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Abstract. Let X be a complete separable metric space and Y be a separable

Banach space. We provide a proof of equivalence by linking explicitly the following

statements: For every ε > 0 there exists a countable collection of closed sets {Cn}
of X such that X =

⋃∞
n=1 Cn and ωf (Cn) < ε for each n (Lebesgue’s Theorem)

and; For every nonempty perfect set K ⊂ X, the function f |K has at least one

point of continuity in K. In fact, C(f |K) is dense in K (Baire Characterization

Theorem). Moreover, replacing “closed” by “open” in the Lebesgue’s Theorem, we

obtain a characterization of continuous functions on space X.
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1. INTRODUCTION

Let X and Y be metric spaces. Rene Baire in his 1899 dissertation defined a
function f : X → Y to be of the first class or Baire class one or Baire-1 as pointwise
limit of a sequence of continuous functions {fn : X → Y }[1]. It was further shown
that for any complete separable metric space X and separable Banach space Y , the
following statements are equivalent: (See for instance [4] or [5])

(i) f : X → Y is Baire class one function;
(ii) for every open set G ⊆ Y , the inverse image of G under f is an Fσ set in

X;
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(iii) (Lebesgue’s Theorem) For every ε > 0 there exists a countable collection
of closed sets {Cn} of X such that

X =

∞⋃
n=1

Cn and ωf (Cn) < ε for each n.

(iv) (Baire Characterization Theorem) For every nonempty perfect set K in X,
the function f |K has a point of continuity in K.

The equivalence of the four statements is generally established by showing that
statement (i) is equivalent to statement (ii); statement (ii) is equivalent to statement
(iii); and statement (i) is equivalent to statement (iv). As historical note, it was
H. Lebesgue who first demonstrated on the real number line that statement (iii)
is a necessary and sufficient condition for the function f to be of Baire class one
while it was B. Gagaeff who proved the equivalence of statement (ii) and statement
(iii) in these general spaces. Please see references [2] and [4]. R. Baire proved the
equivalence of statement (i) to statement (ii) and statement (iv) [1].

As far as the authors know, there is no known proof that directly connects
Lebesgue’s Theorem and the Baire Characterization Theorem. In this paper, we
provide a proof of the equivalence of Lebesgue’s Theorem and the Baire Charac-
terization Theorem. As an aside result, we obtain a characterization of continu-
ous functions by simply replacing “closed” by “open” in the Lebesgue’s Theorem,
demonstrating once again the intimate connection between the first Baire class and
the class of continuous functions.

2. EQUIVALENCE OF LEBESGUE’S THEOREM AND BAIRE
CHARACTERIZATION THEOREM

In our discussion, (X, ρ) is any complete separable metric space and (Y, ‖·‖)
a separable Banach space, unless otherwise indicated. An open ball in X centered
at x0 with radius δ > 0 denoted by B(x0, δ) is the set {y ∈ X : ρ(x0, y) < δ}. We
denote the oscillation of a function f : X → Y on a set A ⊂ X as

ωf (A) = sup {‖f(x)− f(y)‖ : x, y ∈ A} .

Finally, the closure, interior and boundary of A are denoted by A , A◦ and ∂A,
respectively.

Before we proceed further, let us introduce first the tools necessary to prove
the main result. More specifically, the Baire Category Theorem as well as its corol-
lary plays a significant role in establishing the equivalence of Lebesgue’s Theorem
and the Baire Characterization Theorem. For the sake of completeness, we will
state the Baire Category Theorem and its the relevant corollary with the corre-
sponding proof. For the detailed proof of the Baire Category Theorem, one may
refer to [3, pp. 69-70].
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Theorem 2.1 (Baire Category Theorem). If E is a nonempty closed set and

E =

∞⋃
k=1

Ek

then there exist an open ball B and a natural number p such that E ∩ B 6= ∅ and
E ∩B ⊆ Ep.

Corollary 2.2. If E is a nonempty closed set and {Ek}∞k=1 is a sequence of closed
sets such that

E =

∞⋃
k=1

Ek

then there exist an open ball B and a natural number p such that E ∩ B 6= ∅ and
E ∩B ⊆ Ep.

Proof. This collorary follows from the fact that the closure of a closed set is the
closed set itself. 2

We are now ready to prove the equivalence of Lebesgue’s Theorem and the
Baire Characterization as rewritten below. The proof of the necessity part is based
on a proof of a lemma found in reference [3, p.77-78]. For notational purposes, we
let C(f) to denote the set of points of continuity of the function f .

Theorem 2.3. Let f : X → Y be a function. The following statements are equi-
valent:

(i) For every ε > 0 there exists a countable collection of closed sets {Cn} of X
such that

X =

∞⋃
n=1

Cn and ωf (Cn) < ε for each n.

(ii) For every nonempty perfect set K ⊂ X, the function f |K has at least one
point of continuity in K. In fact, C(f |K) is dense in K.

Proof. Suppose statement (i) holds. Let K be any nonempty perfect set in X.
We will show that f |K has at least a point of continuity in K. Suppose f |K is not
continuous at any point of K. It follows that for each x ∈ K there exists a real
number εx > 0 such that for any open ball I containing x there exist y, y′ ∈ K ∩ I
with ‖f(y)− f(y′)‖ ≥ εx. For each natural number n, let Kn be the set containing
all x ∈ K such that for all open ball I containing x there exist y, y′ ∈ K ∩ I with

‖f(y)− f(y′)‖ ≥ 1
n . Notice that K =

∞⋃
n=1

Kn. We claim that Kn is closed for each

n. Let p be any accumulation point of Kn and let B be any open ball containing p.
To show that p ∈ Kn, one must find y, y′ ∈ B ∩K such that ‖f(y)− f(y′)‖ ≥ 1

n .
Since p is an accumulation of Kn then the set B∩Kn contains at least one element
say q different from p. By definition of Kn, for every open ball B′ ⊆ B containing
q there exist s, t ∈ B′ ∩ K such that ‖f(s)− f(t)‖ ≥ 1

n . Since B′ ∩ K ⊆ B ∩ K
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then p ∈ Kn. Thus, Kn is closed for each natural number n as claimed.
By the corollary of the Baire Category Theorem, there exists an open ball I with
K ∩ I 6= ∅ and a positive integer n0 such that K ∩ I ⊆ Kn0 . Observe that we may
choose I so that K ∩ I ⊆ Kn0 . By statement (i), there exists a countable collection
of closed sets {Cn} such that

X =

∞⋃
n=1

Cn and ωf (Cn) <
1

n0
for each n.

Now, K ∩ I =

∞⋃
n=1

(
K ∩ I ∩ Cn

)
and since K ∩ I is a nonempty closed set then by

using again the corollary of the Baire Category Theorem there exists an open ball
U with K ∩ I ∩ U 6= ∅ and a positive integer p such that

K ∩ I ∩ U ⊆ K ∩ I ∩ Cp.

Observe that ωf (K ∩ I ∩ Cp) < 1
n0

since K ∩ I ∩ Cp ⊆ Cp . It remains to show

that ωf (K ∩ I ∩ U) ≥ 1
n0

to arrive at a contradiction. Notice that one can find

x0 ∈ K ∩ U ∩ I and open ball U ′ containing x0 such that U ′ ⊆ I ∩ U . Since
x0 ∈ Kn0

then there exist y, y′ ∈ K∩U ′ ⊆ K∩I∩U such that ‖f(y)− f(y′)‖ ≥ 1
n0

.

Consequently, ωf (K ∩ I ∩U) ≥ 1
n0

. All these show that f |K is continuous at some

point of K. Finally, let us show that C(f |K) is dense in K. Let x ∈ K. We are
done if we can show that x is a limit point of C(f |K). Let B be any open ball
containing x and A be any nonempty closed ball such that A ⊂ B and K ∩A 6= ∅.
Since K∩A is a closed set then the restricted function f |K∩A has at least one point
of continuity in K ∩A◦. Clearly, this is also a point of continuity of the restricted
function f |K . All these tell us that B ∩C (f |K) contains a point other than x and
so C(f |K) is dense in K.

Suppose statement (i) does not hold. Then there exists a real number ε0 > 0

such that for any countable collection of closed sets {Kn} in X with X =

∞⋃
n=1

Kn

there is always some set Kj such that ωf (Kj) ≥ ε0. We claim that there exists

a countable collection of open balls {Bi} of X such that Kj =

∞⋃
i=1

(Bi ∩Kj) and

ωf (Bi ∩ Kj) < ε0 for all natural number i. Contradiction is achieved by noting
that the set Bi ∩Kj is of type Fσ for each natural number i. By statement (ii),
the restricted function f |Kj

has a dense set of points of continuity in Kj . Observe

that C
(
f |Kj

)
* ∂Kj . Otherwise, Kj ⊆ C

(
f |Kj

)
⊆ ∂Kj . It follows that there is

at least one point of continuity x′ ∈ Kj of f |Kj
such that x′ /∈ ∂Kj . Consequently,

there exists an open ball B′ in X containing x′ such that ωf (B′ ∩Kj) < ε0. Next,
consider the set Kj−B′ and restrict the function f to this set. Notice that Kj−B′
is closed. By assumption, the restricted function f |Kj−B′ has a dense set of points
of continuity in Kj − B′. Moreover, C(f |Kj−B′) * ∂B′ ∩ Kj . It follows that
the restricted function f |Kj−B′ has at least one point of continuity x′′ ∈ Kj − B′
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such that x′′ /∈ ∂B′ ∩Kj . Thus, there exists an open ball B′′ containing x′′ such

that B′′ ∩
(
B′ ∩Kj

)
= ∅ and ωf (B′′ ∩ (Kj −B′)) < ε0. However, notice that

B′′ ∩ (Kj −B′) = B′′ ∩ Kj . Next, consider the closed set (Kj −B′) − B′′ and
restrict the function f to this set. By the same argument there exists an open
ball B′′′ such that B′′′ ∩

[
B′′ ∩ (Kj −B′)

]
= ∅ and ωf (B′′′ ∩ [(Kj −B′)−B′′]) =

ωf (B′′′ ∩Kj) < ε0. Continue the process until one obtains a collection of open balls

{Bα}α possibly uncountable such that Kj =
⋃
α

(Bα ∩Kj) and ωf (Bα ∩Kj) < ε0

for any α. Since X is a separable space and so Kj is a separable subspace of X,
one can find a countable collection of open balls {Bi ∩Kj}∞i=1 relative to Kj from

the collection {Bα ∩Kj}α such that Kj =

∞⋃
i=1

(Bi ∩Kj) and ωf (Bi ∩Kj) < ε0 for

all i. Clearly, this is a contradiction. �

At this point, it would be instructive to provide example that illustrates the
extent of use of the main theorem.

Example 2.4. Consider the following function on [0, 1]

f(x) =

{
1
q if x = p

q (x is rational ),with p ∈ Z and q ∈ N coprime

0 if x is irrational.

It is known that the set of points of points of discontinuity of this function is the set
D(f) = [0, 1] ∩ Q. Let ε > 0. There exists N ∈ N such that for all n ≥ N , 1

n < ε.
Notice that the set Dε = {x : |f(x)| ≥ ε} is a finite set, say Dε = {r1, r2, . . . , rk},
for some k ∈ N. Further, we have

f(x) < ε, for all x ∈ [0, 1] \Dε. (1)

If we assume that r1, r2, . . . , rk is in increasing order, then

[0, 1] \Dε = [0, r1) ∪ (r1, r2) ∪ · · · ∪ (rk, b].

Observe that each interval in the union above can be expressed as a union of
countable closed intervals. Furthermore, in view of (1) on each of these intervals the
oscillation of f is less than ε satisfying statement (i) of Theorem 2.3. On the other
hand, statement (ii) of Theorem 2.3 is likewise satisfied. It is enough to observe
that the set of of points of discontinuity of f is countable and any nonempty perfect
set is uncountable. It follows that for any nonempty perfect set K, the restricted
function f |K has always at least one point of continuity in K.

Finally, let us end by stating a result that demonstrates the intimate connec-
tion between the class of Baire one functions and the class of continuous functions.
As mentioned earlier, replacing “closed” by “open” in the Lebesgue’s Theorem, one
readily obtains a characterization of continuous functions on space X. Let (X, ρ1)
be a separable metric space and (Y, ρ2) be any metric space. It is a standard ex-
ercise to show that if f : X → Y is continuous on the space X then for each real
number ε > 0 there exists a countable collection of open sets {Un} in X such that
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X =
⋃∞
n=1 Un and ωf (Un) < ε for each n. However, it seems that no one points out

that the converse of the previous statement also holds true. That is, the condition
that for every ε > 0 there corresponds a countable collection of open sets {Un} in
X such that X =

⋃∞
n=1 Un and ωf (Un) < ε for each n is a necessary and sufficient

condition for the function f to be continuous on the space X. As much as we would
like to imagine that this is an old result, we are unable to find a reference. For
clarity and for the sake of completeness, we will write it as a theorem below and
provide a proof of the necessity part of the theorem.

Theorem 2.5. The function f : X → Y is continuous if and only if for every
ε > 0 there exists a countable collection of open sets {Un} in X such that

X =

∞⋃
n=1

Un and ωf (Un) < ε for each n.

Proof. Let x ∈ X. By the assumption, there exists a countable collection of open
sets {Un} of X such that

X =

∞⋃
n=1

Un and ωf (Un) < ε for each n.

There exists a least index n(x) such that x ∈ Un(x). Since Un(x) is open and
x ∈ Un(x) there is a positive number δx such that B(x, δx) ⊂ Unx

. Take δ = δx.
Suppose that ρ1(x, y) < δx. It follows that y ∈ B(x, δx) ⊂ Unx . Hence,

ρ2(f(x), f(y)) ≤ ωf (B(x, δx)) ≤ ωf (Unx
) < ε.

Hence, f is continuous on X. �
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