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Abstract. This paper deals with the theory of V. Kondratiev which allows to study

the regularity of elliptical problems in corner domains. After having introduced the

Mellin transform and the Sobolev spaces to weight, we recall the links with Sobolev

spaces. The Mellin trasform represent an important key to study the Hs regularity

in corner domains.
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1. Introduction

In mathematics, the Mellin transform is an integral transform that may be
regarded as the multiplicative version of the two-sided Laplace transform.

M [f(s), s)] =

∫ ∞
0

xs−1f(x)dx = F (s). (1)

This integral transform is closely connected to the theory of Dirichlet series,
and is often used in number theory, mathematical statistics, and the theory of as-
ymptotic expansions, it is closely related to the Laplace transform and the Fourier
transform, and the theory of the gamma function and allied special functions. Also
the Mellin transform is extremely useful for certain applications including solving
Laplace equation in polar coordinates, as well as for estimating integrals. We will
first consider the generalized Laplace transform. In probability theory, the Mellin
transform is an essential tool in studying the distributions of products of random
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variables. The Mellin Transform is widely used in computer science for the analysis
of algorithms because of its scale invariance property. In contrast to Fourier and
Laplace transformations that were introduced to solve physical problems, Mellin
transformation arose in a mathematical context. In fact, the first occurrence of the
transformation is found in a memoir by Riemann in which he used it to study the
famous Zeta function. Actually, the Mellin transformation can also be placed in
another framework, which in some respects conforms more closely to the original
ideas of Riemann. The magnitude of the Mellin transform of a scaled function is
identical to the magnitude of the original function for purely imaginary inputs. This
scale invariance property is analogous to the Fourier Transform’s shift invariance
property. Mellin transform is method for the exact calculation of one dimensional
definite integrals, and illustrates the application. The different types of singularity
of a function f are discussed. Every singularity of a holomorphic function is iso-
lated, but isolation of singularities is not alone sufficient to guarantee a function
is holomorphic. Many important tools of complex analysis and the residue theo-
rem require that all relevant singularities of the function be isolated. We use the
Mellin transform in asymptotic analysis for estimating asymptotically harmonic
sums. And also the Mellin transform is an integral transform, which is closely
connected [4, 7, 6]. And also is extremely useful for certain applications including
solving Laplace equation in polar coordinates, as well as for estimating integrals.
We see that if we decompose a regular domain Ω of R2 into several sectors whose
common vertex is inside Ω, the asymptotic types associated with the problem at the
limits of each subdomain has a priori nothing to do with the expected regularity at
inside (Hm+2 for an operator of order 2 with data Hm) for the complete problem.
Conversely, we can consider do a domain decomposition to solve a problem elliptical
in a non-convex sector which will lead to a part principal more singular than what
gives a priori the resolution in each subdomain. In accordance with Kondratiev’s
results, asymptotic types give the main parts up to a certain order of solutions to
neighborhoods of x = 0. Note that for the solution u two origins:
a) the asymptotic type of the data;
b) the asymptotic type associated with the principal parts of the operators P0 and
B0,±. Regardless of the data (suppose that the Mellin transforms data is holomor-
phic in =z < S1 with S1 large) we see that the domain decomposition generates a
priori a bad match of asymptotic types between the full domain and each subdo-
main. In fact we have degrees of freedom in the domain decomposition methods at
the level of interface conditions. The idea is therefore to determine the interface
conditions which will make the first poles (those closest to z = 0). Mellin trans-
forms solutions in each subdomain with those associated with the solution of the
complete problem. In addition, we will see the interface conditions are not taken
at random, but rather they are chosen so that they work well without wedge then
adapt them in the neighborhood of the corner so as to have a good convergence.
After having built these operators, we can seek to optimize the coefficients so that
we obtain more regular solutions near the corner, in practice this can be done via
two approaches:
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• The first approach consists in choosing the interface conditions so that the
residue on the first pole parasite (associated with the subdomain and not
with the complete domain) either null for well-chosen data (corresponding
to the development asymptotic of solution of the complete problem).

• The second approach consists in choosing the interface conditions in order
to push the most far possible from z = 0 the parasitic poles (i.e. raise the
exponents of parasitic modes in asymptotic expansions).

A priori we do not know in advance which method to use, we must each time
compare the two methods and see up to what order we can increase the regularity
of the solution of the problem to be considered, this is the subject of both following
chapters. The domain decomposition method generates two types of corners, there
are corners which are inside the full domain and corners which are on the edge of the
full domain. The treatment of these two categories of corners is slightly different.
In fact in the choice of the conditions of interface one must take into account the
nature of the corners [5, 8, 9, 1, 2]. We will show that for corners inside the complete
domain or corners on the edge of the complete domain with Neumann condition on
the edge, the conditions of connection to the interfaces must not contain a constant
term to have a well-posed problem which allows non-zero values at the corner. On
the other hand for a decomposition of field which generates corners on the edge
of the complete field, with condition of Dirichlet authorizes constant terms in the
conditions of connection to the interfaces of the subdomains.

2. Preliminaries

Definition 2.1. [5] The Mellin transform of f(x), 0 < x <∞, is

M [f(s), s)] =

∫ ∞
0

xs−1f(x)dx = F (s), (2)

which is regular for −a < Re(s) < b for some a, b and d

f(x) = M−1[F, x] =
1

2iπ

∫ c+i∞

c−i∞
x−sF (s)ds, (3)

where −a < c < b.

The Mellin transformation consists in transporting everything we know how
to do on the additive group (R,+) with the Fourier transformation in the multi-
plicative group (R?+, .). This can be done in practice with the change of variable
r = e−t, t ∈ R in the Fourier transformation formula:

F (f)(τ) = f̂(τ) =

∫ +∞

−∞
e−iτtf(t)dt.

We set f(t) = u(e−t), then we have:

M(u)(τ) =

∫ +∞

0

riτu(r)
dr

r
. (4)
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The Fourier inversion formula

F−1(f̂)(t) =

∫ +∞

−∞
eiτtf̂(τ)

dτ

2π
,

leads to

M−1(û)(r) =

∫ +∞

−∞
r−iτ û(τ)

dτ

2π
.

Note that we can directly introduce the Mellin transform on (R?+, .) Using

the characters r −→ r−iγ and Haar’s measure
dr

r
.

2.1. Isometry and Properties of M.

Lemma 2.2. The Mellin transformation is an isometry of L2(R+,
dr
r ) in L2(R, dτ2π ).

Proof. We know that the Fourier transformation is an isometry of L2(R, dt) in
L2( R, dt

2 pi ), so the Mellin transformation is an isometry of L2(R+,
dr
r ) in L2(R, dτ2π ).

�

2.2. Properties of M .

(1) In Mellin transformation, multiplication by a character riα amounts to
frequency translation by −α, that is:

M(riαf)(τ) = M(f)(τ + α) for mα ∈ R.

This formula is still valid for complex α.
(2) Derivation formulas for the Mellin transformation:

M(ir ∂rf)(τ) = τM(f)(τ),

M(i ln(r)f)(τ) = ∂τM(f)(τ),

(3) Expansion formulas:

M(f(rc))(τ) = c−1M(f)(c−1τ), c ∈ R?+,

M(f(c r)(τ) = c−iτM(f)(τ), c ∈ R?+.

(4) Convolution product:
We define the convolution product in a multiplicative group by:

f ∗ g(r) =

∫ +∞

0

f(
r

r′
)g(r′)

dr′

r′
.

So we have:

M(f ∗ g) = M(f)M(g)

(5) M(fg) = M(f) ∗2π M(g)
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Proof. (1) We work with functions of class C∞ and with compact support in
(0,+∞) and we extend the identities by density.
By using the integral definition of the Mellin transformation (4) we obtain
the 1 ere equality that is to say:

M(riαf)(τ) =

∫ +∞

0

ri(α+τ)f(r)
dr

r
= M(f)(τ + α), (5)

(2) • According to (4) we have:

M(ir∂rf)(τ) =

∫ +∞

0

iriτr∂rf(r)
dr

r
= i

∫ +∞

0

riτ∂rf(r)dr.

By integration by part we obtain: M(ir∂rf)(τ) = τM(f)(τ), for any func-
tion f of class C∞ and with compact support in (0,+∞)
• According to (4) we have

M(i ln(r)f)(τ) =

∫ +∞

0

riτ i ln(r)f(r)
dr

r
,

just notice that

∂τr
iτ = i ln(r)riτ ,

then we get:

M(i ln(r)f)(τ) =

∫ ∞
0

∂τr
iτf(r)

dr

r

= ∂τ

(∫ +∞

0

riτf(r)
dr

r

)
.

So, M(i ln(r)f)(τ) = ∂τM(f)(τ).
(3) • To show the dilation formula it suffices to set the change of variable

r′ = rc. Which gives dr′

r′ = cdrr
So according to (4) we have:

M(f(rc))(τ) =

∫ +∞

0

riτf(rc)
dr

r
=

∫ +∞

0

r′
iτ
c f(r′)

1

c

dr′

r′
= c−1M(f)(

τ

c
).

• The second dilation formula is proved by setting as a change of variable
r′ = c r we easily obtain the result.

(4) According to (4) we can write:

M(f ∗ g)(τ) =

∫ +∞

0

riτ (f ∗ g)(r)
dr

r
, (6)

using the definition of the convolution product

(f ∗ g)(r) =

∫ +∞

0

f(
r

r′
)g(r′)

dr′

r′
,
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therefore equality (6) is equivalent to:

M(f ∗ g)(τ) =

∫∫
(0,+∞)2

ri tauf(
r

r′
)g(r′)

dr′

r′
dr

r
. (7)

We set the change of variable y = r
r′ then we have: dy

y = dr
r .

So, with this change of variable and the equality (7) we get the result ie:

M(f ∗ g)(τ) =
(∫ +∞

0

r′
iτ
g(r′)

dr′

r′

)(∫ +∞

0

yiτg(y)
dy

y

)
= M(g)(τ)M(f)(τ).

(5) By a computation analogous to that of the convolution product we show
that

M(fg) = M(f) ∗2π M(g).

�

Lemma 2.3. The Mellin transform of f(λx) is λ−sM [f(s), s]

Proof. The Mellin transform of f(λx) where λ > 0

M [f(λs), s] =

∫ ∞
0

xs−1f(λx)dx

Let t = λx, then dt = λdx, x = t
λ ,

M [f(λs), s] =

∫ ∞
0

(
t

λ

)s−1
f(t)

dt

λ

=
1

s

∫ ∞
0

ts−1f(t)dt = λ−sM [f(s), s]

= λ−sM [f(s), s]

�

Lemma 2.4. The Mellin transform of xf
′
(x) is −sM [f(s), s].

Proof.

M [sf
′
(s), s] =

∫ ∞
0

xs−1xf
′
(x)dx =

∫ ∞
0

xsf
′
(x)dx.

By integration by parts:
Let

u = xs ⇒ u
′

= sxs−1

v
′

= f
′
⇒ v = f(x)

then

M [sf
′
(s), s] = [xsf(x)]

∞
0 −

∫ ∞
0

sxs−1f(x)dx

= −s
∫ ∞
0

xs−1f(x)dx = −sM [f(s), s].
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Provided that

lim
x→∞

xsf(x) = 0 and lim
x→0+

xsf(x) = 0,

we deduce that

M [sf
′
(s), s] = −sM [f(s), s]

�

Example 2.5. Apply Mellin transform of x2f
′′
(x)

Solution:

M [s2f
′′
(s), s] =

∫ ∞
0

xs−1x2f
′′
(x)dx =

∫ ∞
0

xs+1f
′′
(x)dx.

By integration by parts:
Let

u = xs+1 ⇒ u
′

= (s+ 1)xs

v
′

= f
′′
⇒ v = f

′
(x),

then

M [s2f
′′
(s), s] =

[
xs+1f

′
(x)
]∞
0
−
∫ ∞
0

(s+ 1)xsf
′
(x)dx.

Provided that

lim
x→∞

xs+1f
′
(x) = 0 and lim

x→0+
xs+1f

′
(x) = 0

M [s2f
′′
(s), s] = −(s+ 1)

∫ ∞
0

xsf
′
(x)dx

M [s2f
′′
(s), s] = −(s+ 1)

∫ ∞
0

xs−1xf
′
(x)dx

= −(s+ 1)M [sf
′
(s), s]

= −(s+ 1)(−s)M [f(s), s]

= s(s+ 1)M [f(s), s],

then we deduce that

M [s2f
′′
(s), s] = s(s+ 1)M [f(s), s].

Provided that

lim
x→0+

xs+1f
′
(x) = 0 , lim

x→+∞
xs+1f

′
(x) 6= 0

lim
x→0+

xsf(x) = 0 and lim
x→∞

xsf (x) = 0.
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Example 2.6. Apply Mellin Transform of xe−x = g(x).
Solution:

M [g(s), s] = M [se−s, s] =

∫ ∞
0

xs−1xe−xdx

M [g(s), s] =

∫ ∞
0

xse−xdx =

∫ ∞
0

xs+1−1e−xdx =

∫ ∞
0

xse−xdx

M [se−s, s] = Γ(s+ 1) with Re(s+ 1) > 0.

3. Problem Formulation:

Let 
4u = 0 in R× [0,∞)
φ(r, θ) = 0 if θ = 0 , 0 < r <∞
φ(r, π) = g(r) if θ = π , 0 < r <∞
φ(r, θ) = O(r

1
2 ) as r → 0 , 0 < r <∞

φ(r, θ) = O(r−
1
2 ) as r →∞ , 0 < r <∞.

(8)

Our goal is to determine the solution of this problem (Laplace′s Equation)
with singularity by using Mellin transform.
Solution:

Writing Laplace’s equation in polar coordinates

r2φrr + rφr + φθθ = 0

where 0 < r <∞ and 0 < θ < π.

We apply Mellin transform with respect the variable r ∈ (0,∞) to r2φrr +
rφr + φθθ = 0 where 0 < r <∞ and 0 < θ < π.

By linearity we have:

M [s2φss + rφs + φθθ, s] = 0

M [s2φss, s] +M [sφs, s] +M [φθθ, s] = 0

s(s+ 1)M [φ]− sM [φ] +
∂2

∂θ2
M [φ] = 0.

Here:φ = φ(s, θ). Now,

∂2

∂θ2
M [φ(s, θ), s] + s2M [φ(s, θ), s] = 0,

we have a second order (ODE). Let Φ(θ) = M [φ(s, θ), s], then we get,

d2

dt2
Φ(θ) + s2Φ(θ) = 0,

we use characteristic equation:

α2 + s2 = 0⇒ α2 = −s2 ⇒ α = ±is
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then,
Φ(s, θ) = A cos(sθ) +B sin(sθ)

where A,B ∈ R.
Using:

φ(r, 0) = 0⇒M [φ(s, 0), s] = 0⇒ Φ(s, 0) = 0

therefore
Φ(s, 0) = A cos(s.0) +B sin(s.0) = A = 0,

then, we deduce:

Φ(s, θ) = B sin(s.θ) , B ∈ R.
Using φ(r, π) = g(r), we apply Mellin transform to both sides we obtain

M [φ(s, π), s] = M [g(s), s]

Φ(s, π) = M [g(s), s]. (9)

Since Φ(s, θ) = B sin(sθ), evaluated at θ = π we obtain:

Φ(s, π) = B sin(sπ) (10)

(9) and (10) gives:

B =
M [g(s), s]

sin(sπ)
, provided s /∈ Z.

Let
G(s) = M [g(s), s],

then

B =
G(s)

sin(sπ)
,

thus

Φ(s, θ) = B sin(sθ)

=
G(s)

sin(sπ)
sin(sθ)

then we get,

Φ(s, θ) =
sin(sθ)

sin(sπ)
G(s).

Now let
g(r) = re−r ⇒ G(s) = M [g(s), s] = Γ(s+ 1)

see example 2.6, then

Φ(s, θ) =
sin(sθ)

sin(sπ)
Γ(s+ 1) , 0 < θ < π

Poles in the complex s-plane.

sin(sπ) = 0⇒ sπ ∈ πZ⇒ s ∈ Z

so, the pole of Φ(s, θ) are simple poles given by s = k , k ∈ Z.
Finally, we can deduce φ(r, θ) by applying Mellin transform inverse.
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4. Polar Coordinates

We recall here a simplified version of Kondratiev’s results in our context and
with our ratings. We always limit ourselves to the case of the dimension 2 and we
work in Ω = R∗+ × (θ−, θ+).
We consider a differential operator of order 2 (so as not to weigh down this presen-
tation).

L(x, ∂x) =
∑
|α|≤2

aα(x)∂αx

with coefficients aα of class C∞, elliptical. The operators intervening in the bound-
ary conditions are data by operators

B±(x, ∂x) =
∑
|β|≤m±

bβ(x)

|x|µβ
∂βx

with µβ ≤ m± − |β| and the coefficients bβ are of class C∞.
We associate with these operators the main parts in x = 0

L0 =
∑
|α|=2

aα(0)∂αx textrmelliptical

B0,± = sum|β|+µβ=m±
bβ(0)

|x|m±−|β|
∂βx (6= 0) ; .

We make the hypothesis on the boundary problem

L(x, ∂x)u = f (11)

B−(x, ∂x)u
∣∣
θ=θ−

= g− (12)

B+(x, ∂x)u
∣∣
θ=θ+

= g+ (13)

checks Lopatinski conditions outside of x = 0, which ensures the ellipticity of
the boundary problem outside the corner x = 0.
We then write the operators L0, B0, pm in coordinates polar

L0(x, ∂x) = r−2L̃0(r∂r, ∂θ), B0(x, ∂x) = r−m±B̃0(r partialr, ∂θ).

The system

L̃0(iz, ∂θ)v = ϕ (14)

B̃0,−(iz, ∂θ)v(θ−) = ψ− (15)

B̃0,+(iz, partial theta)v( theta+) = psi+ (16)

then admits a resolvent R(z) meromorphic on C according to the theory of
analytical Fredholm (this condition is in general, in any dimension, still induced by
ellipticity assumptions of this system).
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In this more limited context, we specify the statements of Kondratiev’s The-
orems 1.2 and 2.2 see [3]. The first result concerns the case where the operators
L(x, ∂x) and B±(x, ∂x) are homogeneous operators :

L(x, ∂x) = L0(x, ∂x) and B±(x, ∂x) = B0,±(x, ∂x) ; .

Theorem 4.1. Suppose that u ∈ Hk+2,k+2−α2 (Ω) is a solution of (11) (12) (13)

with f ∈ Hk1,k1−α1
2 (Ω) and g± ∈ Hk1+2−m pm− 1

2 ,k1+2−m pm− 1
2−

α1
2 ( R∗+) with

h1 =
2k1 + 4− 2− α1

2
>

2k + 4− 2− α
2

= h, k1 ≥ k.

Proof. Suppose further that the solver R(z) of the problem (14) (15) (16) has no
imaginary part pole h1. So

u =
∑
j

µj−1∑
ν=0

aj,νrψν,j(θ) + w(x)

or

• the sum over j is a sum over the poles of R(z) belonging at {h < Imz < h1}
and µj being the multiplicity of the pole λj ;

• the remainder w(x) belongs to Hk1+2,k1+2−α1
2 with

‖w‖
Hk1+2,k1+2−α1

2
≤ C

[
‖u‖

Hk+2,k+2−α
2

+‖f‖
Hk1,k1−

α1
2

+‖g±‖
Hk1+2−m±−

1
2
,k1+2−m±−

1
2
−α1

2

]
; .

�

• In the article [?] by Kondratiev the statement is given with weighted spaces

denoted
circ

W
m

α , m ∈ N , α ∈ R, (p 231). With our ratings, they coincide
with Hm,m−α2 .

• Note that for this statement the integer k1, the real −α1 and therefore the
real h1 can be taken as large that we want. So if the data is arbitrarily
regular (and cancel each other out to an arbitrary order in x = 0) we obtain
a full asymptotic expansion of u in the neighborhood of x = 0 in calculating
all the poles of R(z) in {=z > h} which contain the poles of Mu, and the
corresponding residuals of Mu at these points.

• The proof of this result is the general version of the case particular that
we presented in the previous paragraph. We we will repeat these calcula-
tions precisely in other cases, with even data having mesomorphic Mellin
transforms, in which case the poles of Mu (and therefore

the asymptotic expansion of u) are given by the poles of R(z) and the
poles of the transforms of Mellin’s data.

The second statement concerns the entire problem.

Theorem 4.2. Suppose that the solution u of (11) (12) (13) belongs to Hk+2,k+2−α2 (Ω)

with f ∈ Hk,k−α1
2 (Ω) and g± ∈ Hk+2−m±− 1

2 ,k+2−m±− 1
2−

α1
2 ( R∗+), α− 2 ≤ α1 < α
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and f, g± to support included in {r ≤ ρ0}. Suppose further that the solver R(z) of
the problem (14) (15) (16) has no imaginary part pole h1 = −2−α1+2k+4

2 . So

u =
∑
j

µj−1∑
ν=0

aj,νr
−iλj lnν(r) psiν,j(θ) + w(x)

or

• the sum over j is a sum over the poles of R(z) belonging at {h < =z < h1},
h = −2−α+2k+4

2 and µj being the multiplicity of the pole λj; item the

remainder w(x) belongs to Hk+2,k+2−α1
2 with

‖w‖
Hk+2,k+2−α1

2
≤ C

[
‖u‖

Hk+2,k+2−α
2

+‖f‖
Hk,k−

α1
2

+‖g±‖
Hk+2−m±−

1
2
,k+2−m±−

1
2
−α1

2

]
; .

Here we have taken k1 = k with the additional limitation α1 ≥ α − 2 on
−α1. This is due to the terms lower order of L(x, ∂x) and B±(x, ∂x), which must
intervene if we want a complete asymptotic development of the solution and that
the statement does not not take into account. What we will retain essentially from
these statements is that a asymptotic development of the solution of (11) (12) (13)
is determined by the poles of the solver R(z) of the problem homogeneous (14)
(15) (16) footnote and possibly the poles of Mellin transforms of the data. This is
valid until any order for the homogeneous problem for data “ regular ” and up to
a limited order if the operators L(x, ∂x), B±(x, ∂x) contain terms lower order.

5. Asymptotic types

In the previous section, we saw that at least first approximation, the asymp-
totic expansion of the solutions of (11) (12) (13) is determined by the study of the
poles of the solver of the main homogeneous problem (14) (15) (16) (and possibly
by the poles of Mellin transforms of the data). Before introducing definitions some
remarks are in order:

• The final objective of our work is to improve the convergence methods
of decomposition of domains in the neighborhoods of corners. As a re-
sult we only work with solutions truncated, χ(r)u, with χ ∈ C∞0 (R+),
supχ ⊂ {r ≤ 1} and χ ≡ 1 in the neighborhood of {r = 0}, we can even
put ourselves in the situation u = χ(r)u. The elliptical problems that we
consider are given by a variational formulation which ensure u ∈ H1(Ω).
In consequently, in dimension 2, we can already state that M [u] = M [χu]
is a holomorphic function in { Imz < 0} . Like the operators L(x, ∂x) and
B+(x, ∂x) are differentials the data f inL2(Ω) has a holomorphic Mellin
transform in {=z < −1} and the data g± has also a holomorphic Mellin
transform in a half-plane inferior.

• For the same reason as above we will limit the study to main homogeneous
problem (14) (15) (16). Kondratiev’s results assure us that we correctly
describe the nature of the asymptotic development of the solutions if we
do not is only interested in the first terms of asymptotic development. We
thus come back to a problem with “ easy ” algebraic processing.
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• To determine the main parts L0(x, ∂x) and B0,±(x, ∂x), just write the op-
erators in polar coordinates, to consider ∂r,

1
r∂θ as operators of order −1,

the multiplication by rα as an operator of order α, the operators r∂r and
∂θ as operators of order 0 . . . and keep only the terms of degree lowest
homogeneity.

• C in accordance with the remarks in the previous section and the descrip-
tion of spaces Hs(Ω) and Hs(R∗+) the data f , g± are not necessarily in
spaces with weight, corresponding to holomorphic Mellin transforms as in
the statements of Kondratiev. These Mellin transforms can have meromor-
phic extensions and asymptotic development of u involves both the poles
of the resolvent R(z) and the poles of the Mellin transforms of the data.

• Finally, the regularity of the rest does not matter. We do not wish only
work on the first terms of development asymptotic, the remainder being
considered negligible. For the traces on the right

{
=z = γ − n

2

}
we will

simply write that they are L2( R+ i(γ− n
2 )) even if we actually have more

consistency in many cases. We will we focus on the position of the poles of
Mellin transforms and possibly on the calculation of the residues.

All these remarks lead to the following definitions which facilitate discussion.

Definition 5.1. We will call asymptotic type in Ω (resp. On R∗+) a finite collection
T = ((λj , µj , ϕj,ν(θ), 0 ≤ ν ≤ µj − 1))j∈{1,...,N} (resp. T = ((λj , µj))j∈{1, ldots,N})

where λj are points of {=z ≤ 0}, the integers µj are the multiplicities of the poles
in λj and ϕj,ν ∈ L2((θ−, θ+)) .

We will note for γ ≥ 0 L2,γ
r≤1,T (Ω) (resp. L2,γ

r≤1,T (R∗+)) the set of functions u ∈
L2(Ω) (resp. U ∈ L2(R∗+)) to support in {r ≤ 1} whose Mellin transform admits

a meromorphic prolongation in { Imz < gamma− 1} (resp
{
=z < γ − 1

2

}
) with

trace L2(R + i(γ − 1);L2(θ−, θ+)) (resp. L2(R + i(γ − 1
2 ))) and poles given by the

asymptotic type T .

We sometimes read in the literature the name of the group of singularities for
the asymptotic type. This last term we seems more appropriate in the sense that
it corresponds to development asymptotic data and solutions in the neighborhood
of r = 0. In fact this notion contains the Taylor expansions of a function C∞ at
a point inside a open. Just replace the interval (θ−, θ+) by the circle S1, λj = ij
and functions ϕν,j equal to cos(jθ), sin(jθ). A simple elimination of the poles of
the Mellin transform already done, in several cases leads to

Proposition 5.2. (1) If u ∈ L2,γ
r≤1,T (Ω), with none pole of T of imaginary

part γ, then we have

u(x) = 1[0,1](r)
∑

0≤=λj<γ−1

µj−1∑
ν=0

cj,νr
−iλj lnν(r)ϕj,ν(θ) + w(x)

with w ∈ L2,γ(Ω) and where the (λj , µj , φj,ν) are those given by T .
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(2) If u ∈ L2,γ
r≤1,T (R?+), with none pole of T of imaginary part γ, then we have

u(r) = 1[0,1](r)
∑

0≤=λj<γ− 1
2

µj−1∑
ν=0

cj,νr
−iλj lnν(r) + w(r)

with w ∈ L2,γ(R?+) and where the (λj , µj)are those given by T .

The resolution after Mellin transform of the homogeneous problem leads to
also at the

Proposition 5.3. If u ∈ H1(Ω), supu ⊂ {r leq1} solves the homogeneous problem

(14) (15) (16) with f ∈ L2,γ
r≤1,T (Ω), γ ≤ 2, g± ∈ L

2,γ+2−m±− 1
2

r≤1,T± (R∗+), and if the

poles of T translated by 2iγ, the poles of T± translated from m±i and the poles of

the resolving R(z) does not meet {=z = γ + 1} then u ∈ L2,γ+2
r≤1,T∞(Ω) where the type

asymptotic T∞ is deduced by union (by adding the multiplicities optionally) of T ,
T± and poles of R(z).

Proof. From the hypotheses of the proposition 5.3 and of the definition 5.1 we
have

• f ∈ L2,γ
r≤1,T (Ω), soM(f) admits a mesomorphic prolongation in =(z) < γ − 1,

moreover f ∈ L2,

• of the same if g± ∈ L
2,γ+2−m±− 1

2

r≤1,T± (R∗+) then M(g±) admits a mesomorphic

continuation in =(z) < γ + 2−m± − 1
2 −

1
2 = =(z) < γ + 1−m±, in

addition g± ∈ L2(R∗+).

Now we know that

Mu(z) = R(z)
[
M(r2f)(z),M(rm±g±)(z)

]
furthermore M(r2f)(z) = M(f)(z − 2i)etM(rm±g±)(z) = M(g±)(z − im±).

So the poles of M(f) (resp. M(g)) are translated by 2i (resp. M±i), and
therefore M(f)(.−2i) admits a mesomorphic prolongation in {=(z) < γ+1}, more-
overM(g±)(.−im±) admits a mesomorphic prolongation in =(z) < γ + 1−m± +m± =
=(z) < γ + 1. If we further assume that the poles of the resolvent R(z) do not
meet =(z) = γ + 1 then M(u) is a mesomorphic function in =(z) < γ + 1, so u ∈
L2,γ+2
r≤1,T∞(Ω).

So the asymptotic type T∞ is deduced by union (by adding the multiplicities
optionally) of mathcalT , T± and poles of R(z).

�

According to the proposition 5.3, the asymptotic expansion of u, involves the
poles of the resolvent and the poles of the data (f, g pm), precise calculations will
be made completely in special cases.
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6. Conclusion

We work with differential operators with real coefficients. It is clear that in
this case the asymptotic expansions of the solutions must be real for real data.
This requires that the poles associated with the resolvent R(z) of the homogeneous
problem must have symmetries about the axis iR so that the first terms of the
asymptotic expansion are real. We will in fact check in all cases that we interest
that the poles are exactly on the imaginary axis. The problem we are looking at
comes from a formulation variational which ensures the membership in H1 of the
solutions for the full domain and each subdomain (We will take good care to ensure
this condition in terms of the choice of conditions interface). This eliminates the
possibility of having a multiple pole at z = 0. We know so that the solutions we
look at in the full field or in each subdomain admits an underline simple pole.
From these two remarks we deduce that we must concentrate on the treatment of
poles of the form z = 0 with t > 0.
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