a chordal
graph. Similarly, if R ∼= Z4 then 0 ∼ 1 ∼ 2 ∼ 3 ∼ 0 is a cycle of length 4 with
1 ∼ 3 as the chord. Hence, the result.
⇐ If R is either a Von Neumann regular ring or R ∼= Z4, then it is clear that
GV nr+(R) is a chordal graph. �

Theorem 2.11. Let R be any ring. Then GV nr+(R) is perfect.

Proof. The following two cases complete the proof:
Case 1. If R is a Von Neumann regular ring. Then GV nr+(R) is a complete graph
and so GV nr+(R) does not have any induced subgraph of odd cycle of length at
least 5.
Case 2. If R is not a Von Neumann regular ring. Let S ⊂ V (GV nr+(R)) with |S| ≥
5, then there exists at least one s ∈ S such that deg<S>(s) > 2. Therefore, there
is no induced cycle subgraph of length at least 5 in GV nr+(R). Hence GV nr+(R)
is perfect. �

3. Domination Parameters of GV nr+(R)

In this section, we study the domination parameters. The study of domination
number has been a topic of interest for graph theorists in the recent past, infact the
dominating set problem is a classical NP-complete decision problem and there is
no efficient algorithm to find a smallest dominating set of a given graph. We start
our discussion on domination parameters of GV nr+(R) with the following Lemma.

Lemma 3.1. If R is a Von Nuemann regular ring, then γ(Gvnr+(R)) = 1.

Proof. Let R be a Von Neumann regular ring, then every element is a Von-Neumann
regular element. Therefore, for every x ∈ R \ {0}, we have x + 0 ∈ Vnr(R). So,
every x 6= 0 is adjacent to 0 and so D = {0} is a dominating set of GV nr+(R).
Hence, γ(GV nr+) = 1 �

Theorem 3.2. γ(GV nr+(R)) = 1 if and only if either R is Von Neumann regular
ring or R ∼= Z4.

Proof. ⇒ Let γ(GV nr+(R)) = 1. Let D = {x} be a dominating set of GV nr+(R).
Hence, x ∼ y for all y ∈ R which implies that deg(x) = |R| − 1. By Theorem 2.1
deg(x) = |V nr(R)| − 1 or |V nr(R)|. If deg(x) = |R| − 1 = |V nr(R)| − 1, then R is
a Von Neumann regular ring. If deg(x) = |R| − 1 = |V nr(R)|, then R ∼= Z4.
⇐ If R is a Von Neumann regular ring, then by Lemma 3.1 we get the result. If
R ∼= Z4, then either {1} or {3} is the dominating set. Hence, the result hold. �

Remark 3.3. (1) If (x1, x2, ..., xn) ∈ Πn
i=1Ri, then (x1, x2, ..., xn) is a Von-

Neumann regular element if and only if xi ∈ Vnr(Ri), for all i = 1, 2, ...n.
(2) If Ri are Von Neumann regular rings, then Πn

i=1Ri is also a Von Neumann
regular ring.
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(3) If R = Πn
i=1Ri, where Ri are Von Neumann regular rings, then γ(GV nr+(R)) =

1.

Remark 3.4. If R is a Von Nuemann regular ring, then we have the following
results:

(1) γ(GV nr+) = γt(GV nr+) = γc(GV nr+) = 1.
(2) By Remark 2.2 we see that GV nr+(R) is a complete graph, therefore D =
{x} is a dominating set of GV nr+(R) for all x ∈ R. Hence, we see that
GV nr+(R) is an excellent graph.

In the following, we determine the domination parameters for a local ring R, which
is not Von Neumann regular ring. We begin with the following Lemma.

Lemma 3.5. Let (R,m 6= 0) be a local ring and let x ∈ R. If x /∈ m, then
x ∈ Vnr(R) and if x ∈ m, then 1 + x ∈ Vnr(R).

Theorem 3.6. Let (R,m) be a local ring with m 6= 0 such that R � Z4. Then
γ(Gvnr+(R)) = 2.

Proof. Let R be a local ring with m 6= 0 as the maximal ideal. If R ∼= Z4, then by
Theorem 3.2 γ(Gvnr+(R)) = 1 . Therefore, we assume that R � Z4. If x /∈ m, then
by Lemma 3.5 x ∈ Vnr(R) therefore, x ∼ 0 in (Gvnr+(R)). If x ∈ m, then again by
Lemma 3.5 1 + x ∈ Vnr(R) therefore, x ∼ 1 in (GV nr+(R)). Hence, D = {0, 1} is a
dominating set in Gvnr+(R). This yields γ(Gvnr+(R)) = 2. �

Theorem 3.7. Let (R,m) be a local ring with m 6= 0. Then the following conditions
hold:

(1) γ(GV nr+(R)) = γt(GV nr+(R)) = γc(GV nr+(R)) = 2.
(2) GV nr+(R) is an excellent graph.

Proof. (1) The proof follows directly from Theorem 3.6.
(2) If x ∈ V nr(R), then D = {0, x} is a dominating set in GV nr+(R). If

x /∈ V nr(R), then D = {1, x} is a dominating set of GV nr+(R). Therefore,
for every x ∈ R we obtain a dominating set of GV nr+(R) which contain x.
Hence, we conclude that GV nr+(R) is an exellent graph.

�

In the following, we find the domination parameters for the ring R′ = R×S,
where R is any Von Neumann regular ring and S is a local ring which is not a Von
Neumann regular ring.

Theorem 3.8. Let R be a Von Nuemann regular ring and S be any local ring such
that S is not a Von Neumann regular ring. Then γ(GV nr+(R× S)) = 2.

Proof. Let (x, y) ∈ R × S. If (x, y) ∈ V nr(R × S), then (0, 0) + (x, y) = (x, y) ∈
V nr(R × S) i.e. (0, 0) ∼ (x, y). If (x, y) /∈ V nr(R × S), then it implies that
y /∈ V nr(S). Therefore, by Remark 3.5 (0, 1)+(x, y) = (x, 1+y) ∈ V nr(R×S) and
so (x, y) ∼ (0, 1). Hence, D = {(0, 0), (0, 1)} is a dominating set in GV nr+(R× S).
Thus, γ(GV nr+(R× S)) = 2. �
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Theorem 3.9. Let R be a Von Nuemann regular ring and S be any local ring which
is not a Von Neumann regular ring. Then the following conditions hold:

(1) γ(GV nr+(R× S)) = γt(GV nr+(R× S)) = γc(GV nr+(R× S)) = 2.
(2) GV nr+(R× S) is an excellent graph.

Proof. (1) From Theorem 3.8 we obtained that D = {(0, 0), (0, 1)} is a domi-
nating set of GV nr+(R×S). Also (0, 0) ∼ (0, 1), thus γt(GV nr+(R×S)) =
γc(GV nr+(R)) = 2.

(2) If (x, y) ∈ V nr(R × S), then D = {(0, 0), (x, y)} is a dominating set of
GV nr+(R × S), and if (x, y) /∈ V nr(R × S), then D = {(0, 1), (x, y)} is a
dominating set of GV nr+(R × S). Therefore, for every (x, y) ∈ R × S we
have a dominating set {(0, 0), (x, y)} in GV nr+(R×S), which contain (x, y).
Hence, GV nr+(R× S) is an excellent graph.

�

Next we obtain a relationship between the domination number of a ring R
and its quotient ring R/I, where I is any ideal of R.

Theorem 3.10. Let R be any ring and I be a proper ideal of R, then
γ(GV nr+(R/I)) ≤ γ(GV nr+(R)).

Proof. Let γ(GV nr+(R)) = n and D = {u1, u2, ..., un} be the dominating set for
GV nr+(R). Choose ui1 +I, ui2 +I, ..., uim +I from the set {u1+I, u2+I, ..., un+I}
such that they are distinct from each other, then obviously {ui1 , ui2 , ..., uim} ⊆
{u1, u2, ..., un} and m ≤ n. We claim that D′ = {ui1 + I, ui2 + I, ..., uim + I} is a
dominating set for GV nr+(R/I). Let v+I ∈ (R/I)\D′, then v ∈ R\D. Therefore,
there exists ul ∈ D such that v ∼ ul in GV nr+(R). Now By [2, Proposition
2.6] v + I ∼ ul + I in GV nr+(R/I) and so ul + I = uij + I. Hence, v + I ∼
uij + I in GV nr+(R/I). This gives that γ(GV nr+(R/I)) ≤ |D′| = m ≤ n =
γ(GV nr+(R)). �

In order to prove the Theorem 3.12, we state the following Theorem.

Theorem 3.11. [7, Theorem 3.1 and proposition 4.1] Let G and H be two graphs,
then γ(G ×H) ≥ γ(G) + γ(H) − 1. Moreover if the equality holds and γ(G) = 1,
then G = K1 and H is an edgeless graph.

Theorem 3.12. Let R be a ring and R′ be a Von Neumann regular ring.
Then γ(GV nr+(R×R′)) ≥ γ(GV nr+(R)).

Proof. By Theorem 3.11 we see that

γ(GV nr+(R)×GV nr+(R′)) ≥ γ(GV nr+(R)) + γ(GV nr+(R′))− 1

Now, by Lemma 3.1 γ(GV nr+(R′)) = 1 and so the result hold. �

Next we attempt to find the domination number R(+)M , where R is a ring
and M is an R-module. But before, we recall the definiton of R(+)M and its
properties.
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Definition 3.13. Let R be a commutative ring and M be an R module. The
set R(+)M = {(r,m)|r ∈ R and m ∈ M} under the addition and multiplication
defined as (r,m) + (r′, n) = (r + r′,m + n) and (r,m)(r′, n) = (rr′, rn + r′m) for
(r,m), (r′, n) ∈ R(+)M is a commutative ring. This ring is called the idealization
of M in R.

Remark 3.14. (1) Let Wr = {(r,m)|m ∈M}, then for distinct r, r′ ∈ R, Wr∩
Wr′ = ∅ and we have R(+)M =

⋃
r∈RWr.

(2) V nr(R(+)M) = {(r, rm)| r ∈ V nr(R) and m ∈M}

Lemma 3.15. [2, Lemma 4.9] For arbitrary elements r, r′ ∈ R and a module M
over R, the following statements are equivalent:

(1) The vertex r is adjacent to r′ in GV nr+(R).
(2) Every element of Wr is adjacent to every element of Wr′ in GV nr+(R(+)M).

Theorem 3.16. Let R be a ring and M be an R-module, then the following con-
ditions hold:

(1) If R is a Von Neumann regular ring, then γ(GV nr+(R(+)M)) = 1.
(2) If (R,m) is a local ring and m 6= 0, then γ(GV nr+(R(+)M)) = 2.

Proof. (1) If R is a Von Neumann regular ring, then r ∼ 0, for all r ∈ R. Then
by Lemma 3.15, we see that all elements in W0 are adjacent to all elements
in Wr. Therefore, D = {(0, 0)} is the dominating set in GV nr+(R(+)M)
and so γ(GV nr+(R(+)M)) = 1.

(2) If R is a local ring and r ∈ R. Let r ∈ V nr(R), then r ∼ 0, this implies that
all elements in W0 are adjacent to all elements in Wr. If r /∈ V nr(R), then
r ∼ 1, this implies that all elements in W1 are adjacent to all elements in
Wr. Therefore, D = {(0, 0), (1, 0)} is a dominating set in GV nr+(R(+)M)
and so γ(GV nr+(R(+)M)) = 2.

�

Next we attempt to determine the domatic number of connected Von Neu-
mann regular graph GV nr+(R) of ring.

Remark 3.17. If R is a Von Neumann regular ring then, {x} is a dominating set
for all x ∈ R, therefore d(GV nr+(R)) = |R|.

Theorem 3.18. Let (R,m) be a local ring with m 6= 0 such that R � Z4. Then

d(GV nr+(R)) = b |R|
2 c.

Proof. Let (R,m) be a local ring with m 6= 0. Then S = {x1, x2} is a dominating

set in GV nr+(R), where x2 /∈ x1 + m. Hence, d(GV nr+(R)) = b |R|
2 c. �

Remark 3.19. The above Theorem 3.18 fails if R ∼= Z4. Here, dominating sets
of GV nr+(R) are {1}, {3}, {0, 2} and so d(GV nr+(R)) = 3. Moreover, the graph
GV nr+(R) is domatically full.

We end up this article by discussing the bondage number of Von Neumann
regular graph GV nr+(R).
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Remark 3.20. If R is a Von Neumann regular ring and so GV nr+(R) is a complete

graph. Therefore, b(GV nr+(R)) = d |R|
2 e.

Theorem 3.21. Let (R,m) be a local ring with m 6= 0 and |R| 6= 4. Then
b(GV nr+(R)) = δ(GV nr+(R)).

Proof. Let (R,m) be a local ring such that m 6= 0. Let |R| = 4. If R ∼= Z4,
then V nr(Z4) = {0, 1, 3}. Now, if we remove the edge (1, 3) from the graph
GV nr+(R), then it increases the domination number by 1. So b(GV nr+(R)) =

1 6= δ(GV nr+(R)). If R ∼=
Z2[x]

x2
, then GV nr+(

Z2[x]

x2
) is C4 and so, b(GV nr+(R)) 6=

δ(GV nr+(R)). Therefore, we consider |R| 6= 4. Then δ(GV nr+(R)) = |V nr(R)| − 1;
Obviously deg(0) = δ(GV nr+(R)). Now, to increase the domination number, we
have to remove all the edges from 0. This yields b(GV nr+(R)) = δ(GV nr+(R)). �
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