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Abstract. In this article, we introduce the notion of screen pseudo-slant lightlike

submersions from an indefinite Kaehler manifold onto a lightlike manifold which

include complex (invariant), screen real (anti-invariant), screen slant and SCR light-

like submersions. We study some properties of proper screen pseudo-slant lightlike

submersions with non-trivial examples and gave a characterization theorem. We

also obtain integrability conditions of distributions involved in the definition of such

submersions.
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1. INTRODUCTION

A smooth map f : (M, g) → (B, g′) between Riemannian manifolds M
and B is called a Riemannian submersion if the derivative map f∗ is surjective
and g(X,Y ) = g′(f∗X, f∗Y ), where X and Y are vector fields tangent to the hori-
zontal space (Ker f∗)

⊥. Riemannian submersions between Riemannian manifolds
were studied by ONeill [9] and Gray [8]. In [10], O’ Neill studied Semi-Riemannian
submersions between semi-Riemannian manifolds. In [14], Sahin and Gündüzalp
defined lightlike submersions from semi-Riemannian manifolds onto lightlike man-
ifolds. In [5], Duggal and Sahin gave the definition of SCR-lightlike submanifolds
of an indefinite Kaehler manifold. Sahin [12, 13] introduced the notion of a slant
and screen-slant lightlike submanifold of an indefinite Hermitian manifold. In [16],
Shukla and Yadav gave the notion of screen pseudo-slant lightlike submanifolds of
an indefinite Kaehler manifold. In the present paper, we study screen pseudo slant
lightlike submersions as a natural generalization of screen slant and SCR lightlike
submersions.

The present article is organized as follows. In Section 2, we give some basic
definitions and formulas related to this paper. In Section 3, we define screen pseudo-
slant lightlike submersions with non- trivial examples. In this section, we also obtain
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a characterization theorem and investigate integrability conditions of distributions
involved in the definition of such submersions.

2. PRELIMINARIES

Let (M,J) be a 2m-dimensional almost complex manifold, where J is an
almost complex structure and g is a semi-Riemannian metric with index 0 < r ≤
2m. Then M is called an indefinite almost Hermitian manifold, if

g(JX, JY ) = g(X,Y ), ∀X,Y ∈ Γ(TM). (1)

Also, if J is a complex structure on M , then M is said to be an indefinite Hermitian
manifold. Now, let (M,J, g) is an indefinite almost Hermitian manifold with Levi-
Civita connection ∇. Then, M is called an indefinite Kaehler manifold if

(∇XJ)Y = 0, ∀X,Y ∈ Γ(TM). (2)

Let (M, g) be a real m-dimensional C∞ manifold. The Radical (or null) space
Rad TpM of TpM is defined as Rad TpM = {ξ ∈ TpM : g(ξ,X) = 0, ∀X ∈ TpM}.
If Rad TM : p ∈M → Rad TpM defines a smooth distribution of rank r > 0 of M
such that 0 < r ≤ m, then Rad TM is called a radical or null distribution of M
and the manifold M is called an r-lightlike manifold.

Let f : (M, g) → (B, g′) be a smooth submersion from a semi-Riemannian
manifold M onto an r-lightlike manifold B. Then, Ker f∗p = {X ∈ TpM : f∗pX =
0} and (Ker f∗p)

⊥ = {Y ∈ TpM : g(Y,X) = 0, ∀X ∈ Ker f∗p}. As TpM is a
semi-Riemannian vector space (Ker f∗p)

⊥ may not be a complementary space to
Kerf∗p. Assume that Ker f∗p ∩ (Ker f∗p)

⊥ = ∆p 6= {0}. In this case ∆ : p→ ∆p

is said to be a radical distribution of M . As ∆ is a lightlike distribution, we
have Ker f∗ = ∆ ⊥ S(Ker f∗). Similarly (Ker f∗)

⊥ = ∆ ⊥ S(Ker f∗)
⊥.

Here S(Ker f∗)
⊥ is the complementary distribution to ∆ in (Ker f∗)

⊥. Now, let
dim(∆) = r > 0. Since ∆ ⊂ (S(ker f∗)

⊥)⊥ and (S(kerf∗)
⊥)⊥ is non-degenerate,

then there exists null vectors N1, N2..., Nr, such that g(Ni, Nj) = 0, g(ξi, Nj) = δij ,
where {Ni} and {ξi} are smooth null vector fields in S(Ker f∗)

⊥ and lightlike basis
of ∆, respectively. Assume that ltr(ker f∗) denotes the distribution spanned by null
vector fields N1, N2..., Nr. Then tr(kerf∗) = ltr(kerf∗) ⊥ S(kerf∗)

⊥. Moreover,
we have

TM = (∆⊕ ltr(Ker f∗)) ⊥ S(Ker f∗) ⊥ S(Ker f∗)
⊥. (3)

A Riemannian submersion f : (M, g) → (B, g′) is said to be r-lightlike sub-
mersion if

dim∆ = dim{(Ker f∗)∩(Ker f∗)
⊥} = r, 0 < r < min{dim(ker f∗), dim(ker f∗)

⊥};

isotropic submersion if dim ∆ = dim(Ker f∗) < dim(Ker f∗)
⊥; co-isotropic sub-

mersion if dim ∆ = dim(Ker f∗)
⊥ < dim(Ker f∗) and totally lightlike sub-

mersion if dim ∆ = dim(Ker f∗)
⊥ = dim(Ker f∗). A lightlike submersion

f : (M, g) → (B, g′) determines two (1,2) type tensors fields T and A on M ,
given as

TXY = h∇νXνY + ν∇νXhY, (4)
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AXY = ν∇hXhY + h∇hXνY. (5)

Here T and A are vertical and horizontal tensors, respectively. For vertical tensor
T , we have

TXY = TYX, ∀ X,Y ∈ Γ(Ker f∗). (6)

Now, we suppose that f is a lightlike submersion from a real (m + n)-
dimensional semi-Riemannian manifold (M, g) onto a lightlike manifold (B, g′),
with m,n > 1. Further, let Ker f∗ be an m-dimensional lightlike distribution of
M and tr(Ker f∗) is the complementary distribution of Ker f∗ in M with respect
to the pair {S(Ker f∗), S(Ker f∗)

⊥}. Let us denote by ĝ the induced metric on
Ker f∗ of g and by ∇ the Levi-Civita connection on M . Then, in view of (4), we
have

∇UV = ∇̂UV + TUV, (7)

∇UX = TUX +∇⊥UX, (8)

∀ U, V ∈ Γ(Ker f∗), X ∈ Γ(Ker f∗)
⊥, where ∇̂UV = ν∇UV and ∇⊥UX = h∇UX.

Here {∇̂UV, TUX} and {TUV,∇⊥UX} belong to Γ(Ker f∗) and Γ(tr(Ker f∗)), re-
spectively. Let S(Ker f∗)

⊥ 6= {0}. Now, we denote by L and S the projections of
tr(Ker f∗) on ltr(Ker f∗) and S(Ker f∗)

⊥, respectively. Then, from (7) and (8),
we have

∇UV = ∇̂UV + T lUV + T sUV, (9)

∇UN = TUN +∇⊥lU N +D⊥s(U,N), (10)

∇UW = TUW +D⊥l(U,W ) +∇⊥sU W, (11)

∀ U, V ∈ Γ(Ker f∗), N ∈ Γ(ltr(Ker f∗)) and W ∈ Γ(S(Ker f∗)
⊥). From equations

(9)-(11) and the fact that ∇ is a metric connection, we obtain

g(T sUV,W ) + g(V,D⊥l(U,W )) = −ĝ(TUW,V ), (12)

g(D⊥s(U,N),W ) = −g(N,TUW ) (13)

If f is either r-lightlike or co-isotropic submersion, then we write

∇̂Uξ = T ∗Uξ +∇∗⊥U ξ, (14)

∀ U ∈ Γ(Ker f∗), ξ ∈ Γ(∆). Here T ∗Uξ ∈ Γ(S(Ker f∗)) and ∇∗⊥U ξ ∈ Γ(∆).

3. Screen Pseudo-Slant Lightlike Submersions

In this section, we introduce the notion of screen pseudo-slant lightlike sub-
mersions from an indefinite Kaehler manifold onto a lightlike manifold. First, we
gave the following lemma, which is useful to define screen-pseudo slant lightlike
submersions.

Lemma 3.1. Let f : (M, g) → (B, g′) be a 2r-lightlike submersion from an in-
definite Kaehler manifold M onto a lightlike manifold B and Ker f∗ is a lightlike
distribution on M . Then the screen distribution S(Ker f∗) is Riemannian.
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Proof. Let M be a real (m+n)-dimensional indefinite Kaehler manifold and Ker f∗
be a lightlike distribution of dimension m. Then there exists a local quasi orthonor-
mal field of frames on M along Ker f∗

{ξi, Ni, Uα, Za}, i ∈ {1, ..., 2r}, α ∈ {2r + 1, ...,m}, a ∈ {2r + 1, ..., n},
where {ξi}, {Ni} are lightlike basis of ∆, ltr(Ker f∗) and Uα, Za are orthonor-
mal basis of S(Ker f∗), S(Ker f∗)

⊥, respectively. With the help of null basis
{ξ1, ..., ξ2r, N1, ..., N2r} of ∆⊕ ltr(Ker ∗), we construct following orthonormal ba-
sis {X1, ..., X4r}

X1 =
1√
2

(ξ1 +N1), X2 =
1√
2

(ξ1 −N1),

X3 =
1√
2

(ξ2 +N2), X4 =
1√
2

(ξ2 −N2),

... ...

... ...

X4r−1 =
1√
2

(ξ2r +N2r), X4r =
1√
2

(ξ2r −N2r).

Thus, Span {ξi, Ni} is a non-degenerate space of index 2r, which enables us to
conclude that ∆ ⊕ ltr(Ker ∗) is non-degenerate with constant index 2r on M .
Moreover,

ind(TM) = ind(∆⊕ ltr(Ker f∗)) + ind(S(Ker f∗) ⊥ (S(Ker f∗))
⊥),

implies that S(Ker f∗) ⊥ S(Ker f∗)
⊥ has a constant index zero. Hence, S(Ker f∗)

and S(Ker f∗)
⊥ are Riemannian distributions. �

Definition 3.2. Let f : (M, g, J) → (B, g′) be a 2r-lightlike submersion from
an indefinite Kaehler manifold M onto a lightlike manifold B, such that 2r <
dim(Ker f∗). Then we say that f is a screen pseudo-slant lightlike submersion if

(a) the lightlike distribution ∆ is invariant with respect to J ,
(b) there exists two non-null distributions D1 and D2, such that S(Ker f∗) =

D1 ⊕D2,
(c) D1 is anti-invariant, i.e., JD1 ⊆ S(Ker f∗)

⊥,

(d) D2 is slant with slant angle θ
(
6= π

2

)
, that is, for every p ∈ M and for every

non-zero vector U ∈ (D2)p, the angle θ(U) between the vector subspace (D2)p

and JU is a constant
(
6= π

2

)
.

From the definition, it is clear that

(a) if D1 = 0, then f is a screen slant lightlike submersion.
(b) if D2 = 0, then f is a screen real lightlike submersion.
(c) if D1 = 0 and θ = 0, then f is a complex lightlike submersion.
(d) if D1 6= 0 and θ = 0, then f is a SCR-lightlike submersion.

Thus, the above class of lightlike submersions is a natural generalization of screen
slant, screen real, complex and SCR-lightlike submersions. If D1 6= 0, D2 6= 0 and
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θ 6= 0, then f is called a proper screen pseudo-slant lightlike submersion. Now, we
give some non-trivial examples of screen pseudo-slant lightlike submersions.

Denote by Rnr,q,p the space Rn equipped with the semi-Riemannian met-
ric g, such that g(ei, ej)r,q,p = (Gr,q,p)ij , i ∈ {1, ..., n}, where ei is the stan-
dard basis of Rn and Gr,q,p is the diagonal matrix determined by g, i.e., Gij =
diagonal(0, ..., 0︸ ︷︷ ︸

r-times

,−1, ...,−1︸ ︷︷ ︸
q-times

, 1, ..., 1︸ ︷︷ ︸
p-times

).

Example 3.3. Let R12
0,2,10 and R6

2,0,4 endowed with the semi-Riemannian metric

g = − (dx1)2 − (dx2)2 + (dx3)2 + (dx4)2 + (dx5)2 + (dx6)2

+ (dx7)2 + (dx8)2 + (dx9)2 + (dx10)2 + (dx11)2 + (dx12)2,

and degenerate metric g′ = (dy3)2 + (dy4)2 + (dy5)2 + (dy6)2, where x1, ... , x12
and y1, ... , y6 are the canonical coordinates on R12 and R6, respectively. Define
the mapping f : (R12, g)→ (R6, g′) as

(x1, ..., x12) 7−→
(
x1 + x5, x2 + x6, x3, x7,

x9 + x12√
2

, x11

)
.

Then, we can see easily that f is a 2-lightlike submersion with

∆ = Kerf∗ ∩ (Kerf∗)
⊥ = Span

{
ξ1 =

∂

∂x1
− ∂

∂x5
, ξ2 =

∂

∂x2
− ∂

∂x6

}
.

Since Jξ1 = ξ2, ∆ is invariant with respect to J . By easy calculation we can see
that

D1 = Span
{ ∂

∂x4
,
∂

∂x8

}
is anti-invariant distribution. Further, we see that

D2 = Span
{ 1√

2

( ∂

∂x9
− ∂

∂x12

)
,
∂

∂x10

}
is slant distribution with slant angle θ = π

4 . Thus, f is a proper screen pseudo-slant
lightlike submersion.

Example 3.4. Let R8
0,2,6 and R4

2,0,2 be endowed with the semi-Riemannian metric

g = − (dx1)2 − (dx2)2 + (dx3)2 + (dx4)2 + (dx5)2 + (dx6)2 + (dx7)2 + (dx8)2,

and degenerate metric g′ = (dy3)2 + (dy4)2, where x1, ... , x8 and y1, ... , y4 are
the canonical coordinates on R8 and R4, respectively. Define the map f : (R8, g)→
(R4, g′) as (x1, ..., x8) 7−→

(
x1 + x7, x2 + x8,

x4 + x6√
2

, x3

)
. Then

Ker f∗ = Span
{
U1 =

∂

∂x1
− ∂

∂x7
, U2 =

∂

∂x2
− ∂

∂x8
, U3 =

1√
2

( ∂

∂x4
− ∂

∂x6

)
, U4 =

∂

∂x5

}
and

(Ker f∗)
⊥ = Span

{
U1, U2, X =

1√
2

( ∂

∂x4
+

∂

∂x6

)
, Y =

∂

∂x3

}
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Thus f is a 2-lightlike submersion with ∆ = Kerf∗ ∩ (Kerf∗)
⊥ = Span{U1, U2},

which is invariant with respect to J . Also, D2 = S(Ker f∗) = Span{U3, U4} is
slant with slant angle θ = π

4 . Hence, f is a screen slant lightlike submersion.

Example 3.5. Let R8
0,2,6 and R4

2,0,2 be endowed with the semi-Riemannian metric

g = − (dx1)2 − (dx2)2 + (dx3)2 + (dx4)2 + (dx5)2 + (dx6)2 + (dx7)2 + (dx8)2,

and degenerate metric g′ = (dy3)2 + (dy4)2, where x1, ... , x8 and y1, ... , y4 are
the canonical coordinates on R8 and R4, respectively. Define the map f : (R8, g)→
(R4, g′) as (x1, ..., x8) 7−→

(
x1 + x5, x2 + x6,

x3 − x7√
2

,
x4 − x8√

2

)
. Then, we obtain

Kerf∗ = Span
{
U1 =

∂

∂x1
− ∂

∂x5
, U2 =

∂

∂x2
− ∂

∂x6
,

U3 =
1√
2

( ∂

∂x3
+

∂

∂x7

)
, U4 =

1√
2

( ∂

∂x4
+

∂

∂x8

)}
,

and

(Kerf∗)
⊥ = Span

{
U1, U2, X =

1√
2

( ∂

∂x3
− ∂

∂x7

)
, Y =

1√
2

( ∂

∂x4
− ∂

∂x8

)
.

Then, f is a 2-lightlike submersion with ∆ = Span{U1, U2}. Since JU1 = U2, ∆
is invariant with respect to J . Further, since JU3 = U4, S(Ker f∗) = D2 =
Span{U3, U4} is slant distribution with slant angle θ = 0, that is, D2 is invariant.
Thus, D1 = 0. Hence f is a complex lightlike submersion.

Example 3.6. Let R12
0,4,8 and R6

4,0,2 be endowed with the semi-Riemannian metric

g = − (dx1)2 − (dx2)2 − (dx3)2 − (dx4)2 + (dx5)2 + (dx6)2

+ (dx7)2 + (dx8)2 + (dx9)2 + (dx10)2 + (dx11)2 + (dx12)2,

and degenerate metric g′ = (dy5)2 + (dy6)2, where x1, ... , x12 and y1, ... , y6
are the canonical coordinates on R12 and R6, respectively. Let us define the map

f : (R12, g)→ (R6, g′), (x1, ..., x12) 7−→
(x1 − x7√

2
,
x2 − x8√

2
,
x3 + x9

2
,
x4 + x10

2
, x6, x12

)
.

Then, we obtain

Kerf∗ = Span
{
U1 =

1√
2

( ∂

∂x1
+

∂

∂x7

)
, U2 =

1√
2

( ∂

∂x2
+

∂

∂x8

)
, U3 =

1

2

( ∂

∂x3
− ∂

∂x9

)
,

U4 =
1

2

( ∂

∂x4
− ∂

∂x10

)
, U5 =

∂

∂x5
, U6 =

∂

∂x11

}
,

and

(Kerf∗)
⊥ = Span

{
U1, U2, U3, U4, X =

∂

∂x6
, Y =

∂

∂x12

}
.

Thus, f is a 4-lightlike submersion with ∆ = Span{U1, U2, U3, U4}. As JU1 = U2

and JU3 = U4, ∆ is invariant with respect to J . Also JU5 = X and JU6 = Y ,
implies that S(Ker f∗) = D1 = Span{U5, U6} is anti-invariant. Also D2 = 0.
Hence f is a screen real lightlike submersion.
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Example 3.7. Let R16
0,2,14 and R8

2,0,6 be endowed with the semi-Riemannian metric

g = − (dx1)2 − (dx2)2 + (dx3)2 + (dx4)2 + (dx5)2 + (dx6)2

+ (dx7)2 + (dx8)2 + (dx9)2 + (dx10)2 + (dx11)2 +

(dx12)2 + (dx13)2 + (dx14)2 + (dx15)2 + (dx16)2,

and degenerate metric g′ = (dy3)2 + (dy4)2 + (dy5)2 + (dy6)2 + (dy7)2 + (dy8)2,
where x1, ... , x16 and y1, ... , y8 are the canonical coordinates on R16 and R8,
respectively. Let us define the map f : (R16, g)→ (R8, g′) as

(x1, ..., x16) 7−→
(
x1 + x3, x2 + x4,

x5 − x11√
2

,
x6 − x12√

2
,

x7 + x9√
2

,
x8 + x10√

2
, x14, x16

)
.

Then, we obtain

Kerf∗ = Span
{
U1 =

∂

∂x1
− ∂

∂x3
, U2 =

∂

∂x2
− ∂

∂x4
, U3 =

1√
2

( ∂

∂x5
+

∂

∂x11

)
,

U4 =
1√
2

( ∂

∂x6
+

∂

∂x12

)
, U5 =

1√
2

( ∂

∂x7
− ∂

∂x9

)
,

U6 =
1√
2

( ∂

∂x8
− ∂

∂x10

)
, U7 =

∂

∂x13
, U8 =

∂

∂x15

}
,

and

(Kerf∗)
⊥ = Span

{
U1, U2, V1 =

1√
2

( ∂

∂x5
− ∂

∂x11

)
, V2 =

1√
2

( ∂

∂x6
− ∂

∂x12

)
,

V3 =
1√
2

( ∂

∂x7
+

∂

∂x9

)
, V4 =

1√
2

( ∂

∂x8
+

∂

∂x10

)
, V5 =

∂

∂x14
, V6 =

∂

∂x16

}
,

Since JU1 = U2. So ∆ = Span{U1, U2} is invariant with respect to J. It follows
that f is a 2-lightlike submersion. Also, JU7 = V5 and JU8 = V6 implies that
D1 = Span{U7, U8} is anti-invariant. Finally, since JU3 = U4 and JU5 = U6,
D2 = Span{U3, U4, U5, U6} is slant with slant angle zero, i.e., D2 is invariant.
Hence, f is a proper SCR lightlike submersion.

For any U ∈ Γ(Ker f∗), we assume that

JU = φU + FU. (15)

Here φU and FU are tangential and normal components of JU respectively. Now,
let φ1, φ2 and φ3 denotes the projections of Ker f∗ on ∆, D1 and D2, respectively.
Also, denote the projections of tr(Ker f∗) on ltr(Ker f∗) , JD1 and D′ by Q1, Q2

and Q3, respectively. Here D′ is non-null orthogonal complementary distribution
of JD1 in S(Ker f∗)

⊥. Then, for any vector field U tangent to Ker f∗, we have

U = φ1U + φ2U + φ3U. (16)
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Above equation gives JU = Jφ1U + Jφ2U + Jφ3U, which implies

JU = Jφ1U + Jφ2U + ψφ3U + Fφ3U, (17)

where ψφ3U and Fφ3U denotes the tangential and normal components of Jφ3U ,
respectively. Therefore, Jφ1U ∈ Γ(∆), Jφ2U ∈ Γ(D1), ψφ3U ∈ Γ(D2) and Fφ3U ∈
Γ(S(Ker f∗)

⊥). Further, for any vector field W tangent to tr(Ker f∗), we put

W = Q1W +Q2W +Q3W, (18)

which gives JW = JQ1W + JQ2W + JQ3W. Then, we have

JW = JQ1W + JQ2W +BQ3W + CQ3W, (19)

where BQ3W and CQ3W denotes the tangential and normal components of JQ2W ,
respectively. Here JQ1W ∈ Γ(ltr(Ker f∗)), JQ2W Γ(D1), BQ3W ∈ Γ(D2) and
CQ3W ∈ Γ(D′). Now, from (2), (9), (11) and (16)-(19) and identifying the com-
ponents of ∆, D1, D2, ltr(Ker f∗), JD1 and D′, we have

∇∗⊥U Jφ1V + φ1(TUJφ2V ) + φ1(∇̂Uψφ3V ) + φ1(TUFφ3V ) = Jφ1(∇̂UV ), (20)

φ2(T ∗UJφ1V ) + φ2(TUJφ2V ) + φ2(TUFφ3V ) + φ2(∇̂Uψφ3V ) = JQ2T
s
UV, (21)

φ3(T ∗UJφ1V ) + φ3(TUJφ2V ) + φ3(TUFφ3V ) + φ3(∇̂Uψφ3V ) = ψφ3(∇̂UV ) +BQ3T
s
UV,

(22)

T lUJφ1V +D⊥l(U, Jφ2V ) + T lUψφ3V +D⊥l(U,Fφ3V ) = JT lUV (23)

Q2(∇⊥sU Jφ2V ) +Q2(∇⊥sU Fφ3V ) +Q2(T sUJφ1V ) +Q2(T sUψφ3V ) = Jφ2(∇̂UV )
(24)

Q3(∇⊥sU Jφ2V ) +Q3(∇⊥sU Fφ3V ) +Q3(T sUψφ3V ) +Q3(T sUJφ1V ) = Fφ3(∇̂UV ) + CQ3T
s
UV

(25)

Next, we give a characterization of screen pseudo-slant lightlike submersions:

Theorem 3.8. Let f be a 2r-lightlike submersion from an indefinite Kaehler man-
ifold M onto a lightlike manifold B. Then, f is a screen pseudo-slant lightlike
submersion if and only if

(i) ltr(Ker f∗) is invariant with respect to J ,
(ii) D1 is anti-invariant with respect to J ,

(iii) there exists a constant λ ∈ (0, 1] such that φ2U = −λU, ∀U ∈ Γ(D2), where
D1 and D2 are non-null orthogonal distributions, such that S(Ker f∗) =
D1 ⊕D2 and λ = cos2θ, θ is a slant angle of D2.

Moreover, there also exists a constant κ ∈ [0, 1), such that BFU = −κU, ∀U ∈
Γ(D2).

Proof. Let f be a screen pseudo-slant lightlike submersion from an indefinite Kaehler
manifold M onto a lightlike manifold B. Then the distribution D1 is anti-invariant
with respect to J . Using (1) and (17), we have

g(JN,U) = −g(N, JU) = −g(N, Jφ1U + Jφ2U + ψφ3U + Fφ3U) = 0,
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for any U ∈ Γ(S(Ker f∗)), N ∈ Γ(ltr(Ker f∗)). So JN does not belong to
S(Ker f∗). Now, for any W ∈ Γ(S(Ker f∗)⊥), using (2.1) and (3.5) we derive

g(JN,W ) = −g(N, JW ) = −g(N, JQ1W + JQ2W +BQ3W + CQ3W ) = 0,

which implies that JN does not belongs to Γ(S(Ker f∗)
⊥). Now, if JN ∈ Γ(∆),

then J(JN) = J2N = −N ∈ Γ(ltr(Ker f∗)). But, it is absurd as ∆ is invariant
with respect to J . Thus ltr(Ker f∗) is invariant with respect to J . Now, let
U ∈ Γ(D2), then we have

cos(θ)(U) =
g(JU, φU)

|J(U)||φU |
= −g(U, φ2U)

|JU ||φU |
.

Also, we have

cos(θ)(U) =
|φU |
|JU |

.

Thus, we obtain

cos2θ(U) = − ĝ(U, φ2U)

|U |2
.

Since θ(U) is constant, we have φ2U = −λU, λ ∈ (0, 1], where λ = cos2θ.

Now, applying J to (15) and comparing the tangential parts, we get −U =
φ2U + BFU, ∀ U ∈ Γ(D2). It gives BFU = −µU , where 1 − λ = µ ∈ [0, 1). The
reverse implication can be proved in a similar way. �

As an immediate consequence of the above theorem, we have following lemma:

Corollary 3.1. Let f be a screen pseudo-slant lightlike submersion from an indefi-
nite Kaehler manifold M onto a lightlike manifold B, with slant angle θ. Then, for
any U, V ∈ Γ(D2), we have

ĝ(φU, φV ) = cos2θĝ(U, V ), (26)

and

ĝ(FU,FV ) = sin2θĝ(U, V ). (27)

Theorem 3.9. Let f : M → B be a screen pseudo-slant lightlike submersion from
an indefinite Kaehler manifold M onto a lightlike manifold B. Then, the radical
distribution ∆ is integrable if and only if ∀ U, V ∈ Γ(∆), we have

(i) Q2(T sUJφ1V ) = Q2(T sV Jφ1U),
(ii) Q3(T sUJφ1V ) = Q3(T sV Jφ1U),

(iii) φ3(T ∗UJφ1V ) = φ3(T ∗V Jφ1U).

Proof. If U, V ∈ Γ(∆), then using (24), we get Q2(T sUJφ1V ) = Jφ2(∇̂UV ), which
implies

Q2(T sUJφ1V )−Q2(T sV Jφ1U) = Jφ2[U, V ]. (28)

From (25), we have Q3(T sUJφ1V ) = Fφ3(∇̂UV ) + CQ3(T sUV ), which implies

Q3(T sUJφ1V )−Q3(T sV Jφ1U) = Fφ3[U, V ]. (29)
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Finally, using (22), we obtain φ3(T ∗UJφ1V ) = ψφ3(∇̂UV )+BQ3T
s
UV , which implies

φ3(T ∗UJφ1V )− φ3(T ∗V Jφ1U) = ψφ3[U, V ], (30)

Our assertion follows from (28), (29) and (30). �

Theorem 3.10. Let f : M → B be a screen pseudo-slant lightlike submersion
from an indefinite Kaehler manifold M onto a lightlike manifold B. Then, the
anti-invariant distribution D1 is integrable if and only if

(i) φ1(TUJφ2V ) = φ1(TUJφ2V ),
(ii) φ3(TUJφ2V ) = φ3(TUJφ2V ),

(iii) Q3(∇̂⊥sU Jφ2V ) = Q3(∇̂⊥sV Jφ2U),

for any U, V ∈ Γ(D1).

Proof. Let U, V ∈ Γ(D1). Using (20), we have φ1(TUJφ2V ) = Jφ1(∇̂UV ), which
implies

φ1(TUJφ2V )− φ1(TUJφ2V ) = Jφ1[U, V ]. (31)

From (22), we obtain φ3(TUJφ2V ) = ψφ3(∇̂UV ) +BQ3T
s
UV , which gives

φ3(TUJφ2V )− φ3(TUJφ2V ) = ψφ3[U, V ]. (32)

Finally, from (25), we get Q3(∇̂⊥sU Jφ2V ) = Fφ3(∇̂UV ) + CQ3T
s
UV , which implies

Q3(∇̂⊥sU Jφ2V )−Q3(∇̂⊥sV Jφ2U) = Fφ3[U, V ]. (33)

The proof follows from (31), (32) and (33). �

Theorem 3.11. Let f : M → B be a screen pseudo-slant lightlike submersion
from an indefinite Kaehler manifold M onto a lightlike manifold B. Then, the
slant distribution D2 is integrable if and only if ∀ U, V ∈ Γ(D2), we have

(i) φ1(∇̂Uψφ3V − ∇̂V ψφ3U) = φ1(TV Fφ3U − TUFφ3V ),

(ii) Q2(∇̂⊥sU Fφ3V − ∇̂⊥sV Fφ3U) = Q2(T sV ψφ3U − T sUψφ3V ).

Proof. Assume that U, V ∈ Γ(D2). Using (20), we have φ1(∇̂Uψφ3V )+φ1(TUFφ3V ) =

Jφ1∇̂UV , which gives

φ1(∇̂Uψφ3V − ∇̂V ψφ3U) + φ1(TUFφ3V − TV Fφ3U) = Jφ1[U, V ]. (34)

In view of (24), we get Q2(∇̂⊥sU Fφ3V ) +Q2(T sUψφ3V ) = Jφ2(∇̂UV ), which implies

Q2(∇̂⊥sU Fφ3V − ∇̂⊥sV Fφ3U) +Q2(T sUψφ3V − T sV ψφ3U) = Jφ2[U, V ]. (35)

Using (34) and (35), we have the required proof. �

Theorem 3.12. Let f : M → B be a screen pseudo-slant lightlike submersion
from an indefinite Kaehler manifold M onto a lightlike manifold B. Then, the
induced connection ∇̂ on S(Ker f∗) is a metric connection if and only if ∀ U ∈
Γ(S(Ker f∗)) and ξ ∈ Γ(∆), we have

(i) JQ2T
s
Uξ = 0,

(ii) BQ3T
s
Uξ = 0,

(iii) JT ∗Uξ = 0 on Γ(Ker f∗).
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Proof. The induced connection ∇̂ on S(Ker f∗) is a metric connection if and only

if ∆ is a parallel distribution with respect to ∇̂. In view of (2), (9) and (14), we
derive ∇UJξ = JT ∗Uξ + J∇∗⊥U ξ + JT lUξ + JQ2T

s
Uξ + BQ3T

s
Uξ + CQ3T

s
Uξ, for any

U ∈ Γ(S(Ker f∗)) and ξ ∈ Γ(∆). Comparing the tangential components of above

equation, we get ∇̂UJξ = JT ∗Uξ + J∇∗⊥U ξ + JQ2T
s
Uξ +BQ3T

s
Uξ. Thus the proof is

completed. �
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