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Abstract. Dynamic equations of flow in a rectangular inclined channel are solved

numerically for the case where the friction force of the channel wall is neglected by

the gravity force. The flow discharge and the cross-section area along the channel

are physical quantity that is calculated. In non-dimensional variables, the equations

indicate solution in traveling wave occurring for critical flow. Near that type of

flow, the perturbation method is applied to get second order equations that are first

order partial differential equation with external force from the lower order equations.

Numerical solution is obtained by predictor-corrector method, and the effect of these

second order equations can be observed to the traveling wave, depending on the type

of the flow, su-percritical or subcritical.
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1. INTRODUCTION

We consider fluid flow with flux Q entering a rectangular channel. That
quantity and the cross-section area A of the channel satisfy a system of equations.
Many researchers have worked in term of many models of that flow; for example in
Agiralioglu [1] and Agiralioglu [2], who worked on kinematic wave for the model.
Akan and Yen [3] used diffusion approximation, also in Gonwa and Kavvas [4],
Ponce, Li and Simons [5], Sinha, Eswaran and Bhallamudi [6]. Another model was
derived base on 1-D Saint Venant’s equations, such as used and solved in Amein
and Fang [7], Fread [8], Koussis [9], Lamberti and Pilati [10], Lai and Khan [11].
The equations are then called dynamic wave equation. Those authors worked for
cylindrical and irregular cross-sections. For a rectangular channel with constant
width, such as in Keskin and Agiralioglu [12], simplified the model becoming dy-
namic cascade, by neglecting some terms so that the model could be solve using an
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explicit finite different method. Barati, et. al. [13] reported the work on dynamic
wave model in natural river. They analyzed the effect of the input parameter er-
ror to the output. Sulistyono and Wiryanto [14] applied the simplified model to a
trapezoidal channel. For prismatic channels, Retsinis, et. al. [15] solved the model
by hydrologic method. A staggered-grid finite volume method is another method
that is possible to applied to the dynamic model. Sulistyono and Wiryanto [16]
developed that numerical method for the dynamic model. The method is mainly
used for 1-D shallow water equations, see for example in Stelling and Duinmeijer
[17], Mungkasi, et. al. [18]. Instead of presenting the flood routing model in Q and
A, in Sulistyono and Wiryanto [14] and also Sulistyono, et. al. [19], the authors
expressed the model in similar shallow water equations, in term of the fluid depth
and the velocity, but involving the variation of topography and channel width. The
scheme was then used to observe the animation of the hydrograph as the effect of
the geometrical channel.

Different with works in the references above, here we concern with the mo-
mentum equation of the dynamic equations. Since the channel is inclined, the
gravity con-tributes in the fluid flow. But this quantity is chosen so that it makes
balancing the friction force to the channel wall. This is similar for the case when
the channel is without inclination and the friction is neglected, so that the momen-
tum equation does not involve forces relating to the gravity and bottom friction.
Therefore the model has constant solution. Small disturbance is then observed near
that constant solution and it is indicated that the solution as the combination of
two waves traveling in different direction, similar result obtained in Wiryanto and
Mungkasi [20], for the case of wave generation, and the analytical solution of that
problem presented in Wiryanto and Mungkasi [21].

In this work here, the character of the linear combination of waves is then
used to observe the model based on the physical phenomena involving boundary
condition, and it makes difficult in numerical calculation. Therefore, we use per-
turbation method near constant solution for the critical flow, presented by Froude
number F = 1, based on the constant solution of the flux and the cross section.
We follow in Tuck and Wiryanto [22], for the perturbation method. Characteristic
method, see for example in Wiryanto [23], is then applied for the first order of
the perturbation. For giving Q(0, t) we obtain Q(x, t) as traveling wave, and it
then generates the wave of A(x, t). The second order of perturbation is our main
consernt as the consequency for the flow near critical one. The equations for this
second order contain solution of the lower order. Discretization plays important
role in designing the numerical scheme. As the result, we present the waves of
Q and A. We found that the wave deformation depends on the type of the flow,
supercritical or super-critical. We present some simulations in this paper.
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2. PROBLEM FORMULATION

We consider fluid flow with discharge Q in an inclined rectangular chan-nel
as illustrated in Figure 1. The profile of the channel with longitudinal flow is
illustrated in Figure 1a, and the cross section of the channel is illustrated in Figure
1b. The channel has constant width b and the height of the fluid is h that is the
same value along the channel width, i.e. function of position x and time t, so the
cross-section area is A = hb and Q = uh = ubh. Here, u(x, t) is the fluid velocity. If
Sf is the friction at the channel wall and S0 is the slop of the channel, the dynamic
equations can be seen in Cunge at. al. [24] also Keskin and Agiralioglu [12]

∂A

∂t
+
∂Q

∂x
= 0 (1)

∂Q

∂t
+
∂Q2/A

∂x
+ gA

∂h

∂x
+ gA (Sf − S0) = 0 (2)

Where g is the acceleration of gravity. For constant b, the thirth term in (2) can

be written as gA
b

∂A
∂x , so that the model consists of two quantities A and Q.

Figure 1. The sketch of the flow and the coordinates. (a) Longitudi-
nal flow (b) Cross section of the channel

In case the effect of gravity, caused by inclining of the channel, can be ne-
glected by the wall friction, i.e. Sf ∼ S0 , the equations have any constant solution,
namely A0 and Q0. Based on these quantities we scale the variables. Note that
the space is scaled with respect to length L and time is scaled with respect to
LA0/Q0. The continuity equation in nondimensional variables remains as (1) and
the momentum equation becomes

∂Q

∂t
+
∂
(
Q2/A

)
∂x

+
1

2F 2

∂A2

∂x
= 0 (3)

Where F is Froude number, defined as F 2 = bQ2
0/(gA

3
0). Our task is to solve (1)

and (3) for given initial and boundary conditions. To do so, we do some stages to
analyze the solution before we develop the numerical scheme.
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3. LINEARIZED MODEL

From the scaling process, now we determine the equations near the constant
solution. We write {

A = 1 +A1

Q = 1 +Q1
(4)

Index indicates the order of the perturbation. We then substitute (4) into (1) and
(3), then simplify the denominator to get equations{

∂A1

∂t + ∂Q1

∂x = 0
∂Q1

∂t + 2∂Q1

∂x +
(

1
F 2 − 1

)
∂A1

∂x = 0
(5)

Following Wiryanto [23], (5) is written in matrix form

∂w̄

∂t
= B

∂w̄

∂x

where

w̄ =

(
A1

Q1

)
, B =

(
0 −1

1− 1
F 2 −2

)
The Eigen values and Eigen vectors of B are λ1 = −1 + 1

F corresponding to v̄1 =(
1

1− 1
F

)
and λ2 = −1− 1

F corresponding to v̄2 =

(
1

1 + 1
F

)
. We use these for

diagonalizing B by introducing w̄ = P ȳ, where

P =

(
1 1

1− 1
F 1 + 1

F

)
and suppose

ȳ =

(
y1
y2

)
so that (5) becomes uncoupled equations

∂ȳ

∂t
=

(
1
F − 1 0

0 − 1
F − 1

)
∂ȳ

∂x

It has a set of solutions

y1(x, t) = f1

(
x+

(
1

F
− 1

)
t

)
, y2(x, t) = f2

(
x−

(
1

F
+ 1

)
t

)
for any function f1 and f2 depending on the conditions of y1 and y2. These solutions
are then expressed into A1 and Q1, we obtain

A1(x, t) = y1(x, t) + y2(x, t)
Q1(x, t) =

(
1− 1

F

)
y1(x, t) +

(
1 + 1

F

)
y2(x, t)

A1 andQ1 are linear combination between two waves that possible travel in different
directions depending on F . Considering in flood routing, the boundary condition
at x = 0 for A or Q is physically as the input, and the propagation of that condition
in the flow domain is then observed. With two directions, stable numerical solution
will be difficult to be obtained. We propose to observe for F ∼ 1, and this must be
followed by adding the second order of the perturbation.
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4. EQUATIONS OF SECOND ORDER PERTURBATION

Instead of using expansion (4) we extend to higher order perturbation, as the
effect of the perturbation of the Froude number near 1. Similar approach can be
seen in [22], i.e. we write  A = 1 +A1 +A2

Q = 1 +Q1 +Q2

F = 1 + F1

(6)

How much A2 and Q2 involved in the calculation when F1 is given is our concernt
in this section. This can be obtained from the equations derived as follows. The
previous process is repeated and we obtain the system of equations{

∂A1

∂t + ∂Q1

∂x = 0
∂Q1

∂t + 2∂Q1

∂x = 0
(7)

for the first order. These equations can be solved analytically. The second equation
of (7) gives

Q1(x, t) = f(x− 2t)

for any function f . The first equation of (7) gives

A1(x, t) =
1

2
Q1(x, t)

Meanwhile, the second order perturbation is

∂A2

∂t
+
∂Q2

∂x
= 0 (8)

∂Q2

∂t
+
∂Q2

∂x
= 2(A1 −Q1)

(
∂Q1

∂x
− ∂A1

∂x

)
+ (2F1 −A1)

∂A1

∂x
(9)

The right hand side of the second equation can be expressed in Q1, using the
analytical solution of the first order. It becomes

∂Q2

∂t
+
∂Q2

∂x
=

(
F1 −

3

4
Q1

)
∂Q1

∂x
(10)

The function above related to Q1 plays an important role in determining Q2

and A2. Physically, we need to see the initial and boundary conditions. Since we are
interested in determining the perturbation near the constant solutions, the initial
condition of nondimensional variables is A(x, 0) = 1 and Q(x, 0) = 1. Therefore
they give A1(x, 0) = 0 and A2(x, 0) = 0, so do Q1(x, 0) = 0 and Q2(x, 0) = 0.

As long as the initial condition is undisturbed we have constant solutions of
A and Q. The disturbance can be different value of flux or cross-section area from
constant solution, coming from upstream. We express this physical phenomena as
the boundary condition. We give small disturbance of the flux Q(0, t) = 1 + f(t)
and zero disturbance to cross-section area A(0, t) = 1. This gives the exact solution
for Q1(x, t) = f(x− 2t) and it generates wave in form of A1(x, t) = − 1

2f(− 1
2x+ t).

This is then applied to the equations (8) and (10), to see how large the effect of
the Froude number to the linear solution.
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5. numerical simulation

In presenting the perturbation of the constant solutions A0 = 1 and Q0 = 1,
we solve numerically (7) for the first order and then (8)-(10) for A2 and Q2. First,
we discretize the space xj = j4x for j = 0, 1, · · · , J and time tn = n4t for n =
0, 1, · · · . 4x and4t are small number, representing step size of the space and time.
We then define An

1,j ≈ A1(xj , tn), similarly for Qn
1,j ≈ Q1(xj , tn), An

2,j ≈ A2(xj , tn)
and Qn

2,j ≈ Q2(xj , tn).

In solving (7), characteristic method is used, see in [23]. A finite difference
method of forward time forward space is applied to the second equation of (7), with
4t = 1

24x. This is important to satisfy the characteristic line x − 2t = constant.
This is then used to calculate the first equation of (7) formulated by finite difference
equation in form of

An+1
1,j = An

1,j −
4t
4x

{(
Qn+1

1,j+1 −Q
n+1
1,j−1

)
+
(
Qn

1,j+1 −Qn
1,j−1

)}
(11)

Here, we calculate Qn+1
1,j analytically following Q1(x, t) = f(x− 2t). The result for

each n above is saved and used in the finite difference equation of (10), written in

Qn+1
2,j = Qn

2,j −
4t
4x

R (12)

where

R =

{(
Qn

2,j −Qn
2,j−1

)
− (F1 −

3

4
Qn

1,j)
(
Qn

1,j −Qn
1,j−1

)}
.

This is then followed by finite difference equation of (8)

An+1
2,j = An

2,j −
4t

44x
{(
Qn+1

2,j+1 −Q
n+1
2,j−1

)
+
(
Qn

2,j+1 −Qn
2,j−1

)}
(13)

In running the numerical scheme above, we use 4x = 0.1 and 4t = 0.05.
The initial value is A0

1,j = 0, Q0
1,j = 0, and A0

2,j = 0, Q0
2,j = 0. This is followed

by left boundary condition An
2,0 = 0, Qn

2,0 = 0. As the right boundary condition,
we use absorbing boundary. Therefore, the only disturbance is the left boundary
condition Qn

1,0, namely incoming hydrograph, given as

Q1(0, t) =

{
1
2 sin(πt/20), 0 ≤ t ≤ 10
1
2 , 10 ≤ t (14)

This is not required for An
1,0, as it follows (11). The incoming flux will be followed

by changing the elevation. We demonstrate this case to test our numerical scheme.

The informations above are used to calculate Q1(x, t), and presented in Fig.
2a. We plot Q1 in 3-D for some values of x and t, so it can present the animation
of Q1(x, t). We obtain that plot of Q1(x, t) agrees with the analytical solution
described in the previous section, i.e. Q1(x, t) = f(x−2t) where f is related to the
boundary condition, in this case f is the right hand side of (14). The animation of
A1(x, t) is shown in Fig. 2b, similar plot to Q1(x, t), calculated up to t = 50. We
can see that the amplitude of A1 is half of the ampli-tude of Q1. This confirms to
the analytical solution.
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Figure 2. (a) Plot of some Q1(x, t) and (b) some A1(x, t) calculated
using boundary condition Q1(0, t) as given in (14) with zero initial con-
ditions for Q1 and A1.

Figure 3. (a) Plot of some Q2(x, t) and (b) some A2(x, t) calculated
using boundary condition Q1(0, t) as given in (14) with zero initial con-
ditions for Q2 and A2.

Now, the left boundary condition of Q1 in (14) is used for calculating Q2(x, t)
and A2(x, t), satisfying (8) and (10). In Fig. 3, we show plot ofQ2(x, t) and A2(x, t).
The Froude number F1 and Q1(x, t) effect to the solution of (10) by appearing
negative value of Q2 at a certain interval of x, and it increases by increasing time
t. It is shown in Fig. 3 for Q2(x, t) and also A2(x, t). We perform that plot as
the result of our calculation using F1 = 0.3. When we combine Q1 + Q2, and
A1 + A2, we plot at x = 20, 50 and 70 as shown in Fig. 4. We can see decreasing
the value of the flux and cross-section at a certain interval of time. This can be
seen the curve that is less than zero. We found that Q1(20, t) + Q2(20, t) < 0 in
interval t ∈ [4.55, 10.55], then in t ∈ [11.55, 25.55] for Q1(50, t) + Q2(50, t) and in
t ∈ [16.55, 35.55] for Q1(70, t) +Q2(70, t). That interval increases by increasing the
position of x .
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Figure 4. (a) Plot of Q1(x, t) + Q2(x, t) versus t at different position
x as indicated. (b) Similarly, plot of A1(x, t) + A2(x, t) versus t. Both
calculated using F1 = 0.3.

The solution of Q2 and A2 is less contribute then A1, but it should be taken
into account as it comes to involvement approximately up to 10%, and larger F1

increases the percentage. For different value of F1, we demonstrate the model using
F1 = −0.2. This gives the opposite result compared to F < 0. We show in Fig. 5
the calculation resulting plot of Q1 +Q2 and A1 + A2 at the same positions as in
Fig. 4.

The above procedure is then repeated to calculate Q1(x, t) and A1(x, t) for
different left boundary condition, and we obtain similar result. Instead of (14), we
use

Q1(0, t) =

 0.1t, 0 ≤ t ≤ 5
0.02(t− 10)2, 5 < t ≤ 10
0.5, t > 10

(15)

The Q1-wave travels without changing the form. Meanwhile the A1-wave is gener-
ated by that flux following (7). The quantity of A1 is half of Q1. This is then used
for calculating Q2. The result of Q1(x, t) + Q2(x, t) is plotted showing in Figure
5 at positions x = 0, 20, and 50, for the case of F1 = 0.3 shown in Fig. 6a and
for F1 = −0.1 shown in Fig. 6b. We can see the changing of the hydrograph at
different positions and using the Froude number. We can observe the evolution of
the incoming hydrograph (15), splitting into two waves and propagating in different
speed. For supercritical flow of the constant solution (F1 > 0), we found that the
incoming hydrograph splits into two waves, where the smaller one is in front of the
main wave with negative amplitude, followed by larger amplitude of the main wave
rather than the incoming hydrograph. Meanwhile for subcritical flow (F1 < 0), we
found similar but positive amplitude for small wave, and the main hydrograph is
smaller than the incoming one, i.e. measured at x = 0.
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Figure 5. (a) Plot of Q1(x, t) + Q2(x, t) versus t at different position
x as indicated. (b) Similarly, plot of A1(x, t) + A2(x, t) versus t. Both
calculated using F1 = −0.2.

Figure 6. Plot of Q1(x, t)+Q2(x, t) (vertical) versus t (horizontal) at
different position x as indicated, calculated using: (a) F1 = 0.3 and (b)
F1 = −0.1

6. conclusion

Dynamic equations of flood routing have been solved numerically without
involving the friction and gravity forces. The equations were firstly formulated by
perturbation method. We found that the lower order of the model corresponds to
the critical flow of the constant solution of the flux and the cross section. The
flux propagates as travelling wave, and so does the cross section, having amplitude
half of the flux. When it involves the higher order, we found that the incoming
flux splits into two waves. The character depends on the flow, supercritical or
subcritical. We have performed the simulation of the wave propagation.
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