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Abstract. We strengthen some results of W. L. May (J. Algebra, 1976) by finding

a criterion when a special decomposition of normed units in abelian group rings

holds.
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Abstrak. Pada paper ini akan diperkuat beberapa hasil dari W. L. May (J. Algebra,

1976) dengan menemukan sebuah kriteria kapan sebuah dekomposisi khusus dari

unit bernorm dalam grup ring Abel dipenuhi.
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1. Introduction

Throughout this paper, let R be a commutative unitary ring of arbitrary
characteristic and let G be an abelian multiplicative group. Besides, tradition-
ally suppose RG is the group ring of G over R with group of normed units (i.e.,
of augmentation 1) V (RG). In fact, as usual, RG is defined as the set RG =
{
∑

g∈G rgg | rg ∈ R} with algebraic operations
∑

g∈G rgg+
∑

g∈G tgg =
∑

g∈G(rg+

tg)g, (
∑

g∈G rgg) ·(
∑

h∈G thh) =
∑

g∈G

∑
h∈G rg · thg ·h and

∑
g∈G rgg =

∑
g∈G tgg

⇐⇒ rg = tg. Likewise, U(RG) is the multiplicative group of RG, i.e. group of
units in RG, and V (RG) = {

∑
g∈G rgg ∈ U(RG)|

∑
g∈G rg = 1}.

Furthermore, let us assume that N(R) is the nil-radical of R and G0 =
⨿

p Gp

is the torsion subgroup of G with p-component Gp. Also, let id(R) = {e ∈ R : e2 =
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e} be the set of all idempotents in R, inv(R) = {p : p · 1 ∈ R∗}, where R∗ is the
unit group of R, zd(R) = {p : ∃ r ∈ R\{0}, p ·r = 0} and supp(G) = {p : Gp ̸= 1}.
Following [5], we define the following three concepts:

I(N(R)G;G) = {
∑
g∈G

rgg(1− hg) | rg ∈ N(R), hg ∈ G} = N(R) · I(RG;G),

I(RG;H) = {
∑
a∈G

faa(1− ba) | fa ∈ R, ba ∈ H},

whenever H ≤ G and

Id(RG) = {
∑
g∈G

egg | eg ∈ id(R),
∑
g∈G

eg = 1, eg · eh = 0, g ̸= h}.

It is a routine technical exercise to verify that 1+I(N(R)G;G) meets Id(RG)
only trivially and that Id(RG) = G if and only if id(R) = {0, 1}. All other
unexplained explicitly notions and notations are standard and follow for the most
part those from [5].

In 1976, Warren Lee May proved in [6] that if supp(G) ∩ inv(R) = ∅ and
id(R) = {0, 1} (i.e., R is indecomposable), then the following decomposition is
valid:

(1) V (RG) = GV (RG0 +N(RG)).

In [1] we extended this result by finding a necessary and sufficient condition
proving that (1) holds if and only if either G is torsion, or G is torsion-free or mixed
(i.e., in both cases it contains an element of infinite order) and no prime which is
an order of an element of G inverts in R.

Next, we obtained in [2] a criterion when the following decomposition is true:

(2) V (RG) = GV (RG0).

Clearly (1) and (2) are equivalent whenN(RG) = 0, i.e., by [6], whenN(R) =
0 and supp(G) ∩ zd(R) = ∅.

After this, we established in [4] a necessary and sufficient condition when the
following more general decomposition is fulfilled:

(3) V (RG) = Id(RG)V (RG0),

provided char(R) is prime.

Evidently (2) and (3) are equivalent if Id(RG) = G, i.e., if id(R) = {0, 1}.
Notice the interesting fact from [6] that id(RG) = {0, 1} uniquely when id(R) =
{0, 1} and supp(G) ∩ inv(R) = ∅.
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The purpose of this short article is to generalize the aforementioned achieve-
ments by dropping off the restriction on the characteristic of the coefficient ring in
(3) to be a prime integer and by considering the enlarged decomposition

(4) V (RG) = Id(RG)V (RG0 +N(RG)).

The motivation for making this is that the decomposition (4) is rather im-
portant for application on description of the structure of V (RG) (see, e.g., [5] and
[6]). In order to do that, we will refine the technique used in [6] and [3].

2. Main Results

Before stating and proving our chief assertion, we need one more technicality
from [3], stated below as Proposition 2.1. First, some preliminaries:

Suppose ϕ : G → G/G0 is the natural map which is, actually, a surjective
homomorphism. It is well known that it can be linearly extended in the usual
way Φ(

∑
g∈G rgg) =

∑
g∈G rgϕ(g) =

∑
g∈G rggG0 to the epimorphism Φ : RG →

R(G/G0) ofR-group algebras with kernel I(RG;G0). Its restriction on V (RG) gives
a homomorphism ΦV (RG) : V (RG) → V (R(G/G0)) with kernel (1 + I(RG;G0)) ∩
V (RG) while it is self-evident that ΦId(RG) : Id(RG) → Id(R(G/G0)) is a surjective
homomorphism (= epimorphism) with kernel Id(RG0).

Let P be a commutative unitary ring with |id(P )| > 2 and let P = R1 ×
· · · × Rn where each Ri is an indecomposable subring of P for i ∈ [1, n]. It is
straightforward to see that inv(P ) ⊆ inv(Ri) for every index 1 ≤ i ≤ n, while
the converse inclusion may not be ever fulfilled - see the example listed below in
Remark 2.

Moreover, if supp(G)∩ inv(K) = ∅ for every indecomposable subring K of R,
then supp(G) ∩ inv(F ) = ∅ for each finitely generated subring F of R, and hence
it is elementary to see that supp(G) ∩ inv(R) = ∅ as well. However, the converse
does not hold.

Observe also that inv({0}) = ∅.

Proposition 2.1. Let G be a group and R a ring such that supp(G)∩ inv(K) = ∅
for any indecomposable subring K of R. Then

(1 + I(RG;G0)) ∩ V (RG) ⊆ V (RG0 +N(RG)).

Remark 1. The above supersedes ([6], Proposition 4) provided that R is inde-
composable. Besides, in the original formulation of ([3], Proposition 3) there is
a misprint, namely there inv(R) should be written and read as inv(K) for each
indecomposable subring K of R. In this way, Proposition 2.1 formulated above is
the correct statement.
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So, we have all the ingredients to prove the following assertion that is our
major tool which, as aforementioned, improves the corresponding claim from [1].

Theorem 2.2. Suppose R is a ring and G is a group. Then

V (RG) = Id(RG)V (RG0 +N(RG))

if and only if

(a) G = G0, or
(b) G ̸= G0 and supp(G) ∩ inv(K) = ∅ for all indecomposable subrings K of

R.

Proof. ”⇒”. If G is torsion, the equality holds no matter what R is. So we will
assume that there exists g ∈ G \ G0, whence gn ̸= 1 for every n ∈ N. We will
show below that id(RG0) \ id(R) = ∅ whenever supp(G) ∩ inv(K) ̸= ∅ for each
indecomposable subring K of R, which is impossible. Letting e ∈ id(RG0), we
have e ∈ id(FG0) for some finitely generated subring F of R, whence there exists a
finite number of indecomposable subrings K1, ...,Kt such that F = K1 × · · · ×Kt.
That is why, without loss of generality, we may further assume that R is finitely
generated itself.

In fact, let e ∈ id(KG0) for some arbitrary but a fixed indecomposable subring
K with e ̸∈ id(R). It is long known that e can be represented like this: e =
1
n (1 + b+ · · ·+ bn−1) where n ∈ supp(G)∩ inv(K) and 1 ∈ K, whereas b ∈ G with

order(b) = n. It is obvious that eg+(1−e) ∈ V (KG) with the inverse eg−1+(1−e).
Thus we may write eg + (1− e) = h(b+ c) where h = e1g1 + · · ·+ esgs ∈ Id(RG),
b ∈ RG0 and c ∈ N(RG). It is readily seen that this equality can be written as
follows:

e(gh−1 − b) + (1− e)(h−1 − b) = c.

Since e(1 − e) = 0 and there is some m ∈ N with the property cm = 0, we
obtain that

e(gh−1 − b)m + (1− e)(h−1 − b)m = 0.

Multiplying both sides with e and 1− e, respectively, the last reduces to the
equalities

e(gh−1 − b)m = 0 = (1− e)(h−1 − b)m.

Apparently, either gh−1 or h−1 is torsion-free. Suppose by symmetry h−1 =
e1g

−1 + · · ·+ esg
−1
s is torsion-free. Therefore, there exists an index j ∈ [1, s] such

that ej ̸= 0 and g−1
j is torsion-free. Since both b ∈ RG0 and 1− e =

∑
d∈G0

rdd ∈
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RG0 (with rd ∈ R), one may observe that in view of the Newton’s binomial formula
(1− e)(h−1 − b)m = 0 can be written as

∑
d∈G0

rddh
−m +

∑
t∈G0

∑
0≤i≤m−1

ftth
−i = 0

for ft ∈ R. Evidently, h−m = e1g
−m + · · ·+ esg

−m
s and h−i = e1g

−i + · · ·+ esg
−i
s

with ejh
−m = ejg

−m
j and ejh

−i = ejg
−i
j . Furthermore, multiplying both sides of

the above sum’s equality with ej , we deduce that

∑
d∈G0

ejrddg
−m
j +

∑
t∈G0

∑
0≤i≤m−1

ejfttg
−i
j = 0.

It is clear that the last sum is now in canonical form where the two members
in the left hand-side and in the right hand-side of the sign ”+” are disjoint as well.
That is why ejrd = 0 for each d ∈ G0 and thus ej(1−e) = 0, i.e., ej = eje. However,
as written above, e = n−1(1 + b+ · · ·+ bn−1) and hence 1− e = 1− n−1 − n−1b−
· · · − n−1bn−1. It follows now that r1 = 1− n−1 and rd = −n−1 for d ̸= 1, whence
ej(1 − n−1) = 0 and ejn

−1 = 0 which assures that ej = 0, a contradiction. This
substantiates our claim that id(RG0) \ id(R) = ∅, that is, supp(G) ∩ inv(K) = ∅
as stated.

”⇐”. Suppose Φ is the map defined as in lines before Proposition 2.1. It is
clear that Φ(V (RG)) ⊆ V (R(G/G0)). Moreover, [5] allows us to write that

V (R(G/G0)) = Id(R(G/G0))× (1 + I(N(R)(G/G0);G/G0)).

As observed above, Φ(Id(RG)) = Id(R(G/G0)) and, moreover, it is easy to check
that Φ(1+I(N(R)G;G)) = 1+I(N(R)(G/G0);G/G0). Furthermore, one sees that
Φ(V (RG)) ⊆ Φ(Id(RG))Φ(1 + I(N(R)G;G)) = Φ(Id(RG)(1 + I(N(R)G;G))) =
Φ(Id(RG)×(1+I(N(R)G;G))). But since Id(RG)×(1+I(N(R)G;G)) ⊆ V (RG),
the above inclusion is tantamount to

Φ(V (RG)) = Φ(Id(RG)× (1 + I(N(R)G;G))).

Observe that 1 + I(N(R)G;G) ⊆ 1 + N(R)G ⊆ 1 + N(RG) ⊆ V (RG0 +
N(RG))×R∗, so that 1+ I(N(R)G;G) ⊆ V (RG0+N(RG)) - see also Proposition
2.3 listed below. Thus, applying Proposition 2.1, kerΦ ⊆ V (RG0 +N(RG)) and it
follows that V (RG) = Id(RG)V (RG0 +N(RG)) as expected. 2

Remark 2. The next example illustrates that both Proposition 2.1 and Theorem
2.2 are not longer true if R fails to have the required property that for any its
indecomposable subring K the intersection supp(G) ∩ inv(K) is empty. In other
words, supp(G) ∩ inv(K) = ∅ cannot be changed to supp(G) ∩ inv(R) = ∅.
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Given R = Z2×Z3 and take G = ⟨g, t⟩ where o(g) = ∞ and o(t) = 2. Then
G ̸= G0 and inv(R) = P\{2, 3}; besides inv(Z2) =P\{2} and inv(Z3) =P\{3}
so that inv(R) = inv(Z2) ∩ inv(Z3) and inv(R) ⊂ inv(Z2), inv(R) ⊂ inv(Z3).
Observe also that char(R) = 6 and zd(R) = {2, 3}. We further have RG = Z2G×
Z3G, Id(RG) = G×G, RG0 = Z2G0×Z3G0, and N(RG) = N(Z2G)×{0}. Clearly,
V (RG0+N(RG)) ⊆ Z2G×Z3G0. Thus Id(RG)V (RG0+N(RG)) ⊆ Z2G×G·Z3G0.
It is a routine technical exercise to verify that e = 2 + 2t = 1

2 (4 + 4t) = 1
2 (1 + t)

is an idempotent in Z3G, because supp(G) ∩ inv(Z3) ̸= ∅. Define v ∈ V (RG) by
v = (1, e + g(1− e)), the inverse v−1 being obtained by replacing g with g−1. We
calculate v = (1, 2 + 2t + 2g + gt), hence v ̸∈ Z2G × G · Z3G0, and consequently
v ̸∈ Id(RG)V (RG0 +N(RG)) as expected. Therefore Theorem 2.2 will be wrong
if only supp(G) ∩ inv(R) = ∅ is required.

Moreover, if assuming just that supp(G) ∩ inv(R) = ∅ is satisfied, then v
chosen as above will work again to provide a counterexample to Proposition 2.1.
In fact, v = (1, 1) + (0, 1 + 2t + 2g + gt) with (0, 1 + 2t + 2g + gt) ∈ I(RG;G0),
whence v ∈ V (RG) ∩ (1 + I(RG;G0)), as wanted. The example is shown.

We will demonstrate now one more useful relation.

Proposition 2.3. Suppose R is a ring and G is a group. Then the following
decomposition holds:

V (RG0 +N(RG)) = V (RG0)(1 + I(N(RG);G)).

Proof. Clearly, the left hand-side contains the right hand-side.

As for the converse implication, choose v ∈ V (RG0+N(RG)) hence v = b+c
where b ∈ RG0 and c ∈ N(RG). Since b+ c ∈ V (RG) and a unit plus a nilpotent
is again a unit (note that this is true only in commutative rings), we have that
b ∈ U(RG0). Even more, we may take b ∈ V (RG0) by adding the nilpotent
±a = aug(c) ∈ N(R). So, c can be taken to lie in I(N(RG);G) = N(RG)I(RG;G).
In more precise words, v = b+ c = b+ a+ c− a = b′+ c′ ∈ V (RG0)+ I(N(RG);G)
where b′ = b + a ∈ V (RG0) and c′ = c − a ∈ I(N(RG);G). Furthermore, v =
b(1 + b−1c) ∈ V (RG0)(1 + I(N(RG);G)) as required. 2

So, Theorem 2.2 can be reformulated like this:

Theorem 2.2′. Suppose R is a ring and G is a group. Then

V (RG) = Id(RG)V (RG0)(1 + I(N(RG);G))

if and only if

(i) G = G0 or
(ii) G ̸= G0 and supp(G) ∩ inv(K) = ∅ for every indecomposable subring K of

R.
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Note that it can be shown that V (RG) = Id(RG)V (RG0)(1+ I(N(RG);G))
implies V (KG) = Id(KG)V (KG0)(1 + I(N(KG);G)) for all all indecomposable
subrings K of R.

As direct consequences, we derive the following affirmations.

Corollary 2.4. ([1]) Suppose R is a ring and G is a group. Then V (RG) =
GV (RG0 + N(RG)) ⇐⇒ (a) G = G0 or (b) G ̸= G0, id(R) = {0, 1} and
supp(G) ∩ inv(R) = ∅.

Proof. Observe that GV (RG0 +N(RG)) ⊆ Id(RG)V (RG0 +N(RG)) ⊆ V (RG).
In virtue of Theorem 2.2 one needs to illustrate that R is indecomposable. If
r ∈ id(R), then rg+(1−r) ∈ V (RG) for some g ∈ G\G0. Hence rg+1−r = a(b+c)
for some a ∈ G, b ∈ RG0 and c ∈ N(RG). As above, b ∈ V (RG0) and rga−1+(1−
r)a−1 = b+ c, so that rga−1 + (1− r)a−1 − b = r(ga−1 − b) + (1− r)(a−1 − b) = c.
Furthermore, again as we previously observed, r(ga−1−b)m = 0 = (1−r)(a−1−b)m.
However, ga−1 and a−1 cannot be torsion together, so that one of them is torsion-
free; assume by symmetry that so is ga−1 = h. Thus r(h− b)m = 0 can be written
in accordance with the Newton’s binomial formula as r(

∑
t∈G0

∑
0≤i≤m ftth

i) = 0
for some ft ∈ R such that the ring coefficient ft stated before hm is exactly 1.
Moreover, the sum is obviously in canonical record. This immediately forces that
r = 0; the other possibility ensures that 1− r = 0, i.e., r = 1 as desired. 2

The following strengthens the listed above equality (3) from [4].

Corollary 2.5. Let R be a ring and let G be a group. Then V (RG) = Id(RG)V (RG0)
if and only if

(a) G = G0, or

(b) G ̸= G0, N(R) = 0 and supp(G) ∩ (inv(K) ∪ zd(R)) = ∅ for each inde-
composable subring K of R.

Proof. Because Id(RG)V (RG0) ⊆ Id(RG)V (RG0 + N(RG)) ⊆ V (RG), what
suffices to demonstrate is that N(RG) = 0, which in the sense of [6] is pre-
cisely N(R) = 0 and supp(G) ∩ zd(R) = ∅. Certainly, this is also tantamount
to N(RG0) = 0 since supp(G) = supp(G0).

And so, choose 0 ̸= z = f1b1 + · · · + fsbs ∈ N(RG0) with fi ̸= 0 for any
i ∈ [1, s], whence y = 1 + z(1 − g) ∈ V (RG) whenever g ∈ G \ G0. Thus we may
write 1 + z − zg = uv where u = e1g1 + · · · + esgs ∈ Id(RG) with e1, · · · , es ̸= 0
and v = r1c1 + · · ·+ rscs ∈ V (RG0). Furthermore, one can write that

(*)

1 + f1b1 + · · ·+ fsbs − f1b1g − · · · − fsbsg = (e1g1 + · · ·+ esgs)(r1c1 + · · ·+ rscs).
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Observe that there is an index j ∈ [1, s] such that ejf1 ̸= 0; otherwise 0 =
e1f1 + · · ·+ esf1 = (e1 + · · ·+ es)f1 = f1 = 0, a contradiction. Thus, multiplying
both sides of the above equality (*) with ej , we deduce that

(**)

ej + ejf1b1 + · · ·+ ejfsbs − ejf1b1g − · · · − ejfsbsg = ejr1gjc1 + · · ·+ ejrsgjcs.

However, even if b1 = 1, the situation ejf2 = · · · = ejfs = 0 with ej+ejf1 = 0
is impossible because it will lead to ej(f1b1 + · · ·+ fsbs) = −ejb1 ∈ N(RG0). Thus
there exists m ∈ N with ejb

m
1 = 0. But this implies that ej = 0 which is false.

Furthermore, since the equality (**) is in canonical form, we derive that gj ∈ G0

and hence g ∈ G0, contrary to our choice. Finally, this gives that N(RG0) = 0,
i.e., N(RG) = 0 as claimed. 2

Remark 3. When char(R) is a prime, say p, in [4] we obtained the conditions
G = G0 or G ̸= G0 = 1 and N(R) = 0 which are obviously equivalent to these
presented above. In fact, this is so since char(R) = p insures that zd(R) = {p}
and hence supp(G)∩ zd(R) = ∅ because inv(R) contains all primes but p and thus
supp(G) ∩ inv(R) = ∅ holds only when supp(G) = ∅, i.e., when G0 = 1.

Corollary 2.6. ([2]) Let R be a ring and G a group. Then V (RG) = GV (RG0)
⇐⇒ (i) G = G0 or (ii) G ̸= G0, id(R) = {0, 1}, N(R) = 0 and supp(G) ∩
(inv(R) ∪ zd(R)) = ∅.

Proof. Observe that GV (RG0) ⊆ Id(RG)V (RG0) ⊆ V (RG). So, in view of
Corollary 2.5 what we need to show is that Id(RG) = G or, equivalently, id(R) =
{0, 1}, provided V (RG) = GV (RG0) is valid.

In fact, Id(RG) ⊆ V (RG), whence Id(RG) ⊆ GV (RG0) and so Id(RG) =
Id(RG) ∩ (GV (RG0)). Referring to the modular law, it is not difficult to see that
the last intersection equals to G(Id(RG) ∩ V (RG0)) = GId(RG0). Consequently,
Id(RG) = GId(RG0). Suppose now that there exists r ∈ id(R) \ {0, 1}. Then
rg+(1−r) ∈ Id(RG) whenever g ∈ G\G0. Thus rg+1−r = a(f1b1+ · · ·+fsbs) =
f1ab1 + · · ·+ fsabs, where a ∈ G and f1b1 + · · ·+ fsbs ∈ Id(RG0). Since both sides
are in canonical record, one may have a ∈ G0 and hence g ∈ G0 which is wrong.
That is why id(R) contains only two elements as asserted. 2

Remark 4. In ([1], p. 157, line 18) the expression ”h ∈ H” should be written and
read as ”h ∈ G”.

We finish off with the following question of interest.

Problem 1. Under the given above limitations on R and G, find a necessary and
sufficient condition only in terms associated with R and G when the decomposition
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V (RG) = Id(RG)V (RG0 +N(R)G)

is fulfilled.
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