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Abstract. The notion of a belligerent GE-filter in a GE-algebra is introduced,
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1. Introduction

In mathematics, Hilbert algebras occur in the theory of von Neumann al-
gebras in: Commutation theorem and Tomita–Takesaki theory. The concept of
Hilbert algebra was introduced in early 50-ties by L. Henkin and T. Skolem for
some investigations of implication in intuicionistic and other nonclassical logics. In
60-ties, these algebras were studied especially by A. Horn and A. Diego from alge-
braic point of view. Hilbert algebras are an important tool for certain investigations
in algebraic logic since they can be considered as fragments of any propositional
logic containing a logical connective implication (→) and the constant 1 which is
considered as the logical value “true”. Many researchers studied various things
about Hilbert algebras (see [2, 3, 4, 5, 6, 7, 9, 10, 11]). As a generalization of
Hilbert algebras, R.K. Bandaru et al. [1] introduce the notion of GE-algebras.
They studied the various properties and filter theory of Hilbert algebras.
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GE-filters are important substructures in a GE-algebra and play an impor-
tant role. It is well understood that GE-filters are the kernels of congruences. Filter
theory is crucial in the study of any class of logical algebras. From a logical stand-
point, different filters correspond to different sets of valid formulas in an appropriate
logic. Designing various types of filters in some logical algebra, on the other hand,
is also algebraically interesting. With this motivation, we introduce and investigate
the concept of a belligerent GE-filter of a GE-algebra in this paper. We study the
relation between GE-filter and belligerent GE-filter of a GE-algebra. We provide

the conditions under which the set
→
a := {x ∈ X | a ≤ x} is a GE-filter of a

GE-algebra X. Also we introduce the notion of product and union of GE-algebras
and investigated their properties. We show that the union of two GE-algebras is
again a GE-algebra under certain condition. Finally, we prove that if F1 and F2

are GE-filters of GE-algebras X1 and X2 respectively then F1 ∪F2 is a GE-algebra
of X1 ∪X2.

2. Preliminaries

Definition 2.1 ([1]). A GE-algebra is a non-empty set X with a constant 1 and a
binary operation ∗ satisfying the following axioms:

(GE1) u ∗ u = 1,

(GE2) 1 ∗ u = u,

(GE3) u ∗ (v ∗ w) = u ∗ (v ∗ (u ∗ w))
for all u, v, w ∈ X.

In a GE-algebra X, a binary relation “≤” is defined by

(∀x, y ∈ X) (x ≤ y ⇔ x ∗ y = 1) . (1)

Proposition 2.2 ([1]). Every GE-algebra X satisfies the following items.

(∀u ∈ X) (u ∗ 1 = 1) . (2)

(∀u, v ∈ X) (u ∗ (u ∗ v) = u ∗ v) . (3)

(∀u, v ∈ X) (u ≤ v ∗ u) . (4)

Definition 2.3 ([1]). A GE-algebra X is said to be

• transitive if it satisfies:

(∀x, y, z ∈ X) (x ∗ y ≤ (z ∗ x) ∗ (z ∗ y)) . (5)

• commutative if it satisfies:

(∀x, y ∈ X) ((x ∗ y) ∗ y = (y ∗ x) ∗ x) . (6)

Proposition 2.4. Every transitive GE-algebra X satisfies the following assertions.

(∀x, y, z ∈ X) (x ∗ y ≤ (y ∗ z) ∗ (x ∗ z)) . (7)

(∀x, y, z ∈ X) (x ≤ y ⇒ z ∗ x ≤ z ∗ y, y ∗ z ≤ x ∗ z) . (8)



Belligerent GE-filters in GE-algebras 33

Definition 2.5 ([1]). A subset F of a GE-algebra X is called a GE-filter of X if
it satisfies:

1 ∈ F, (9)

(∀x, y ∈ X)(x ∗ y ∈ F, x ∈ F ⇒ y ∈ F ). (10)

Lemma 2.6 ([1]). In a GE-algebra X, every filter F of X satisfies:

(∀x, y ∈ X) (x ≤ y, x ∈ F ⇒ y ∈ F ) . (11)

3. Belligerent GE-filters

Definition 3.1. A subset F of a GE-algebra X is called a belligerent GE-filter of
X if it satisfies (9) and

(∀x, y, z ∈ X)(x ∗ (y ∗ z) ∈ F, x ∗ y ∈ F ⇒ x ∗ z ∈ F ). (12)

Example 3.2. Let X = {1, a, b, c, d, e, f} be a set with the binary operation “∗” in
Table 1. It is routine to verify that X is a GE-algebra and F := {1, a, b, f} is a

Table 1. Cayley table for the binary operation “∗”

∗ 1 a b c d e f
1 1 a b c d e f
a 1 1 1 c e e 1
b 1 a 1 d d d f
c 1 1 b 1 1 1 1
d 1 a 1 1 1 1 f
e 1 a b 1 1 1 1
f 1 a b e d e 1

belligerent GE-filter of X.

We establish the relationship between belligerent GE-filter and GE-filter.

Theorem 3.3. In a GE-algebra, every belligerent GE-filter is a GE-filter.

Proof. Let F be a belligerent GE-filter of a GE-algebra X. Let x, y ∈ X be such
that x ∗ y ∈ F and x ∈ F . If we substitute x, y and z with 1, x and y respectively
in (12) and use (GE2), then 1 ∗ (x ∗ y) = x ∗ y ∈ F and 1 ∗ x = x ∈ F . It follows
from (12) that y = 1 ∗ y ∈ F . Hence F is a GE-filter of X. �

The following example shows that the converse of Theorem 3.3 is not true in
general.

Example 3.4. Let X = {1, a, b, c, d, e, f} be the GE-algebra in Example 3.2. Then
F := {1, b} is a GE-filter of X. But it is not a belligerent GE-filter of X since
d ∗ (c ∗ f) = d ∗ 1 = 1 ∈ F and d ∗ c = 1 ∈ F but d ∗ f = f /∈ F .
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In a GE-algebra X, consider the following condition:

(∀x, y, z ∈ X) (x ∗ (y ∗ z) ∈ F ⇒ (x ∗ y) ∗ (x ∗ z) ∈ F ) . (13)

The following example shows that any GE-filter F of X does not satisfy the
condition (13).

Example 3.5. Consider the GE-algebra X in Example 3.2. Then a GE-filter
F ; = {1, b} of X does not satisfy the condition (13) since d ∗ (c ∗ f) = d ∗ 1 = 1 ∈ F
but (d ∗ c) ∗ (d ∗ f) = 1 ∗ f = f /∈ F .

We explore the conditions for a GE-filter to be a belligerent GE-filter.

Theorem 3.6. If a GE-filter F of a GE-algebra X satisfies the condition (13),
then F is a belligerent GE-filter of X.

Proof. Let F be a GE-filter of a GE-algebra X which satisfies the condition (13).
Let x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ F and x ∗ y ∈ F . By the condition (13),
we have (x ∗ y) ∗ (x ∗ z) ∈ F and x ∗ y ∈ F . Since F is a GE-filter of X, it follows
from (10) that x ∗ z ∈ F . Therefore F is a belligerent GE-filter of X. �

Consider the following argument for a subset F of a GE-algebra X:

(∀x, y, z ∈ X) (x ∈ F, x ∗ (y ∗ z) ∈ F ⇒ y ∗ z ∈ F ) . (14)

The following example shows that any subset F of a GE-algebra X does not
satisfy the condition (14).

Example 3.7. Consider the GE-algebra X in Example 3.2. Then a subset F :=
{1, a, b} of X, which is not a GE-filter of X, does not satisfy the condition (14)
since a ∈ F and a ∗ (b ∗ f) = a ∗ f = 1 ∈ F but b ∗ f = f /∈ F .

Theorem 3.8. If a subset F of a GE-algebra X satisfies (9) and (14), then F is
a GE-filter of X.

Proof. Assume that a subset F of a GE-algebra X satisfies (9) and (14). Let x, y ∈
X be such that x ∗ y ∈ F and x ∈ F . Using (GE2), we have x ∗ (1 ∗ y) = x ∗ y ∈ F .
Hence y = 1 ∗ y ∈ F by (GE2) and (14). Therefore F is a GE-filter of X. �

The following example shows that any subset F of a GE-algebra X satisfying
two conditions (9) and (14) may not be a belligerent GE-filter of X.

Example 3.9. Let X be the GE-algebra in Example 3.2 and F := {1, f}. Then F
satisfies (9) and (14) but it is not a belligerent GE-filter of X since c ∗ (d ∗ b) =
c ∗ 1 = 1 ∈ F and c ∗ d = 1 ∈ F but c ∗ b = b /∈ F .

We have the following question.

Question 3.10. Does any GE-algebra X satisfy the left self-distribution?. That
is,

(∀x, y, z ∈ X) (x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)) . (15)

The following example gives a negative answer to the Question 3.10.
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Example 3.11. Let X = {1, a, b, c, d, e} be a set with the binary operation “∗” in
Table 2.

Table 2. Cayley table for the binary operation “∗”

∗ 1 a b c d e
1 1 a b c d e
a 1 1 1 c e e
b 1 a 1 d d d
c 1 1 b 1 1 1
d 1 a 1 1 1 1
e 1 a 1 1 1 1

Then X is a GE-algebra in which the condition (15) is not true since a ∗ (b ∗ c) =
a ∗ d = e 6= c = 1 ∗ c = (a ∗ b) ∗ (a ∗ c).

Definition 3.12. A GE-algebra X is said to be belligerent if X satisfies the left
self-distribution, i.e., the condition (15).

Example 3.13. Let X = {1, a, b, c, d} be a set with the binary operation “∗” in
Table 3. It is routine to verify that X is a belligerent GE-algebra.

Table 3. Cayley table for the binary operation “∗”

∗ 1 a b c d
1 1 a b c d
a 1 1 1 c c
b 1 1 1 d d
c 1 a a 1 1
d 1 b b 1 1

Question 3.14. Is the following equation established in a (transitive) GE-algebra
X?

(∀x, y, z ∈ X) (x ∗ (y ∗ z) = y ∗ (x ∗ z)) . (16)

The following example shows that the answer to Question 3.14 is negative.

Example 3.15. (1) Let X = {1, a, b, c, d, e} be a set with the binary operation “∗”
in Table 4. Then it is routine to verify that X is a GE-algebra. But X does not
satisfy (16) since b ∗ (c ∗ d) = b ∗ a = e 6= a = c ∗ d = c ∗ (b ∗ d).

(2) Let X = {1, a, b, c, d} be a set with the binary operation “∗” in Table 5.
Then it is routine to verify that X is a transitive GE-algebra. But X does not
satisfy (16) since b ∗ (c ∗ d) = b ∗ a = d 6= a = c ∗ d = c ∗ (b ∗ d).

Definition 3.16. A GE-algebra X is said to be left exchangeable if it satisfies the
condition (16).
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Table 4. Cayley table for the binary operation “∗”

∗ 1 a b c d e
1 1 a b c d e
a 1 1 b c 1 1
b 1 e 1 1 d e
c 1 a b 1 a a
d 1 1 1 c 1 1
e 1 1 b 1 1 1

Table 5. Cayley table for the binary operation “∗”

∗ 1 a b c d
1 1 a b c d
a 1 1 b 1 1
b 1 d 1 c d
c 1 a b 1 a
d 1 1 b 1 1

Example 3.17. Let X = {1, a, b, c} be a set with the binary operation “∗” in Table
6. Then it is routine to verify that X is a left exchangeable GE-algebra.

Table 6. Cayley table for the binary operation “∗”

∗ 1 a b c
1 1 a b c
a 1 1 b c
b 1 a 1 1
c 1 1 b 1

Question 3.18. If a GE-filter F of a GE-algebra X satisfies:

(∀x, y ∈ X) (x ∗ (x ∗ y) ∈ F ⇒ x ∗ y ∈ F ) , (17)

then does F satisfy the condition (13)?

The following example shows that the answer to Question 3.18 is negative.

Example 3.19. Let X = {1, a, b, c, d, e, f} be the GE-algebra in Example 3.2. Then
F := {1, b} is a GE-filter of X satisfying (17). But it does not satisfy (13) since
d ∗ (c ∗ f) = d ∗ 1 = 1 ∈ F but (d ∗ c) ∗ (d ∗ f) = 1 ∗ f = f /∈ F .

Proposition 3.20. Let F be a GE-filter of a GE-algebra X that satisfies the con-
dition (17). If X is transitive and left exchangeable, then F satisfies the condition
(13).
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Proof. Let x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ F . Using (8) and (5), we have

x ∗ (y ∗ z) ≤ x ∗ ((x ∗ y) ∗ (x ∗ z)).
Since F is a GE-filter of X, it follows from Lemma 2.6 that x∗((x∗y)∗(x∗z)) ∈ F .
Using the condition (16), we know that

x ∗ (x ∗ ((x ∗ y) ∗ z)) = x ∗ ((x ∗ y) ∗ (x ∗ z)) ∈ F.
It follows from (16) and (17) that (x ∗ y) ∗ (x ∗ z) = x ∗ ((x ∗ y) ∗ z) ∈ F . Thus F
satisfies the condition (13). �

Using Theorem 3.6 and Proposition 3.20, we have the following theorem.

Theorem 3.21. Let F be a GE-filter of a transitive and left exchangeable GE-
algebra X. If F satisfies the condition (17), then F is a belligerent GE-filter of
X.

Given a point w and a non-empty subset F of a GE-algebra X, we consider
a special set:

Fw := {x ∈ X | w ∗ x ∈ F}. (18)

If F is a GE-filter of a GE-algebra X, then 1, w ∈ Fw for all w ∈ X.

We have the following questions.

Question 3.22. If F is a GE-filter of a GE-algebra X, then is the set Fw in (18)
a GE-filter of X?

The following example gives a negative answer to the Question 3.22.

Example 3.23. Let X = {1, a, b, c, d, e, f} be the GE-algebra in Example 3.2. If we
take a GE-filter F := {1, b} of X, then Fd = {1, b, c, d, e} and it is not a GE-filter
of X since c ∗ a = 1 ∈ Fd and c ∈ Fd but a /∈ Fd.

We suggest conditions that will lead to a positive answer to the Question
3.22.

Theorem 3.24. If F is a belligerent GE-filter of a GE-algebra X, then the set Fw
in (18) is a GE-filter of X.

Proof. Assume that F is a belligerent GE-filter of a GE-algebra X. Let x, y ∈ X
be such that x ∗ y ∈ Fw and x ∈ Fw. Then w ∗ (x ∗ y) ∈ F and w ∗x ∈ F . It follows
from (12) that w ∗ y ∈ F , that is, y ∈ Fw. Hence Fw is a GE-filter of X. �

We suggest the conditions under which a GE-filter can be a belligerent GE-
filter.

Theorem 3.25. For every subset F of a GE-algebra X, if 1 ∈ F and the set Fw
in (18) is a GE-filter of X for every w ∈ X, then F is a belligerent GE-filter of X.

Proof. Suppose that 1 ∈ F and the set Fw in (18) is a GE-filter of X for every
w ∈ X. Let x ∗ (y ∗ z) ∈ F and x ∗ y ∈ F . Then y ∗ z ∈ Fx and y ∈ Fx. Since
Fx is a GE-filter of X, we have z ∈ Fx and so x ∗ z ∈ F . Hence F is a belligerent
GE-filter of X. �
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Corollary 3.26. Given a GE-filter F of a GE-algebra X, if the set Fw in (18) is
a GE-filter of X for every w ∈ X, then F is a belligerent GE-filter of X.

Theorem 3.27. If F is a belligerent GE-filter of a GE-algebra X, then the set Fw
in (18) is the least GE-filter of X containing F and w.

Proof. Assume that F is a belligerent GE-filter of a GE-algebra X and let w ∈ X.
Then Fw is a GE-filter of X (see Theorem ??TqT23b-200820). it is obvious that
Fw contains F and w. Let G be a GE-filter of X containing F and w. If x ∈ Fw,
then w ∗ x ∈ F ⊆ G and so x ∈ G. Hence Fw ⊆ G and Fw is the least GE-filter of
X containing F and w. �

The following example shows that the trivial filter {1} of a GE-algebra X is
not a belligerent GE-filter of X.

Example 3.28. Let X be the GE-algebra in Example 3.2. Then F := {1} is a
GE-filter of X but not a belligerent GE-filter of X since d ∗ (c ∗ f) = d ∗ 1 = 1 ∈ F
and d ∗ c = 1 ∈ F but d ∗ f = f /∈ F .

Given an element a of a GE-algebra X, consider the set
→
a := {x ∈ X | a ≤ x}.

In general, the set
→
a is not a GE-filter of X as seen in the following example.

Example 3.29. Let X be the GE-algebra in Example 3.2. Then
→
c := {1, a, c, d, e, f}

is not a GE-filter of X since d ∈ →
c and d ∗ b = 1 ∈ →

c but b /∈ →
c .

We provide conditions for the set
→
a to be a GE-filter.

Theorem 3.30. Given an element a in a GE-algebra X, the following are equiv-
alent.

(i) The set
→
a := {x ∈ X | a ≤ x} is a GE-filter of X.

(ii) X satisfies:

(∀x, y ∈ X) (a ≤ x ∗ y, a ≤ x ⇒ a ≤ y) . (19)

Proof. Assume that
→
a is a GE-filter of X. Let x, y ∈ X be such that a ≤ x ∗ y

and a ≤ x. Then x ∗ y ∈ →
a and x ∈ →

a . Since
→
a is a GE-filter of X, it follows that

y ∈ →
a , that is, a ≤ y. Suppose that X satisfies the condition (19). It is clear that

1 ∈ →
a . Let x, y ∈ X be such that x ∗ y ∈ →

a and x ∈ →
a . Then a ≤ x ∗ y and a ≤ x

which imply from (19) that a ≤ y. Hence y ∈ →
a , and therefore

→
a is a GE-filter of

X. �

Theorem 3.31. In a GE-algebra X, the following are equivalent.

(i) The trivial GE-filter {1} is a belligerent GE-filter.

(ii) For every a ∈ X, the set
→
a := {x ∈ X | a ≤ x} is a GE-filter of X.

Proof. Assume that the trivial GE-filter {1} is a belligerent GE-filter of X. It is

clear that 1 ∈ →
a . Let x, y ∈ X be such that x ∗ y ∈ →

a and x ∈ →
a . Then a ≤ x ∗ y

and a ≤ x, that is, a ∗ (x ∗ y) = 1 ∈ {1} and a ∗ x = 1 ∈ {1}. Since {1} is a
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belligerent GE-filter of X, it follows from (12) that a ∗ y ∈ {1}. Hence y ∈ →
a .

Therefore
→
a is a GE-filter of X.

Conversely, suppose that the set
→
a is a GE-filter of X for every a ∈ X. Let

x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ {1} and x ∗ y ∈ {1}. Then x ∗ (y ∗ z) = 1

and x ∗ y = 1, i.e., x ≤ y ∗ z and x ≤ y. Hence y ∗ z ∈ →
x and y ∈ →

x . Since
→
x is a

GE-filter of X, we have z ∈ →
x , that is, x ≤ z. Thus x ∗ z = 1 ∈ {1}, and therefore

{1} is a belligerent GE-filter of X. �

4. Product and union of GE-algebras

Let Xα := {(Xα, ∗α, 1α) | α ∈ Λ} be a family of GE-algebras where Λ is an
index set. Let

∏
Xα be the set of all mappings ` : Λ →

⋃
α∈Λ

Xα with `(α) ∈ Xα,

that is, ∏
Xα :=

{
` : Λ→

⋃
α∈Λ

Xα | `(α) ∈ Xα, α ∈ Λ

}
. (20)

We define a binary operation ~ on
∏

Xα and the constant 1 by(
∀`,  ∈

∏
Xα
)

((`~ )(α) = `(α) ∗α (α)) (21)

and 1(α) = 1α, respectively, for every α ∈ Λ. It is routine to verify that (
∏

Xα,~,1)
is a GE-algebra, which is called the product GE-algebra.

The following example illustrates a product GE-algebra.

Example 4.1. Consider two GE-algebras (X1 = {1, a, b, c, d}, ∗1, 1) and
(X2 = {1, a, b, c, d, e}, ∗2, 1) with the binary operations ∗1 and ∗2 respectively in the
following tables.

∗1 1 a b c d
1 1 a b c d
a 1 1 b 1 1
b 1 d 1 c d
c 1 a b 1 a
d 1 1 b 1 1

∗2 1 a b c d e
1 1 a b c d e
a 1 1 1 c e e
b 1 a 1 d d d
c 1 1 b 1 1 1
d 1 a 1 1 1 1
e 1 a 1 1 1 1

Then

X1 ×X2 = {(1, 1), (1, a), (1, b), (1, c), (1, d), (1, e), (a, 1), (a, a), (a, b), (a, c), (a, d), (a, e),

(b, 1), (b, a), (b, b), (b, c), (b, d), (b, e), (c, 1), (c, a), (c, b), (c, c), (c, d), (c, e),

(d, 1), (d, a), (d, b), (d, c), (d, d), (d, e)}

and (X1 ×X2,~,1) is a GE-algebra in which 1 = (1, 1) and the operation ~ is
given by

(∀(x1, x2), (y1, y2) ∈ X1 ×X2)((x1, x2)~ (y1, y2) = (x1 ∗1 y1, x2 ∗2 y2).
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Theorem 4.2. If Fα is a (belligerent) GE-filter of Xα for all α ∈ Λ, then
∏
Fα is

a (belligerent) GE-filter of
∏

Xα.

Proof. It is clear that 1 ∈
∏
Fα. Assume that Fα is a GE-filter of Xα for all α ∈ Λ.

Let `,  ∈
∏

Xα be such that ` ~  ∈
∏
Fα and ` ∈

∏
Fα. Then `(α) ∗α (α) =

(` ~ )(α) ∈ Fα and `(α) ∈ Fα for every α ∈ Λ. Since Fα is a GE-filter of Xα, it
follows that (α) ∈ Fα. Hence  ∈

∏
Fα, and therefore

∏
Fα is a GE-filter of

∏
Xα.

Similarly, we can check that if Fα is a belligerent GE-filter of Xα for all α ∈ Λ,
then

∏
Fα is a belligerent GE-filter of

∏
Xα. �

Theorem 4.3. If F is a GE-filter of
∏

Xα, then the α-projection Fα of F is a
GE-filter of Xα for all α ∈ Λ.

Proof. Let x, y ∈ Xα be such that x ∗α y ∈ Fα and x ∈ Fα. We define ` and  as
follows:

`(γ) =

{
x if γ = α,
1 if γ 6= α,

and (γ) =

{
y if γ = α,
1 if γ 6= α.

Then `(α) ∗α (α) = x ∗α y ∈ Fα, and so there exists % ∈ F such that %(α) =
`(α) ∗α (α) = (`~ )(α). Hence `~  ∈ F . Also ` ∈ F by similar way. Since F is
a GE-filter of

∏
Xα, it follows that  ∈ F . Hence y = (α) ∈ Fα. Therefore Fα is a

GE-filter of Xα for all α ∈ Λ. �

Theorem 4.4. Let X1 and X2 be GE-algebras. If F is a GE-filter of X1 × X2,
then F is represented by F = F1×F2 where Fα, α = 1, 2, is the α-projection of F .

Proof. It is obvious that F ⊆ F1 × F2. Let ` ∈ F1 × F2. Then ` is represented as
(a, b) for a ∈ F1 and b ∈ F2. It follows that there exist b′ ∈ F2 and a′ ∈ F1 such
that (a, b′) ∈ F and (a′, b) ∈ F . Using (2), (GE1) and (GE3), we have

(a, b′)~ (a′ ∗ a, 1) = (a ∗ (a′ ∗ a), b′ ∗ 1) = (a ∗ (a′ ∗ (a ∗ a)), 1)

= (a ∗ (a′ ∗ 1), 1) = (a ∗ 1, 1) = (1, 1) ∈ F.

Since F is a GE-filter, it follows that (a′∗a, 1) ∈ F . Also (a′, b)~(a, b) = (a′∗a, 1) ∈
F , and so (a, b) ∈ F . This shows that F1×F2 ⊆ F and the proof is completed. �

The example below describes Theorem 4.4.

Example 4.5. Consider the product GE-algebra (X1 ×X2,~,1) in Example 4.1.
Then

F = {(1, 1), (1, a), (1, b), (b, 1), (b, a), (b, b)}

is a GE-filter of X1 ×X2 and it is represented as F = F1 × F2 where F1 = {1, b}
and F2 = {1, a, b} are GE-filters of X1 and X2 respectively.
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Let (X1, ∗1, 1) and (X2, ∗2, 1) be GE-algebras, and consider their union X1 ∪
X2. Let’s call ∗ a binary operation on X1 ∪X2 as defined as:

(∀x, y ∈ X1 ∪X2)

 x ∗ y =

 x ∗1 y if x, y ∈ X1

x ∗2 y if x, y ∈ X2

y if x and y are not belong to same GE-algebra

 .

(22)

Question 4.6. If X1 and X2 are GE-algebras, is their union X1 ∪X2 also a GE-
algebra?

The following example gives a negative answer to the Question 4.6.

Example 4.7. Consider two GE-algebras (X1 := {1, a, b, c, d, e}, ∗1, 1) and
(X2 := {1, a, l1, l2, l3, l4}, ∗2, 1) with the binary operations ∗1 and ∗2 respectively in
the following tables.

∗1 1 a b c d e
1 1 a b c d e
a 1 1 b c 1 1
b 1 e 1 1 d e
c 1 a b 1 a a
d 1 1 1 c 1 1
e 1 1 b 1 1 1

∗2 1 a l1 l2 l3 l4
1 1 a l1 l2 l3 l4
a 1 1 1 l2 l4 l4
l1 1 a 1 l3 l3 l3
l2 1 1 l1 1 1 1
l3 1 a 1 1 1 1
l4 1 a 1 1 1 1

.

Then X1 ∪X2 = {1, a, b, c, d, e, l1, l2, l3, l4} and (X1 ∪X2, ∗, 1) is not a GE-algebra
under the binary operation ∗ defined by (22) since l2 ∗ (b ∗ a) = l2 ∗ e = e 6= 1 =
l2 ∗ 1 = l2 ∗ (b ∗ 1) = l2 ∗ (b ∗ (l2 ∗ a)).

We look for conditions for the union of two GE-algebras to be a GE-algebra
again.

Theorem 4.8. Let (X1, ∗1, 1) and (X2, ∗2, 1) be GE-algebras with X1 ∩X2 = {1}.
If a binary operation ∗ on X1 ∪ X2 is defined by (22), then (X1 ∪ X2, ∗, 1) is a
GE-algebra. Moreover, if X1 and X2 are commutative (resp., transitive), then so
is X1 ∪X2.

Proof. It is clear that (GE1) and (GE2) are established. Let x, y, z ∈ X1 ∪X2. If
x, y ∈ X1 and z ∈ X2, then x ∗ (y ∗ z) = x ∗ z = z and x ∗ (y ∗ (x ∗ z)) = x ∗ (y ∗ z) =
x ∗ z = z. If x, z ∈ X1 and y ∈ X2, then x ∗ (y ∗ z) = x ∗1 z and x ∗ (y ∗ (x ∗ z)) =
x ∗ (y ∗ (x ∗1 z))x ∗ (x ∗1 z) = x ∗1 (x ∗1 z) = x ∗1 z. If y, z ∈ X1 and x ∈ X2, then
x∗ (y ∗z) = x∗ (y ∗1 z) = y ∗1 z and x∗ (y ∗ (x∗z)) = x∗ (y ∗z) = x∗ (y ∗1 z) = y ∗1 z.
Similarly, we know that (GE3) is established for the cases:

• x, y ∈ X2 and z ∈ X1,
• x, z ∈ X2 and y ∈ X1,
• y, z ∈ X2 and x ∈ X1.

Hence (X1 ∪X2, ∗, 1) is a GE-algebra. Assume that X1 and X2 are commutative.
If x, y ∈ Xi, then (x ∗ y) ∗ y = (x ∗i y) ∗i y = (y ∗i x) ∗i x = (y ∗ x) ∗ x for i = 1, 2.
If x and y are not belong to same GE-algebra, then (x ∗ y) ∗ y = 1 = (y ∗ x) ∗ x.
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Hence X1 ∪X2 is commutative. Assume that X1 and X2 are transitive. If x ∈ X1

and y, z ∈ X2, then x ∗ y = y ≤ z ∗2 y = x ∗ (z ∗ y) = (z ∗ x) ∗ (z ∗ y) by (4). If
y ∈ X1 and x, z ∈ X2, then x∗y = y ≤ y = (z ∗x)∗ (z ∗y). If z ∈ X1 and x, y ∈ X2,
then x ∗ y = x ∗2 y and (z ∗ x) ∗ (z ∗ y) = x ∗2 y. Similarly, we can check that the
condition (5) for the cases:

• x ∈ X2 and y, z ∈ X1,
• y ∈ X2 and x, z ∈ X1,
• z ∈ X2 and x, y ∈ X1.

Therefore X1 ∪X2 is transitive. �

Corollary 4.9. Let (X1, ∗1, 1) and (X2, ∗2, 1) be commutative GE-algebras with
X1 ∩ X2 = {1}. If a binary operation ∗ on X1 ∪ X2 is defined by (22), then
(X1 ∪X2, ∗, 1) is a Hilbert-algebra.

The following example describes Theorem 4.8.

Example 4.10. Consider two GE-algebras X1 and X1, where (X1 := {1, a, b, c, d}, ∗1, 1)
and (X2 := {1, l1, l2, l3, l4}, ∗2, 1) with the binary operations ∗1 and ∗2 respectively
in the following tables.

∗1 1 a b c d
1 1 a b c d
a 1 1 b c c
b 1 a 1 d d
c 1 a 1 1 1
d 1 a 1 1 1

∗2 1 l1 l2 l3 l4
1 1 l1 l2 l3 l4
l1 1 1 l2 l3 l3
l2 1 l1 1 l4 l4
l3 1 l1 1 1 1
l4 1 l1 l2 1 1

Then X1 ∪X2 = {1, a, b, c, d, l1, l2, l3, l4} and (X1 ∪X2, ∗, 1) is a GE-algebra under
the binary operation ∗ defined by (22). The binary operation ∗ on X1 ∪ X2 is
described by the next Cayley table.

∗ 1 a b c d l1 l2 l3 l4
1 1 a b c d l1 l2 l3 l4
a 1 1 b c c l1 l2 l3 l4
b 1 a 1 d d l1 l2 l3 l4
c 1 a 1 1 1 l1 l2 l3 l4
d 1 a 1 1 1 l1 l2 l3 l4
l1 1 a b c d 1 l2 l3 l4
l2 1 a b c d l1 1 l4 l4
l3 1 a b c d l1 1 1 1
l4 1 a b c d l1 l2 1 1

Theorem 4.11. If F1 and F2 are (belligerent) GE-filters of X1 and X2 respectively,
then the union F1 ∪ F2 is a (belligerent) GE-filter of X1 ∪X2.

Proof. It is clear that 1 ∈ F1 ∪F2. Let x, y ∈ X1 ∪X2 be such that x ∗ y ∈ F1 ∪F2

and x ∈ F1∪F2. If x∗y ∈ Fi and x ∈ Fi, then y ∈ Fi ⊆ F1∪F2 for i = 1, 2. Assume
that x ∗ y ∈ F1 and x ∈ F2. If y ∈ X2, then x ∗ y ∈ X2 by (4) and Lemma 2.6.
Hence x∗y = 1, i.e., x ≤ y since x∗y ∈ F1 ⊆ X1 and X1∩X2 = {1}. It follows from
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(2.6) that y ∈ F2. If y ∈ X1, then x ∗ y = y ∈ F1. Hence y ∈ F1 ∪ F2. Therefore
F1∪F2 is a GE-filter of X1∪X2. Now, suppose that F1 and F2 are belligerent. Let
x, y, z ∈ X1 ∪X2 be such that z ∗ (y ∗ x) ∈ F1 ∪ F2 and z ∗ y ∈ F1 ∪ F2. If x and y
are not belong to the same GE-algebra, then z ∗ x = z ∗ (y ∗ x) ∈ F1 ∪F2. Suppose
that x and y are contained in X1. If z ∈ X1, then z ∗ (y ∗ x) = z ∗1 (y ∗1 x) ∈ F1

and z ∗ y = z ∗1 y ∈ F1. Since F1 is a belligerent GE-filter of X1, it follows that
z ∗ x = z ∗1 x ∈ F1. If z ∈ X2, then z ∗ (y ∗ x) = y ∗1 x ∈ F1 and z ∗ y = y ∈ F1,
which imply that x ∈ F1 Since x ≤ z ∗x by (4), it follows that z ∗x ∈ F1. Similarly,
if x, y ∈ X2, then z ∗ x ∈ F2. Thus z ∗ x ∈ F1 ∪ F2, and F1 ∪ F2 is a belligerent
GE-filter of X1 ∪X2. �

The following example illustrates Theorem 4.11.

Example 4.12. In Example 4.10, we can observe that F1 = {1, a} and F2 =
{1, l1, l2} are (belligerent) GE-filters of X1 and X2 respectively, and their union
F1 ∪ F2 = {1, a, l1, l2} is also a (belligerent) GE-filter of X1 ∪X2.
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