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Abstract. For a Golden-structure ζ on a smooth manifold M and any covariant

functor which assigns to M its bundle MA of infinitely near points of A-king, we

define the Golden-structure ζA on MA and prove that ζ is integrable if and only

if so is ζA. We also investigate the integrability, parallelism, half parallelism and

anti-half parallelism of the Golden-structure ζA and their associated distributions

on MA.
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1. INTRODUCTION

The differential geometry of Golden-structure on manifolds has been first
initiated by M. Crâşmǎreau and C. Hreţcanu in [1]. The concepts of a Golden-
Riemannian structure and a Golden-Riemannian manifold has been introduced
in [1]-[11] by using a corresponding almost product structure, and some proper-
ties of Golden-Riemannian manifold have been studied. And a few years later,
some properties of the induced structure on an invariant submanifold in a Golden
Reimannian manifolds were investigated by many authors such as C. Hreţcanu
and M. Crâşmǎreau in [12], M. Gök, S. Keleş and E. Kiliç in [5]-[6]-[7]-[8]. In [3],
A. Gezer, N. Cengiz and A. Salimov studied the problem of the integrability for
Golden-Riemannian structures. In [16]-[17], M. Ozkan defined the prolongations of
Golden-structures to tangent bundles of order r ≥ 1.

The present paper is mainly focused on a study of prolongations of Golden-
structures on manifolds to bundles of infinitely near points. Basicly, this study
is inspried from the paper [16]-[17] and [14]. The main goal of this paper is to
generalize the results of [16]-[17] to the bundles of infinitely near points of kind A
in the sense of A.Weil [19].

The paper has three sections and is organized as follows. In Section 2, we
review the notion of bundles of infinitely near points and recall some definitions
and properties of the Golden-structure. The Section 3 is devoted to prolongations
of the Golden-structure to bundles of near points of kind A and we will investigate
some properties of these prolongations. We also discuss of integrability, parallelism,
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half parallelism and anti-half parallelism of a Golden-structure and the associated
distributions to bundle of near points. We end this last section by studying the
prolongation to bundles of near points of Golden pseudo-Riemannian structure on
a smooth manifold M .

2. PRELIMINARIES

2.1. Bundles of Infinitely Near Points

A weil algebra or local algebra (in sense of A. Weil)[19] is a real associative,
commutative and unital algebra of finite dimension over R, admitting a unique
maximal idealM such that A/M is one-dimensional over R and thatMh+1 = {0}
for a nonnegative integer h. The smallest h such thatMh 6= {0} andMh+1 = {0}
is called the height of A. We shall identify the field R with the subspace of A
consisting of all scalar multiples of the unit. Thus A = R ⊕M. For example,the
algebra of dual numbers D = R[T ]/(T 2) is Weil algebra with height 1.

Let us recall this construction of bundles of A-points of M base on [14]. Let’s
denote by M a smooth manifold, C∞(M) the algebra of smooth functions on M
and A the weil algebra with the maximal ideal M.
An infinitely near points to x on M of kind A (or A-points of M near x) is a
homomorphism of algebras

ϕ : C∞(M)→ A

such that
ϕ(f) ≡ f(x) mod(M),

for all f ∈ C∞(M).
We denote by MA

x and MA =
⋃
x∈M

MA
x respectively the set of all infinitely points

on M of kind A and the set of all near points on M of kind A. If M and N are
two smooth manifolds and F ∈ C∞(M,N) a differential map, then one defines the
differential map

FA : MA → NA, ϕ 7→ FA(ϕ)

such that, for all g ∈ C∞(N),

FA(ϕ)(g) = ϕ(g ◦ F ).

If F is a diffeomorphism, then FA will be too.

We can identify (M ×N)A with MA ×NA by the following identification

πAM × πAN : (M ×N)A →MA ×NA, ϕ 7→ (πAM (ϕ), πAN (ϕ))

where πAM : (M × N)A → MA (resp. πAN : (M × N)A → NA) is a projection. If
F1 : M1 → N1, F2 : M2 → N2, F ′1 : M1 → N ′1 and F ′2 : N1 → N are differentiable
maps between manifolds, then we have the following equalities

(F1, F
′
1)A = (FA1 , F

′A
1 ) (F ′2 ◦ F1)A = F ′A2 ◦ FA1

(F1 × F2)A = FA1 × FA2 (1M )A = 1MA .

If (U, u) is a local chart on M with a local coordinate system (u1, · · · , un), the map

uA : UA → An, ϕ 7→ (ϕ(u1), · · · , ϕ(un))

is a bijection from UA to an open subset of An and defines a local chart (UA, uA)
on MA. Hence the set MA becomes a differentiable manifold of dimension dim(A) ·
dim(M).
Now, let πA : MA → M, MA

x � ϕ 7→ x. Therefore, the manifold MA with the
projection πA : MA → M is called the bundles of A-points of M (or bundles of
infinitely near points of M of kind A).
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The notion of bundles of kind D = R[T ]/(T 2) is the same as the tangent
bundles. More generally, when A = R[T1, · · · , Tp]/(T1, · · · , Tp)r+1, MA is the space
Jr0 (Rp,M) of jet of order r at 0 of differentiable map from Rp to M and the
associated bundle of A-points is the bundles of pr-velocities.

2.2. Golden-Riemannian Manifolds

Let M be a smooth manifold and T pq (M) the C∞(M)-module of tensor fields

of (p, q)-type on M . An element of T 1
1 (M) is usually called vector 1-form (or

affinor) on M . Let X(M) = Γ(TM) be the C∞(M)-module of all vector fields on
M .

Definition 2.1. ([9]-[10]) An affinor ζ on M is called polynomial structure if it
satisfies the following algebraic equation

Q(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0δ = 0 (2.1)

where ζn−1(x), ζn−2(x), · · · , ζ(x) and δ are linearly independent for every x ∈M
and δ is the identity transformation affinor. The monic polynomial Q(X) is named
the structure polynomial.

We recall that, a polynomial structure ζ is integrable if the Nijenhuis tensor
Nζ vanishes identically, where

Nζ(X,Y ) = ζ2[X,Y ]+[ζX, ζY ]−ζ[ζX, Y ]−ζ[X, ζY ], for all X,Y ∈ X(M). (2.2)

Remark 2.2. In particular, if Q(X) = X2−δ (resp. Q(X) = X2+δ), then we will
have an almost product structure ρ (resp. an almost complex structure ν). When
Q(X) = X2, we have the notion of almost tangent structure τ .

Definition 2.3. Let (M, g) be a Riemannian-manifold. A Golden-structure on
(M, g) is a given non-null affinor of class C∞ ζ on M which verifies the following
equation

ζ2 − ζ − δM = 0 (2.3)

where δM is the identity transformation affinor. In this case, the pair (M, ζ) is
called Golden-manifold.

We say that the metric g is ζ-compatible if we have the following equality

g(ζX, Y ) = g(X, ζY ) (2.4)

for all vector fields X,Y ∈ X(M). If we substitute Y into ζY in (2.4), then Equation
(2.4) may also be written as

g(ζX, ζY ) = g(ζX, Y ) + g(X,Y ). (2.5)

Definition 2.4. ([1]) A Golden-Riemannian manifold is a triple (M, g, ζ), where
(M, g) is a Riemannian-manifold, ζ is a Golden-structure on (M, g) and g is ζ-
compatible.

Definition 2.5. ([18]) Let F be a smooth map from a Golden Riemannian manifold
(M, g, ζ) to a Golden Riemannian manifold (N,h, ξ). Then F is called a Golden
map if the following condition is satisfied

dF ◦ ζ = ξ ◦ dF. (2.6)

In [1], we have this following proposition which show the connection between
the almost product structure and the Golden-structure on M .
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Proposition 2.6. ([1])Let M be a smooth manifold.

(i) Any Golden-structure ζ on M induces two almost product structures on M
defined as follows

ρ− = − 1√
5

(2ζ − δM ) and ρ+ =
1√
5

(2ζ − δM ). (2.7)

(ii) Conversely, any almost product structure ρ on M induces two Golden-
structures on M defined as follows

ζ− =
1

2
(δM −

√
5ρ) and ζ+ =

1

2
(δM +

√
5ρ). (2.8)

Let (M, ζ) be a Golden-manifold. According to [1], we define these two
operators

r =
1√
5

((σ − 1)δM + ζ) and s =
1√
5

(σδM − ζ) (2.9)

where the Golden ratio σ =
1 +
√

5

2
≈ 1.618 is the root of the algebraic equation

t2 − t− 1 = 0. We can easily have these following equalities

r2 = r, s2 = s, s ◦ r = r ◦ s = 0 and s+ r = δM . (2.10)

This means that, r and s are projection operators splitting the tangent bundle
TM = MD into two complementary parts, and define two globally complementary
distributions R and S of MD ( see [1]) as follows

R =
⋃
x∈M
{ϕ ∈MD

x : ζ(ϕ) = σϕ} and S =
⋃
x∈M
{ϕ ∈MD

x : ζ(ϕ) = (1− σ)ϕ}.

(2.11)
The projection operators r and s verify these following equalities:

ζ = σr + (1− σ)s (2.12)

ζ ◦ r = r ◦ ζ = σr and ζ ◦ s = s ◦ ζ = (1− σ)s. (2.13)

3. MAIN RESULTS

3.1. A-Lift of Golden-structures to Bundles of Near Points

Let M be a smooth manifold and MA a manifold of infinitely near points on
M of kind A. For a given affinor ζ on a M , Morimoto in [14] gives its A-lift ζA and
shows that ζA is a unique affinor on MA which verifies

ζA(XA) = (ζ(X))A, (3.1)

for all ζ ∈ T 1
1 (M) and X ∈ X(M). Hence, we can show

ζA ◦ ξA = (ζ ◦ ξ)A (3.2)

for all ζ, ξ ∈ T 1
1 (M). When ζ = ξ, equation (3.2) becomes

(ζ2)A = (ζA)2. (3.3)

Hence, we have these following results.

Proposition 3.1. Let ζ be an affinor on M . The following assertions are equiva-
lent.

(i) ζ is a Golden-structure on M .
(ii) ζA is a Golden-structure on MA.

(iii) δMA − ζA is a Golden-structure on MA.
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Proof. It is the use of linearity of the A-lift, equation (3.3) and the fact that
(δM )A = δMA . �

Proposition 3.2. Let (M, ζ) a Golden-manifold.

(i) The Golden-structure ζA on MA is an isomorphism on (MA)Dϕ , for every

ϕ ∈MA.
(ii) The Golden-structure ζA on MA is invertible and its inverse (ζA)−1 =

ζA − δMA satisfies the equation(
(ζA)−1

)2

+ (ζA)−1 − δMA = 0.

Remark 3.3. Let ζ ∈ T 1
1 (M) be an almost complex (resp. almost product) struc-

ture on M . Then ζA and −ζA are an almost complex (resp. almost product)
structure on MA. Morever, ζA is integrable if an only if so is ζ. (See [14]). If τ is
an almost tangent structure on M , then τA (resp. -τA) is also an almost tangent
structure on MA.

The following proposition shows the connection between Golden and almost
product structures on MA.

Proposition 3.4. Let M be a smooth manifold.

(i) If ζ is the Golden-structure on M , then the Golden-structure ζA

(resp. ζ̃A = δMA − ζA) on MA induces two almost product structures ρA−
and ρA+ on MA defined as follows

ρA− = − 1√
5

(2ζA − δMA) and ρA+ =
1√
5

(2ζA − δMA).

(ii) Conversely, if ρ is an almost product structure on M , then the almost
product ρA (resp. ρ̃A = −ρA) on MA induces two Golden-structures ζA−
and ζA+ on MA defined as follows

ζA− =
1

2
(δMA −

√
5ρA) and ζA+ =

1

2
(δMA +

√
5ρA).

According to Crâşmǎreanu and Hreţcanu in [1], we have the following remark.

Remark 3.5. (a) If τ is an almost tangent structure on M , then its A-lift τA

induces two affinor structures on MA defined as follows

τ̃A− =
1

2
(δMA −

√
5τA) and τ̃A+ =

1

2
(δMA +

√
5τA)

and which are called tangent Golden-structures on MA. These tangent
Golden-structures satisfy the equation

(τ̃A)2 − τ̃A +
1

4
δMA = 0.

(b) If ν is the complex structure on M , then its A-lift νA induces two affinor
structures on MA defined as follows

ν̃A− =
1

2
(δMA −

√
5νA) and ν̃A+ =

1

2
(δMA +

√
5νA)

and which are called complex Golden-structures on MA. These complex
Golden-structures satisfy the equation

(ν̃A)2 − ν̃A +
3

2
δMA = 0.
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Example 3.6. (prolongation to MA of triple structures on M) Let ξ, ρ and ν be
three affinors structures on the smooth manifold M such that ν = ζ◦ρ. According to
[1] and [2], the triple (ζ, ρ, ν) is called almost hyperproduct structure (ahps), almost
biproduct complex structure (abpcs), almost product bicomplex structure (apbcs)
and almost hypercomplex structure (ahcs) on M if ζ, τ and ν verify respectively
the following equalities:
ξ2 = ρ2 = ν2 = ξ ◦ ρ ◦ ν = δM , ξ2 = ρ2 = −ν2 = ξ ◦ ρ ◦ ν = δM ,
−ξ2 = ρ2 = ν2 = ξ ◦ ρ ◦ ν = −δM and ξ2 = ρ2 = ν2 = ξ ◦ ρ ◦ ν = −δM .
Let

ξ̃A− =
1

2
(δMA −

√
5ξA), ρ̃A− =

1

2
(δMA −

√
5ρA) and ν̃A− =

1

2
(δMA −

√
5νA)

(resp. ξ̃A+ =
1

2
(δMA +

√
5ξA), ρ̃A+ =

1

2
(δMA +

√
5ρA) and ν̃A+ =

1

2
(δMA +

√
5νA))

be the induces structures associated to ξA, ρA and νA respectively (see proposition
3.4). We easily see that, those induces structures verify this following equality

√
5ν̃A = 2ξ̃A ◦ ρ̃A − ξ̃A − ρ̃A + σδMA

and the triple (ξ̃A−, ρ̃
A
−, ν̃

A
−) and (ξ̃A+ , ρ̃

A
+, ν̃

A
+) are

(1) (ahps) (resp. (apbcs)) on MA if and only if (ξ, ρ, ν) is an (ahps) (resp.
(apbcs)) on M . In this case, ν̃A is a Golden-structure on MA.

(2) (abpcs) (resp. (ahcs)) on MA if and only if (ξ, ρ, ν) is an (abpcs) (resp.
(ahcs)) on M . In this case, ν̃A is a complex Golden-structure on MA.

3.2. Integrability of Golden-structure to Bundles of Near Point

The purpose of this section is to give some properties of integrability of
the Golden-structure ζA on MA and its associated distributions. Let (M, ζ) be
a Golden-manifold and A a given Weil algebra.

Definition 3.7. The Golden-structure ζA on MA is integrable if

NζA(XA, Y A) = 0,

for all vector fields X, Y in M .

Proposition 3.8. ζ is an integrable Golden-structure on M if and only if the
Golden-structure ζA on (MA, gA) is integrable on MA.

Proof. It comes from the fact that NζA(XA, Y A) = (Nζ(X,Y ))A by using relations
(2.2) and (3.3), for all vector fields X, Y in M . �

A. Morimoto in [14] has proved the following proposition.

Proposition 3.9. ([14]) Let M be a smooth manifold.

(i) The map X(M)→ X(MA), X 7→ XA is a homomorphism of Lie algebras.
(ii) For all ζ ∈ T 1

1 (M) and X ∈ X(M), one has

(ζ(X))A = ζA(XA). (3.4)

Hence, from the above proposition, we can construct the A-lift of these two
projection operators r and s on M as follows

rA =
1√
5

((σ − 1)δMA + ζA) and sA =
1√
5

(σδMA − ζA). (3.5)

These new operators satisfy the following equalities

(rA)2 = rA, (sA)2 = sA, sA ◦ rA = rA ◦ sA = 0 and rA + sA = δMA (3.6)

rA ◦ ζA = ζA ◦ rA = σrA and sA ◦ ζA = ζA ◦ sA = (1− σ)sA. (3.7)
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Therefore, rA and sA are projection operators splitting the tangent bundle TMA =
(MA)D into two complementary parts, and define two globally complementary
distributions RA and SA of the set of D-point of MA according to [1].

Let’s recall this result from M. Crâşmǎreanu and C.E. Hreţcanu.

Proposition 3.10. ([1])Let (M, ζ) be the Golden-manifold. The distribution R
(resp. S) is integrable if and only if [rX, rY ] ∈ Γ(R) (resp. [sX, sY ] ∈ Γ(S)) for
all vector fields X, Y in M .

We have this following definition.

Definition 3.11. The distribution RA (resp. SA) is integrable if the vector field
[rAXA, rAY A] (resp. [sAXA, sAY A]) belongs to Γ(RA) (resp. Γ(SA)) for all
vector fields X and Y in M .

Hence, we have these following results.

Proposition 3.12. Let (M, ζ) be the Golden-manifold.
The distribution RA (resp. SA) is integrable if and only if R on (resp. S) is
integrable.

Proof. It comes from the fact that

sA[rAXA, rAY A] = (s[rX, rY ])A (resp.rA[sAXA, sAY A] = (r[sX, sY ])A),

for all vector fields X and Y in M . �

Proposition 3.13. Let (M, ζ) be the Golden-manifold.
The distribution RA (resp. SA) is integrable if and only if

NζA(rAXA, rAY A) ∈ Γ(RA) (resp. NζA(sAXA, sAY A) ∈ Γ(SA)) (3.8)

for all vector fields X, Y in M .

Proof. For all vector fields X and Y in M , one has

sANζA(rAXA, rAY A) = sA(ζA)2[rAXA, rAY A] + sA[ζA ◦ rAXA, zA ◦ rAY A]

− sAζA[ζA ◦ rAXA, rAY A]− sAζA[rAXA, ζ ◦ rAY A]

= (1− σ)2sA[rAXA, rAY A] + σ2[sAXA, sAY A]

− σ(1− σ)sA[rAXA, rAY A]− σ(1− σ)sA[rAXA, rAY A]

= 5sA[rAXA, rAY A].

With the same manner, rANζA(sAXA, sAY A) = 5rA[rAXA, rAY A]. Hence, the
proof is finished. �

Proposition 3.14. Let ζ be a Golden-structure on M and ζA its A-lift on MA.
The following assertions are equivalent:

(i) ζA is integrable.
(ii) Both the distribution RA and SA are integrable.

Proof. Let X and Y be two vector fields on M . We have

rANζA(sAXA, sAY A) + sANζA(rAXA, rAY A) = 5rA[(δMA − rA)XA, (δMA − rA)Y A]

+ 5(δMA − rA)[rAXA, rAY A]

= 5(rA)2[XA, Y A] + 5[rAXA, rAY A]

− 5rA[rAXA, Y A]− 5rA[XA, rAY A]

= 5NrA(XA, Y A).

Hence, the proof has been finished. �
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Corollary 3.15. Let ζ be a Golden-structure on M and ζA its A-lift on MA. The
following assertions are equivalent:

(a) ζA is integrable.
(b) Both RA and SA are integrable.
(c) Both R and S are integrable.
(d) ζ is integrable.

Theorem 3.16. Let ρ be the almost product on a smooth manifold M .
The almost product ρA on MA is integrable if an only if the associated Golden-
structure ζA+ (resp. ζ−) is integrable.

Proof. Let X, Y ∈ X(M), ρA an almost product structure on MA and ζA− =
1
2 (δMA −

√
5ρA) (resp. ζA+ = 1

2 (δMA +
√

5ρA)) The induced Golden-structure on

MA. One has:

NζA−
(XA, Y A) = (ζA−)2[XA, Y A] + [ζA−X

A, ζA−Y
A]− ζA− [ζA−X

A, Y A]− ζA− [XA, ζA−Y
A]

=
1

4
(δMA − 2

√
5ρA + 5(ρA)2)[XA, Y A]

+
1

4
[XA, Y A]−

√
5

4
[XA, ρAY A]−

√
5

4
[ρAXA, Y A] +

5

4
[ρAXA, ρAY A]

−
1

4
[XA, Y A] +

√
5

4
ρA[XA, Y A] +

√
5

4
ρA[ρAXA, Y A]−

5

4
ρA[ρAXA, Y A]

−
1

4
[XA, Y A] +

√
5

4
ρA[XA, Y A] +

√
5

4
[XA, ρAY A]−

5

4
ρA[XA, ρAY A]

=
5

4
((ρA)2[XA, Y A] + [ρAXA, ρAY A]− ρA[ρAXA, Y A]− ρA[XA, ρAY A])

=
5

4
NρA (XA, Y A)

With the same manner, we have NζA+ (XA, Y A) = 5
4NρA(XA, Y A). Hence, the

proof follows. �

Conversely, we have this following theorem.

Theorem 3.17. Let (M, ζ) be the Golden-manifold.
The Golden-structure ζA on (MA, gA) is integrable if and only if the associated
almost product ρA+ (resp. ρA−) is integrable.

3.3. Parallelism, Half Parallelism and Anti-half Parallelism of Golden-
structure on MA

In this section, we discuss parallelism, half parallelism and anti half paral-
lelism of the distributions associated with the golden structure on MA. We recall
that, a distribution D on M is called parallel with respect to the linear connec-
tion ∇ if the vector field ∇XY belongs to D for any vector fields Y ∈ Γ(D) and
X ∈ X(M) = Γ(TM). Let ζ be a Golden-structure on M . For all vector fields X
and Y in M , let’s put

4ζ(X,Y ) = ζ(∇XY )− ζ(∇YX)−∇ζXY +∇Y ζX.

We recall this following definition from [4].

Definition 3.18. ([4])Let (M, g, ζ) be a Golden Riemannian manifold.

(d1) The distribution R (resp. S) on M is called half-parallel with respect to the
linear connection ∇ if

4ζ(X,Y ) ∈ Γ(R) (resp. Γ(S)), (3.9)

for all vector fields X ∈ Γ(R) (resp. Γ(S)) and Y ∈ X(M).
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(d2) The distribution R (resp. S) on M is called anti-half parallel with respect to
the linear connection ∇ if

4ζ(X,Y ) ∈ Γ(S) (resp. Γ(R)), (3.10)

for all vector fields X ∈ Γ(R) (resp. Γ(S)) and Y ∈ X(M).

Let∇ be a linear connection on M . Its A-lift∇A is a unique linear connection
on MA which satisfies this equality

∇AXAY
A = (∇XY )A, (3.11)

where XA and Y A mean prolongation to MA of vector fields X and Y in M (see
Theorem 5 of [15]).

From the above consideration, we have these following definitions.

Definition 3.19. Let ∇ be a linear connection on a Golden-manifold (M, ζ) .
The distribution RA (resp. SA) is parallel with respect to linear connection ∇A if

∇AXAY
A ∈ Γ(RA) (resp. Γ(SA))

for all vector fields X ∈ Γ(R) (resp. Γ(S)) and Y ∈ X(M).

Definition 3.20. Let ∇ be a linear connection on a Golden-manifold (M, ζ) .

(d1) The distribution RA (resp. SA) on MA is called half-parallel with respect to
the linear connection ∇A if

4ζA(XA, Y A) ∈ Γ(RA) (resp. Γ(SA)), (3.12)

for all vector fields X ∈ Γ(R) (resp. Γ(S)) and Y ∈ X(M).

(d2) The distribution RA (resp. SA) on MA is called anti-half parallel with respect
to the linear connection ∇ if

4ζA(XA, Y A) ∈ Γ(SA) (resp. Γ(RA)), (3.13)

for all vector fields X ∈ Γ(R) (resp. Γ(S)) and Y ∈ X(M).

Let ∇ be a linear connection on a Golden-manifold (M, ζ). According to

[1]-[13], we can associate to the pair (ζA,∇A) two other linear connections
Sc

∇
A

and
V

∇
A

on MA called respectively Schouten and Vrǎnceanu connections, and define as
follows:

Sc

∇
A

XY = rA(∇A
X
rAY ) + sA(∇A

X
sAY )

V

∇
A

XAY A = rA(∇A
rAX

rAY ) + sA(∇A
sAX

sAY ) + rA[sAX, rAY ] + sA[rAX, sAY ],

for all vector fields X and Y in MA.

Hence, we have the following results.

Theorem 3.21. The Golden-structure ζA on MA is parallel with respect to Schouten
and Vrǎnceanu connections.

Proof. From the linearity of ∇A and the relations (3.7)-(3.8), one has

(
Sc

∇
A

Xζ
A)Y =

Sc

∇
A

Xζ
AY − ζA

Sc

∇
A

XY

= rA(∇A
X
rA ◦ ζAY ) + sA(∇A

X
sA ◦ ζAY )− ζA ◦ rA(∇A

X
rAY )

−ζA ◦ sA(∇A
X
sAY )

= σrA(∇A
X
rAY ) + (1− σ)sA(∇A

X
sAY )− σrA(∇A

X
rAY )−

(1− σ)sA(∇A
X
sAY )

= 0.
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With the same manner, (
V

∇
A

Xζ
A)Y = 0. �

Theorem 3.22. The projection operator rA (resp. sA) is parallel with respect to
Schouten and Vrǎnceanu connections.

Proof. It comes from relations (3.7)-(3.8) and the fact that ∇A and the bracket of
vector fields on MA are linear. �

Proposition 3.23. Let ∇ be a linear connection on a Golden-manifold (M, ζ).
The distribution R (resp. S) is parallel with respect to a fixed linear connection ∇
on M if and only if RA (resp. SA) is parallel with respect to linear connection ∇A
on MA.

Proof. Let X ∈ Γ(R) (resp. Γ(S)) and Y be a vector field in M . From the relations
(3.11) and (3.5) in this order, on has

sA∇AXAY
A = (s∇XY )A (resp. sA∇AXAY

A = (s∇XY )A).

Hence,

sA(∇AXAY
A) = 0⇔ s(∇XY ) = 0 (resp. rA(∇AXAY

A) = 0⇔ r(∇XY ) = 0).

�

Theorem 3.24. The distribution RA (resp. SA) is parallel with respect to the
Schouten and Vrǎnceanu connections for every linear connection ∇A on MA.

Proof. Let ∇A be a linear connection on MA, XA ∈ Γ(RA) and Y A ∈ X(MA) be
the A-lift of vector fields Y ∈ Γ(R) and X ∈ X(M). From relations (2.10) and
(2.11), we easily have rY = Y and sY = 0. Hence

sc

∇
A

XAY A = rA(∇AXAr
AY A) + sA(∇AXAs

AY A)

= rA(∇AXA(rY )A) + sA(∇AXA(sY )A)

= rA(∇AXAY
A) ∈ Γ(RA)

and
v

∇
A

XAY A = rA
(
∇A(sX)AY

A + [sX, Y ]A
)
∈ Γ(RA).

It can be proved analogously that the distribution SA is parallels with respect to
the Schouten and Vrǎnceanu connections for a linear connection ∇A. �

Proposition 3.25. Let ζ be a Golden structure, parallels with respect to a linear
connection ∇ on M . Then ζA is parallels with respect to linear connection ∇A on
MA if and only if

(∇AXAζ
A)Y A = 0

for all vector fields X and Y in M.

Proposition 3.26. Let ∇ be a linear connection on a Golden manifold (M, ζ) and
∇A its A-lift on (MA, ζA). The distribution R (resp. S) on M is half parallels
with respect to ∇ if and only if the distribution RA (resp. SA) on MA is also half
parallel with respect to ∇A.

Proof. It comes from Equation (3.1) and Equality (3.11). �

Proposition 3.27. Let ∇ be a linear connection on a Golden manifold (M, ζ) and
∇A its A-lift on (MA, ζA). The distribution RA (resp. SA) on MA is anti-half
parallel with respect to ∇A.
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Proof. Let XA ∈ Γ(RA) and Y A ∈ X(MA) be the A-lift of vector fields X ∈ Γ(R)
and Y ∈ X(M). From relations (3.8) and (2.11), we have rA ◦ ζA = σrA and
ζX = σX. Hence

rA
(
ζA(∇AXAY

A)− ζA(∇AY AX
A)−∇A(ζX)AY

A +∇AY A(ζX)A
)

= 0

since ∇A is linear. Therefore,

4ζA(XA, Y A) ∈ Γ(SA)

and RA is anti-half parallel with respect to ∇A. SA is anti-half parallel with respect
to ∇A by using the same method. �

Proposition 3.28. Let ∇ be a fixed linear connection on Golden-manifold (M, ζ).
The the distribution R (resp. S) is half parallels with respect to Schouten and
Vrǎnceanu connections if and only if so is RA (resp. SA).

3.4. Prolongation to MA of Golden Pseudo-Riemannian Structure on M

Let g be a pseudo-Riemannian metric on M . Its A-lift is a unique pseudo-
Riemannian metric on MA which satisfies

gA(XA, Y A) = (g(X,Y ))A, (3.14)

where XA and Y A mean prolongation to MA of vector fields X and Y in M (see
proposition 12 of [15]. Hence, the pair (MA, gA) becomes a pseudo-Riemannian
manifold. Then, we easily have the following results.

Proposition 3.29. If the triple (M, g, ζ) is a Golden pseudo-Riemannian manifold,
then so is the triple (MA, gA, ζA).

Corollary 3.30. Let (M, g, ζ) be a pseudo-Riemannian manifold. For all vector
fields in M , we have

(a) gA(rAXA, Y A) = gA(XA, rAY A) (resp. gA(sAXA, Y A) = gA(XA, sAY A)):
This means that the projection operators rA and sA are gA-symmetric

(b) gA(rAXA, sAY A) = 0: This means that the distribution RA and SA are
gA-orthogonal.

(c) NζA(ζAXA, Y A) = NζA(XA, ζAY A). This means that the Golden structure

ζA is NζA-symmetric.

Remark 3.31. If (g, ρ) is a pseudo-Riemannian almost product on M (that is, ρ
is a g-symmetric almost product structure on pseudo-Riemannian manifold (M, g),
then the pair (gA, ρA) is also a pseudo-Riemannian almost product on MA and the
triple (MA, gA, ζA) is a Golden pseudo-Riemannian structure on MA where ζA is
the Golden-structure on MA induced by ρA (see Proposition 3.4).

Proposition 3.32. If F : M → N is a Golden map between Golden pseudo-
Riemannian manifolds (M, g, ζ) and (N,h, ξ), then FA : MA → NA is a Golden
map between Golden pseudo-Riemannian manifolds (MA, gA, ζA) and (NA, hA, ξA).

Proof. Since F is a Golden map, then we have:

dF ◦ ζ = ξ ◦ dF.

Taking the A-lift on the both sides of the above equality and from the relation
(3.2), we obtain

dFA ◦ ζA = ξA ◦ dFA.
�
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Différentielle, Colloque du CNRS, Strasbourg, 1953.
[20] Yano, K., and Kon, M., Structures on manifolds , Series in Pure Mathematics, World Scien-

tific Publishing Co., Singapore, 1984.


