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Abstract. In this paper, the notion of limit property (-Tayyab kamran, 2004-) and
common limit property (-Yicheng Liu & Jun Wu & Zhixiang Li, 2005-) for single-
valued and multi-valued mappings on metric spaces are generalized to S-metric
spaces. This idea is used to make some common fixed point theorems for single-
valued and multi-valued mappings by using a generalization of coincidence point in

S-metric spaces. We give an example of an S-metric which is not continuous.
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1. INTRODUCTION

Metric spaces are very important in mathematics. Generalized metric spaces
can be pointed out as b-metric, D-metric and fuzzy metric spaces. For more consid-
erations, see [2, 13, 4, 15]. In 2012, another generalized metric space called S-metric
space was introduced by Sedghi et al. [16]. In the setting of S-metric space see, for
example [5, 9, 12, 14], and the references therein. For application of fixed points
and common fixed points in different fields such as fractional calculus, existence
theory in fractional boundary value problems, see [1, 3, 6, 7, 8, 11].

In this paper, some common fixed point theorems for single-valued and multi-
valued mappings are proved in S-metric spaces by using a generalization of coinci-
dence point for pairs (f, F'), (f,F) and (g, G) in which the mappings f and g are
single-valued and the mappings F and G are multi-valued mappings with values in
S-metric space (CB(X), Sg), where Sg is the Hausdorff S-metric.

In section 2, some preliminaries are recalled. In section 3, we state our main theo-
rem. Section 4 is the conclusions.
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2. PRELIMINARIES
In this section some definitions, lemmas, theorems, and example are recalled.

Definition 2.1. [16] For nonempty set X, S : X3 — [0,00) is called an S-metric
on X if

(1): S(z9,2) =0 iff o =y = =
for all z,y,z,a € X. (X, S) is called an S-metric space.

Example 2.2. (1): Assume o > 0 and X = [, 00). Define
S: X3 —[0,00) by
if r=y=z
max{z,y,z} —«a otherwise.
The mapping S is an S-metric on X. We call it the mazx S-metric.
(2): Let X =[0,00). Define S : X3 — [0,00) by
ifr=y=z
r+y+2z otherwise.
Then, S is an S-metric on X.

S(x,y,2) =

S(x,y,z) =

Definition 2.3. [16] In S-metric space (X, S), assume that x is an
element of X, and r > 0.

(1): An open ball Bs(x,r) with center x and radius r is defined by Bs(z,r) =
{ye X : S(y,y,x) <r}.

(2): A sequence {yn} in X converges to y if limp 00 S(Yn, Yn,y) = 0. In this
case, we write Y, — y or lim, oo Yp = Y.

(3): A sequence {yn} in X is called a Cauchy sequence if
lirnn,m—)oo S(yna Yn, ym) =0.

(4): (X,S) is called complete if every Cauchy sequence converges.

(5): A subset A of X is called bounded if there exists € > 0 such that for all
a,be A, S(a,a,b) <e.

In (X,S), we set 1= {A C X : Ais a union of open balls}. T is a topology and
we set CB(X) ={A C X : A is nonempty closed and bounded}.

Example 2.4. Consider X = [0, 00) with the maz S-metric. Then, for a € X and
[0,7) if a<m;

{a} ifa>r

Definition 2.5. Let (X,S) be an S-metric space. We say S is continuous if
S(Tny Yn,y 2n) = S(z,y, 2), whenever T, = &, Yn = Y, 2n — 2.

r >0, we have: By(a,r) = {

Example 2.6. On X = [0,00), define
1 ' —(1,2,3);
S(xvyaz) - { Zf (x’y,Z) ( ’ 73)7

|z — z| + |y — 2| otherwise.
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S is a S-metric on X and it is not continuous. In fact, we have:
1 2 3
Tp=1+—-——=19,=24+—-—=2, z, =3+ — — 3.
n n n

But
3= ILm S(Tn, Yn, zn) # S(1,2,3) = 1.

Definition 2.7. Let (X,S) be an S-metric space. We define
Sy : CB(X)? — [0,00), by

Su(A,B,C)=H,(A,C)+ Hs(B,C),

where Hy(A, B) = max{hg(A, B),hs(B,A)},
hs(A, B) = sup{S(a,a,B) : a € A} and
S(a,a,B) = inf{S(a,a,b) : b € B}.
For more information see [14].

Theorem 2.8. [14] Sy is an S-metric on CB(X).
We call Sy the Hausdorff S-metric on CB(X) generated by S.

Remark 2.9. In Example 2.2(1) let u be a nondecreasing continuous function on

X = [o,00) and let F(z) = [o, u(z)]. We have:

uy) —a if y>ua;

Hy(Fz,Fy) = {u(x) —a if x>y

Let (X, S) be an S-metric space. The set of all nonempty compact subsets
of X is denoted by K(X).

Theorem 2.10. [14] Let (X, S) be a complete S-metric spaces. Then, (K(X), Su)
is a complete S-metric space.

The converse is also true. In fact, suppose that {z,} is a Cauchy sequence
in (X, S). By Theorem 3.4 [14], we have lim,, oo Sg({z,}, {zn}, {zm}) =
2limy, 00 S(Zn, Tn, Tm) — 0. That is, {{z,}} is a Cauchy sequence in (K(X), Sg).
So, by Lemma 3.9 [14], there exists # € X such that {x, } — {z}. That is, z,, — z.

Definition 2.11. Let (X, S) be an S-metric space.

(1) The mappings f : X — X and F : X — CB(X) are given. We say f and
F have a coincidence point at a € X if f(a) € F(a), also, we say f and F have a
common fized point at o € X if f(a) =a € F(a).

(2) The mapping F : X — CB(X) is given. We say the mapping f : X — X s
F-weakly commuting at x € X if f(f(z)) € F(f(z)).

Definition 2.12. Let (X,S) be an S-metric space. The mappings f,g: X — X
and F,G : X — CB(X) are given.
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(1) We say the pair (f, F) satisfies the limit property if there exist a sequence {x,}
in X, somet € X and A € CB(X) such that lim,_, o fx, =t € A =Ilim, o Fx,
(see [10]).

(2) We say The pairs (f,F) and (g,G) satisfy the common limit property if there
exist two sequences {x,} and {y,} in X, t € X, and A,B € CB(X) such that
limy, oo Fx, = A, limy, 00 Gy = B, limy 00 fTn =limy 00 gyn =t € AN B
(see [19]).

3. MAIN RESULT

In this section we state our mean theorem. Some examples and theorems
follow up.

Theorem 3.1. Let f be a self-mapping on an S-metric space (X,S) and let F be
a multi-valued mapping from X into CB(X) such that

(1): The pair (f,F) satisfies the limit property;
(2): For all two distinct elements x,y € X,

Su(Fz, Fx,Fy) < max{S(fz, fz, fy), S(fz, fz, Fz) + S(fy, fy. Fy),
S(fx, fz, Fy) + S(fy, fy, F)}. (1)
If fX is a closed subset of X, then

(a): f and F have a coincidence point.

(b): f and F have a common fixed point provided that for each v € C(f, F),
the mapping f is F-weakly commuting at v and f fv = fv, where C(f,F) =
{a € X : fa € Fa}.

Proof. By assumption, there exist a sequence {x,} in X, t € X and A € CB(X)
such that lim, o f(2,) =t € lim,, o0 Flz, = A. Also there exists a € X such
that ¢t = f(a). We put 2 = x,, and y = a in inequality (1) to obtain:

Su(Fan, Fry, Fa) < max{S(fn, frn, fa), S(fon, fon, Fo,) + S(fa, fa, Fa),
S(fan, fen, Fa) + S(fa, fa, Fxn)}.
By Lemma 3.3 [14], It follows that

lim Sy (Fz,, Fx,,Fa) = Sg(A, A, Fa) < S(fa, fa, Fa).

n—oo

By definition of Sy we have
25(fa, fa, Fa) < Su(A, A, Fa) < 5(fa, fa, Fa).

That is, S(fa, fa, Fa) = 0. So, f(a) € F(a). This proves (a). To prove (b), by (a),
there exist ¢,a € X such that t = fa € Fa. Since a € C(f,F), So ffa = fa and
ffa € Ffa. Hence, ft =t € Ft. O
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Example 3.2. Consider X = [1,00) with the maxz S-metric. Define f : X — X,
2 . .
F:X — CB(X) as f(z) =23 and F(z) = [1, ’”21,'1} respectively. The pair (f, F')

satisfies the limit property. In fact, we have

. 1 . 1
nh_)rréo f1+ ﬁ) =1le nh_)rr;o F(1+ E) ={1}.
For any two distinct elements x,y € X, the inequality (1) holds. For example, in
the case x <y, by Remark 2.9 we have

y?+1

Sy(Fz,Fz,Fy) =2Hg(Fz, Fy) = — 2.

On the other hand, S(fxz, fz, fy) = S(Fa?, Fa®, Fy?) = y® — 1. So,

Sy (Fz, Fx, Fy) < max{S(fz, fz, fy),S(fz, fx, Fx) + S(fy, fy, Fy),
S(fx, fx, F'y) + S(fy, fy, Fx)}.

Hence, by Theorem 3.1, f and F' have a coincidence point. That is, f(1) €
F(1). Since ff(1) = f(1) and ff(1) € F(1), f and F have common fixed point 1.

Theorem 3.3. Let f be a self-mapping on a complete S-metric space (X,S) and
2
let F' be a multi-valued mapping from X into K(X) and let A € (0, g) be a constant

such that for all two distinct members x,y € X:
Su(Fz, Fr, Fy) < Amax{S(fz, fz, fy), S(fz, fv, Fx), S(fy. fy, Fy),
S(fx, fz, Fy) + 5(fy, fy, Fa)}. (2)
If fX is a closed subset of X and Fx C K(fX), then

(a): f and F have a coincidence point;

(b): f and F have a common fized point provided that for each v € C(f,F),
f is F-weakly commuting at v and ffv = fv, where C(f,F) = {a € X :
fa € Fa}.

Proof. Since for each xg € X, @ # Fxy C fX, there exists z; € X such that
y1 = fx1 € Fag. So, by Lemma 3.11 [14], there exists yo = fzo € Fxq such that

1
S(y1,y1,y2) < §SH(F$07F$0,FCE1) + A

We obtain a sequence {y,} such that y, = fx, € Fa,_1 and
1
S(yna ynayn-l-l) < §SH(Fxn—lann—17 Fxn) + )\n

A
< §maX{S(fxn—1afxn—hf-rn)aS(fxn—lafxn—laan—l)a
S(fxna fxn7F$n)7S(fxn71a f.’L'nfl,Fl'n) + S(fxn7fmn7F$nfl)} + )\n
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Set an, = S(Yn, Yn, Yn+1)- Since f, € Frp_1,S(fen, fTn, Fr,—1) = 0. So,
A
(79} < 5 max{an—h S(.fxn—la fxn—lv F'rn—1)7 S(fxna fxny F.l?n),
S(frn-1, f¥n-1,Fzn)}+ A"

We know

S(fxn—laffn—lann—l) < S(fzn—1>f517n—17f517n) = an—las(ffmfmezn) < ap,
S(fxnflvfxnthfEn) g S(ynflaynfhyn#*l) < 2S(yn*17yn*17yn)
+ S(yn+1ayn+la yn) = 2an71 + ap.

So, a, < %(Qan,l + an) + A", That is, a, < ﬁan,l + ﬁ . By induction, we
2 2

A\ | A Aoy A\

< (15/\> —a0+1—|—(n—1)(1—)].

have

>

[\)

A\ T Y
Set b, = X ao+1+(n—1)(1—)].
1-3) 1 2
b, A .
Since lim,, 0 ol — <1, s0, limy, 00 a5, = 0.
by 1-32

Now, we show that {y,} is a Cauchy sequence.
For all m,n € N,m > n, by Lemma 3.1 [18]

S(yn,ymym) <2 2_: a; + Q_1
< 22(%)4% F1+(Gi—1)(1— %)] n (%)m_l[ao 14 (mo2)(1- %)]-

Therefore, lim,, 1m—00 S(Yn, Yn,Ym) = 0. So, there exists u € X such that
limy, oo fxn = limy, 00 Yn = u. Since fX is closed, there exists a € X such that
fa =w. By putting x = z,,,y = &, in (2) :

SH(Fxnvanvam) < )‘maX{S(fxnvf$n7fxm)vs(fxn,fxnaF1'n)a
S(fxm, [Tm, Fom), S(frn, fTn, Frm) + S(fTm, fTm, Fr,)} (3)
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Also:
S(fxn, frn, Fzn) < SYn, Yns Yn+1); (4)
S(fxmafxm7F$m) < S(ymaymvmerl); (5)
S(f$n7fxn7Fxm) < S(ynaynvym-&-l); (6)
S(fm, fem, Frn) < SWm, Ym, Ynt1)- (7)

Relations (4 — 7) imply lim, n—yoo Sa(FTy, Fay, Frm,) = 0.

So, {Fx,} is a Cauchy sequence. Hence, by Theorem 2.10 there exists A € K(X)
such that lim,, o Fz, = A. Since S(Yn,Yn, A) < %SH(Fxn,l, Fzx,_1,A). So,
limy, 00 S(Yn, Yn, A) = 0. By Lemma 3.4 [14], for every n, there exists a,, € A such
that S(Yn,Yn, A) = S(Yn, Yn, ). Hence, lim, 00 S(Yn, Yn, an) = 0. Lemma 2.1
[17], implies lim, oo vy = u € A. So (f, F) satisfies the limit property. The rest
of the proof is similar to Theorem 3.1. O

Example 3.4. Consider X = [0,1] with the max S-metric. For fz = x® and
Fz =0, %], the inequality (2) holds for all two distinct members x,y € X. For

example, in case x <y, by Remark 2.9, Hg(Fz, Fy) = %3. Hence

3
Su(F, Fr, Fy) = 2Hs(Fr, Fy) = % = 2S(fe, fr, fy) < 3 max(S(fz, fr, [y),
S(fx, fx, Fx),S(fy, fy, Fy), S(fx, fx, Fy) + S(fy, fy, Fx)}.

We have fX = X and FX C K(fX). So all conditions of Theorem 3.3 are
satisfied. Hence, f and F have commn fixed point 0.

Theorem 3.5. Let f, g be two self-mappings on an S-metric (X,S) and let F,G
be two multi-valued mappings from X into CB(X) such that

(1): The pairs (f, F) and (g,G) satisfy the common limit property;

(2): For all two distinct members x,y € X :

Su(Fz,Fr,Gy) < max{S(fz, fr,gy), S(fz, fz, Fx) + S(gy, 9y, Gy),
S(fz, fz,Gy) + S(gy, gy, Fx)}. (®)
If fX, gX are closed subsets of X, then

(a): f and F have coincidence point;

(b): g and G have coincidence point;

(c): f and F have common fized point provided that for each v € C(f,F), f
be an F-weakly commuting at v and ffv = fv;

(d): g and G have common fized point provided that for each v € C(g,G), g
be a G-weakly commuting at v and ggv = gv;

(e): If (¢) and (d) hold, then f,g, F and G have common fized point.

Proof. By assumption, there exist sequences {x,},{y,} in X and v € X, A, B €
CB(X) such that lim, oo Fz,, = A, limy, 00 Gy, = B and lim,, oo fz, = limy, 00 gyn =
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u € AN B. Assume that v,w € X such that lim,, - fz, = fv and lim, . gy, =
gw. We have fv = gw = u € AN B. To prove (a), we show, u = fv € Fv. Put
xz=wv and y =y, in (8) and approach n to oo, then

Sy (Fv, Fv,B) < S(fv, fv, Fv). Since

u= fv e B,2S(fv, fv, Fv) < Sy (Fv, Fv, B),

so, S(fv, fv, Fv) = 0. Therefore, u = fv € Fv. Similarly, put x = x,,y = w in
(8) and we have v = gw € Gw. Properties (c), (d), (e) are similar to Theorem
3.1(b). O

Example 3.6. Consider X = [0,00) with the max S-metric. For fr = x3, Fx =
[0, %3] and g = z*, Gz = [0, “‘%:], the pairs (f, F) and (g,G) satisfy the common
limit property, in fact

lim () = lim g(2) =0, lim F(2) = lim G(L) = {0}.

n—oo’ M n—oo” N n—00 n n—00 n
For all distinct members x,y € X, the inquality (8) holds.
For example, in case x < y, first assume x> < y*. Since, fort € Fx,S(t,t,Gy) =0,
so, hs(Fxz,Gy) = 0. Also since, fort € Gy, we have

0 ifteFx
t ifteGy— Fu,

4

s0, hs(Gy, Fr) = sup{S(t,t, Fx) : t € Gy} = % .
Hence, Hg(Fz,Gy) = % and Sy(Fx, Fz,Gy) = %.
On the other hand, we have S(fx, fx,gy) = y*, therefore the inequality (8) holds.
Now, assume y* < 23. It can be shown that Sy (Fz, Fz,Gy) = ﬁ,

On the other hand, we have S(fxz, fx,gy) = x, so the inequality (8) holds. We
have ff0 = f0 = 0 € Ff0, and gg0 = g0 = 0 € Gg0. So, all conditions of
Theorem 3.5 are satisfied. Therefore, f, g, F and G have common fized point. That
is, f0=g0=0¢€ FONGO={0}.

Corollary 3.7. If in Theorem 3.5 we set F = G, and f = g, Theorem 3.1 follows.

S(t,t,Fx) = {

Theorem 3.8. Let f,g be two self-mappings on a complete S-metric space (X, S)
and let F, G be two multi-valued mappings from X into K(X) and let X € (0, %) be
a constant such that for all two distinct members z,y € X :

Su(Fz,Fz,Gy) < Amax{S(fz, fz,gy), S(fz, fz, Fx),S(gy, gy, Gy),
S(fz, fx,Gy) + S(gy, gy, Fx)}. 9)
If fX,9X are closed subsets of X and FX C K(9X),GX C K(fX), then

(a): f and F have coincidence point;

(b): g and G have coincidence point;

(c): f and F have common fized point provided that for eachv € C(f, F), f
be an F-weakly commuting mapping at v and ffv = fv;
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(d): g and G have common fized point provided that for each v € C(g,G), g
1s an G-weakly commuting mapping at v and ggv = gv;
(e): If (c) and (d) hold, then f,g,F and G have common fized point.

Proof. For xg € X, there exists 1 € X such that y; = gx; € Fzg. So, by Lemma
3.11 [14], there exists y € Gz such that

1
S(y1,y1,92) < §5H(F9307F$0, Gz1) + A
There exists o € X such that yo = fxo € Gxy. So, there exists y3 € Fxo such that

1
S(y2,y2,y3) < iSH(Gml,le,Fxg) + A%
We obtain a sequence {y, } such that for every n > 1,
Yon = fZ‘Zn S G$2n—lay2n+1 = gTaon4+1 € Fx2n~

We have

1
S (Yan, Yon, Y2nt1) <§SH(G9€2n—1, Gxon—1, Fxoy) + A2

1
S(Yan—1,Y2n—1,Y2n) <§SH(F$2n—2, Fxo,_2,Groy_1) + A" h

Set an, = S(Yn, Yn, Yn+1)- Similar to Theorem 3.3, it can be shown that
A A
aan < 5(2a2n—1+a2n)+>\2n, ap—1 < 5(2a2n—2+a2n—1)+)\2n71'
So, for every n € N, we have
an < %(Qan_l + an) + A". Similar to Theorem 3.3, we have lim, - a, = 0 and
{yn} is a Cauchy sequence. So, there exists v € X such that lim, oo yn = u.
Hence, limy, 00 fro, = limy 00 gT2n+1 = u, and there exist a,b € X such that
fa = gb=w. To show {Fzs,} is a Cauchy sequence, we have
St (Fxon, Faa,, Fron) <285 (Fron, Faa,, GTony1)
+SH(F$2m7FLL'2m,GLL'2n+1). (10)
By (9) we have:
SH(F$2n, Fxay, G$2n+1) <A maX{S(fon, fron, gx2n+1), S(fona fron, F$2n)»
S(gx2n+la 9Tan+1, Gm2n+1)7 S(f$2n7 fona GxQn—‘rl) + S(gx2n+la 9Tan+1, FxQn)}
807 hmn—>oo SH(FJ"QWM Fxan Gann—i—l) =0.
Similarly, we have lim,,_ oo Sg(Fxom, Fxom, Grant1) = 0. It follows from (10)
that limy, m—yeo S (FTon, FXan, FTam) = 0. So, by Theorem 2.10, there exists A €

K(X) such that lim,, o Fzo, = A. Now, assume that the left side of inequality
(9) is S(fx, fx,gy). Then, we have

Su(Fx, Fz,Gy) < A S(fz, fz, gy). (11)
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Put = zap,y = Tap41 in (11) to obtain

Su(Fxon, Fro,, Grony1) < XA S(fxon, fTon, 9Tont1)-
So,

lim Sy (Fron, Fran, Grani1) = 0.
n—oo

Since lim,, oo Fxo, = A, by Lemma 2.1 [17], lim, 00 G211 = A. Assume that
the left side of inequality (9) is S(fx, fz, Gy) + S(9y, gy, F'x). Then, we have

Su(Fz, Fz,Gy) < A[S(fz, fz,Gy) + S(gy, gy, Fz)]. (12)
Put = zap,y = Tan4+1 in (12) to obtain
Su(Faon, Fron, Grant1) <AS(Yan, Y2n, GTant1) + S(Y2nt1, Yon+1, Fran)]
SALS(Y2ns Y2n, Yont2) + S(Yont1, Yont1s Y2nt1)]-
So,

lim Sy (Fzopn, Fxon, Grant1) = 0.
n—oo

Therefore, by Lemma 2.1 [17], lim;,,— oo GZant+1 = A. Similarly, if the left side of
inequality (9) is S(fz, fz, Fx) or S(gy, 9y, Gy), we have lim,, oo Gxa,t+1 = A. On
the other hand, we have:

1
S(Yon+1, Yont1, 4) < §SH(F$2n, Fxsy,, A).

So, lim, 00 S(Y2n+1, Yant+1, A) = 0. By Lemma 3.4 [14], for every n, there
exists ag,11 € A such that,

S(Yant1, Yont1, A) = S(Y2nt1, Yont1, X2nt1).
So, limy, 00 S(Y2n+1; Y2n+1, ¥2n+1) = 0. Hence, by Lemma 2.1 [17], lim,, 00 @241 =

u. Sou € A. That is, (f, F), (g9, G) satisfy the common limit property. The rest of
the proof is similar to Theorem 3.5. (]

Example 3.9. In Example 3.6, for all distinct members x,y € X:

1
Su(Fz, Fx,Gy) =75 (fe, fz,99)

1
<3 max{S(fx, fx,qy),S(fz, fx,Fx),S(9y, 9y, Gy),

S(fx, fx,Gy) + S(gy, gy, F'x)}.

So, all conditions of Theorem 3.8 are satisfied. That is, f,g, F and G have common
fixed point.
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Corollary 3.10. Ifin Theorem 3.8 we set F = G, and f = g, Theorem 3.3 follows.

4. CONCLUSIONS

We generalized some theorems in fixed point theorem work. Theorem 3.1 is
a generalization of Theorem 3.4 of Tayyab Kamran, 2004 [10]. Theorem 3.5 and
Theorem 3.8 are generalizations of Theorem 2.3 and Theorem 2.8 of Yicheng Liu,
Jun Wu, Zhixiang Li, 2005 [19], for single-valued and multi-valued mappings on
S-metric and Sgy-metric spaces respectively. We showed that not every S-metric is
necessarily continuous.
The notion of compatible for single-valued and multi-valued mappings can be de-
fined to investigate the existence of fixed points in S-metric spaces. Also, the
existence of solution for certain nonlinear integral equations can be investigated in
a future work.
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