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Abstract. A two-colored digraph D) is primitive provided there are nonnegative
integers h and k such that for each pair of not necessarily distinct vertices u and v in
D(2) there exists a (h, k)-walk in D®) from u to v. The exponent of a primitive two-
colored digraph D(?), exp(D(2)), is the smallest positive integer h + k taken over all
such nonnegative integers h and k. The exponent of a vertex v in D(2) is the smallest
positive integer s+t such that for each vertex u in D(?) there is an (s, t)-walk from
v to u. We study the vertex exponents of primitive two-colored digraphs Lg) on
n > 5 vertices whose underlying digraph is the Hamiltonian digraph consisting of
the cycle vi — vy, = vp—1 — -+ — v2 — v1 and the arc vi — vp_9. For such
two-colored digraph it is known that 2n2 — 6n + 2 < exp(L'?)) < (n? — 2n2 +1)/2.
We show that if oxp(L%Q)) = (n3 — 2n2 + 1)/2, then its vertex exponents lie on
[(n3 —2n% —3n+4)/4, (n® —2n? +3n +6)/4] and if exp(L,(f)) =2n? — 6n+2, then

its vertex exponents lie on [n? — 4n + 5,n% — 2n — 1].
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Abstrak. Digraf dwiwarna D(?) adalah primitif dengan syarat terdapat bilangan
bulat nonnegatif A dan k sehingga untuk setiap pasangan yang tidak perlu berbeda
titik w dan v di D@ terdapat sebuah jalan (h, k) di D® dari u ke v. Eksponen
dari primitif digraf dwiwarna D@, yang dinotasikan dengan exp(D(2)), adalah
bilangan bulat positif terkecil h + k dari semua jumlahan yang mungkin bilangan
bulat nonnegatif h dan k . Eksponen dari sebuah titik v di D(?) adalah bilangan
bulat positif terkecil s 4 ¢ sehingga untuk tiap titik u di D(?) terdapat sebuah jalan
(s,t) dari v ke u. Pada paper ini akan dipelajari eksponen titik dari digraf dwiwarna
primitif Lg) pada n > 5 titik dengan digraf dasar adalah digraf Hamilton yang
memuat lingkaran vi — v, = vp—1 — -+ — vg — v1 dan busur v1 — vp—2. Untuk
digraf dwiwarna yang demikian telah diketahui bahwa 2n2 — 6n + 2 < eXp(Lg)) <
(n3 —2n2 4+ 1)/2. Paper ini menunjukkan bahwa jika exp(Lg)) = (n3—-2n%+1)/2,
maka eksponen titiknya berada pada [(n3 — 2n2 —3n +4)/4, (n® — 2n% + 3n +6) /4]
dan jika exp(L,(f)) = 2n2 — 6n + 2, maka eksponen titiknya berada pada [n? — 4n +
5,n% —2n — 1.

Kata kunci: Digraf dwiwarna, digraf primitif, eksponen, eksponen titik, digraf
Hamilton.

1. Introduction

Given a vector x we use the notation x > 0 to show that x is a nonnegative
vector, that is, a vector each of whose entry is nonnegative. Thus for two vectors
x and y, the notion x > y means that x —y > 0.

A digraph D is strongly connected provided for each pair of vertices u and v
in D there is a uv-walk from u to v. A ministrong digraph is a strongly digraph
such that removal of any single arc will result in a not strongly connected digraph.
A strongly connected digraph D is primitive provided there exists a positive integer
£ such that for every pair of not necessarily distinct vertices u and v in D there is a
walk from u to v of length . The smallest of such positive integer £ is the exponent
of D denoted by exp(D).

By a two-colored digraph D) we mean a digraph D such that each of it
arcs is colored by either red or blue but not both colors. An (s,t)-walk in D®) is
a walk of length s + ¢ consisting of s red arcs and ¢ blue arcs. For a walk w we
denote r(w) to be the number of red arcs in w and b(w) to be the number of blue

arcs in w. The length of w is ¢(w) = r(w) + b(w) and the vector [ ZEZ}); } is the

composition of the walk w. A two-colored digraph D?) is primitive provided there
exist nonnegative integers h and k such that for each pair of vertices u and v in
D@ there is an (h, k)-walk from u to v. The smallest of such positive integer h+ &
is the ezponent of D(®) and is denoted by exp(D(z)). Researches on exponents of
two-colored digraphs can be found in [2, 3, 5, 6] and [7].

Let D® be a strongly connected two-colored digraph and suppose that the
set of all cycles in D@ is C = {C},Cy,...,C,}. We define a cycle matrix of D)
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to be a 2 by ¢ matrix

[ r(C) r(Cy) - 1(Cy)

M=1vc) bew - ey |

that is M is a matrix such that its ith column is the composition of the ith cycle
C;,i=1,2,...,q. If the rank of M is 1, the content of M is defined to be 0, and
the content of M is defined to be the greatest common divisors of the 2 by 2 minors
of M, otherwise. The following result, due to Fornasini and Valcher [1], gives an
algebraic characterization of a primitive two-colored digraph.

Theorem 1.1. [1] Let D@ be a strongly connected two-colored digraph with at least
one arc of each color. Let M be a cycle matriz of D@ . The two-colored digraph
D®) s primitive if and only if the content of M is 1.

Let D® be a two-colored digraph on n vertices vy, va, . .., v,. Gao and Shao
[4] define a more local concept of exponents of two-colored digraphs as follows. For
any vertex vy in D® k = 1,2,....n, the exponent of the vertex vy, denoted by
Yp@ (vk), is the smallest positive integer p; + po such that for every vertex v in
D®) there is a (p1,ps)-walk from vy, to v. It is customary to order the vertices
V1,02, ... v, of D@ such that vpe (v1) < vpe(v2) < -+ < ype) (v,). Gao and
Shao [4] discuss the vertex exponents for primitive two-colored digraphs of Wielandt
type, that is a Hamiltonial digraph consisting of the cycle v; — v, — v,_1 —
Up—2 — +++ — V9 — v1 and the arcs v1 — v,_1. Their results show that if the two-
colored Wielandt digraph W () has only one blue arc v, = vq_1,a =2,3,...,n—1,
then vy (vp) = n? —2n+ k —a + 1. If the two-colored Wielandt digraph has two
blue arcs then vy (vy) = n? —2n + k or ype (vk) = n? — 2n + k + 1. Suwilo
[9] discusses the vertex exponents of two-colored ministrong digraphs D) on n
vertices whose underlying digraph is the primitive extremal ministrong digraph D
with exp(D) = n? — 4n + 6.

We present formulae for vertex exponent of two-colored digraphs whose un-
derlying digraph is the Hamiltonian digraph consisting of the cycle v; — v, —
Up—1 — Up—g — --+ — vg — v1 and the arc v; — v, where n is an odd integer
with n > 5. In Section 2 we discuss previous result on exponent of two-colored
Hamiltonian digraph. In Section 3 we present a way in setting up a lower and an
upper bound for vertex exponents. We use these results in Section 4 to find vertex
exponents for the class of two-colored Hamiltonian digraphs.

2. Two-colored Hamiltonian Digrahs

It is a well known result, see [7], that the largest exponent of a primitive
two-colored digraph lies on the interval [(n® —2n%+1)/2, (3n3 + 2n? — 2n) /2] when
n is odd and lies on the interval [(n® — 5n? + Tn — 2)/2, (3n3 — 2n? — 2n) /2] when
n is even. The left end of the first interval is obtained using two-colored digraphs
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consisting of two cycles whose underlying digraph is the primitive Hamiltonian di-
graph L, on n > 5 vertices which consists of an n-cycle vy = v,, = v,—1 = Vp_2 —
Up—3 — -+ — v3 — v1 and the arc v; — v, _2 as shown in Figure 1. Notice that the
digraph L,, consists of exactly two cycles, they are the n-cycle and the (n —2)-cycle
V1 — Up_9 — Up_3 —> --+ — Vg — v1. Since L, is primitive, it is necessary that
n is odd. Let L%Q) be a two-colored digraph with underlying digraph is L,,. Let

M be the cycle matrix of Lﬁ,?). By Theorem 1.1 the following lemma, see [7, 8] for

proof, gives necessary and sufficient condition for L? tobe a primitive two-colored

digraph.

Un—3 V2

/)n—Q U1

Un—1 Un

Figure 1. Digraph L,

Lemma 2.1. [7, 8] Let Lg) be a two-colored digraph with underlying digraph L.
(n—1)/2 (n+1)/2
(n—3)/2 (n—1)/2 |

The following theorem, due Suwilo [8] see also Shader and Suwilo [7], gives

the lower and upper bound for exponent of class of two-colored digraphs whose
underlying digraph is the digraph L.

The digraph L%Q) 18 primitive if and only if M =

Theorem 2.2. [7, 8] Let Lg) be a two-colored digraph with underlying digraph L., .
Then 2n% — 6n + 2 < exp(L{P) < (n® — 2n2 +1)/2.

Furthermore Suwilo [8] characterizes necessary and sufficient conditions for
two-colored digraphs L'? to have exp(Lg)) = (n® — 2n? + 1)/2 and to have
exp(Lg)) = 2n? — 6n + 2, respectively.

Corollary 2.3. [8] Let Lf) be a two-colored digraph with underlying digraph L.
The eXp(Lglz)) = (n3—2n%+1)/2 if and only ifLE«?) has a red path of length (n+1)/2
and a blue path of length (n —1)/2.

Corollary 2.4. [8] Let Lg) be a two-colored digraph with underlying digraph L,,.
The exp(Lg)) = 2n% — 6n + 2 if and only if LP has a unique (2,0)-path and this
path lies on both cycles.
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Lemma 2.1 implies that for a two-colored digraph Lg) to be primitive, the
n-cycles must contain exactly (n+1)/2 red arcs and the (n — 2)-cycle must contain
exactly (n — 1)/2 red arcs. Corollary 2.3 implies that for the two-colored digraph
L? to have exponent (n® — 2n? 4+ 1)/2, the n-cycle must contain a red path of
length (n 4+ 1)/2 and a blue path of length (n — 1)/2. This implies there are four
possible two-colored digraph Lf) with exponent (n® —2n?+1)/2. We characterize
them as follows.

e The two-colored digraph Lgf) is of Type I if the red arcs of Lgf) are the
arcs that lie on the path v, — v,—1 = vp_2 — -+ = v, _1)/2 of length
(n+1)/2 plus the arc v1 — v, _a.

e The two-colored digraph Lg) is of Type I1 if the red arcs of L,(f) are the
arcs that lie on the path v,,_1)2 = V(32 > - =1 = vy, = vy_1 of
length (n + 1)/2 plus the arc v; — vy,_a.

e The two-colored digraph Lg) is of Type I1I if the red arcs of Lg) are the
arcs that lie on the path vy, 1y2 = V(n_1)2 = -+ =+ 2 = 1 = v, of
length (n+1)/2.

e The two-colored digraph Lg) is of Type IV if the red arcs of Lg) are the
arcs that lie on the path v, 1 — vy_2 — -+ = v(,_3)/2 of length (n+41)/2.

Considering Corollary 2.4, we have exp(Lg)) = 2n% — 6n + 2 if and only if
the (2,0)-path in L is the patha —-a—1—a—2 for some 3 <a<n-—2.

In Section 4 for two-colored digraphs L' with exp(Lg)) =3 —-2n%2+1)/2
we show that the exponents of its vertices lie on [(n® —2n? —3n+4)/4, (n® —2n® +

3n+6)/4]. For two-colored digraphs whose exp(L%Z)) = 2n% — 61 + 2 we show that
the exponents of its vertices lie on [n? — 4n +5,n? — 2n — 1].

3. Bounds for vertex exponents

In this section, a way in setting up an upper and a lower bound for vertex
exponents of two-colored digraphs is discussed. We start with the lower bound
of vertex exponent especially for primitive two-colored digraphs consisting of two
cycles. We assume through out that the exponent of vertex vy, k = 1,2,...,n is
obtained using (s, t)-walks.

Lemma 3.1. [9] Let D®) be a primitive two-colored digraph consisting of two
cycles. Let vy, be a vertex in D® and suppose there is an (s, t)-walk from vy to

each vertex v; in D@ with { i } =M [ 31 for some nonnegative integers ¢,
2

a1 —1| r(Pry) ]
dqy. Th >M th pr to v;.
and ¢ en [ pa ] > [ b(pw) for some path py ; from vy to v;
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Let vy, be a vertex in D). We note that from Lemma 3.1 for the vertex vy,
and any vertex v; in D we have

[ @ } > -1 [ r(Pk.j) ] _ { b(Ca)r(pr.j) — 1(C2)b(pr. ;)
@ |~ b(pk.5) r(C)b(pr.;) = b(C1)r(pr. ;)
If for some vertex v; we have b(C2)r(pk ;) — 7(C2)b(pk,;) > 0, then we define
uo = b(C2)r(pr.;) — r(C2)b(pr.;) (1)
If for some vertex v; we have 7(C1)b(pk,i) — b(C1)r(pr,i) > 0, then we define
vo = 7(C1)b(pk,i) — b(C1)r(pr,i) (2)

By Lemma 3.1 we have ¢; > ug and g2 > vg. This implies
HEIFEIN
t q2 Vo
and hence

s+t > (r(Cr) +b(Cr))ug + (r(Ca) + b(C2))vg = £(Ch)ug + £(Ca)vg.

We have proved the following theorem.

Theorem 3.2. Let D) be a primitive two-colored digraph consisting of two cycles
C, and Cy and let vy be a vertex in D2 . For some vertex v; and v; i D®@
define ug = b(C2)1(pr,;) — r(C2)b(pk,;) and vo = r(C1)b(p,i) — b(C1)r(pk,i). Then

[i] > M {ZO} and hence ype) (vi) > £(Cr)ug + £(Ca)vp.
0

We now discuss a way in setting up an upper bound. First we consider upper

bound for exponents of certain vertices two-colored digraph consisting two cycles.

Proposition 3.3. Let D@ be a primitive two-colored digraph consisting of two
cycles Cy and Cy. Suppose vy, be a vertex of D) that belongs to both cycles C4
and Cs. If for each i = 1,2,...,n and for some positive integers s and t, there is
a path py; from vy to v; such that the system

e[ =) o

has nonnegative integer solution, then ype) (vi) < s+ t.

PROOF. Assume that the solution to the system (3) is x = (21, 22)7. Since D® is
primitive, then M is invertible and hence z; and x5 cannot be both zero. We note
that v belongs to both cycles and we consider three cases.

If 1,29 > 0, then the walk that starts at vy, moves x7 and x5 times around
the cycles C7 and Cs respectively and back at vy, and then moves to v; along the
path py; is an (s,t)-walk from vy to v;. If 1 = 0 and x2 > 0, then the walk that
starts at v, moves xo times around the cycle C; and back at v, then moves to
vertex v; along the path py ; is an (s, t)-walk from vy to v;. Similarly if z; > 0 and
xo = 0, then then the walk that starts at v, moves x; times around the cycle C;
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and back at vg, then moves to vertex v; along the path py; is an (s, t)-walk from
vg to v;. Therefore for every vertex v;,7 = 1,2,...,n there is an (s, t)-walk from vy
to v;. The definition of exponent of vertex vy implies that ype) (vg) < s +t.

Proposition 3.4 gives an upper bound of a vertex exponent in term of the
vertex exponent of a specified vertex. We define d(vg,v) to be the distance from
vk, to v, that is the length of a shortest walk from vy to v.

Proposition 3.4. [9] Let D®) be a primitive two-colored digraph on n vertices.
Let v be a vertex in D@ with exponent v (v). For any vertez vy, k=1,2,...,n
in D@ we have ype (vi) < ype (v) + d(vg,v)

4. The vertex exponents

In this section we discuss the vertex exponents of class of two-colored digraphs
Lg) whose underlying digraph is the digraph L,, in Figure 1. We first discuss the
case where exp(Lg)) = (n® —2n% +1)/2. Let vy be a vertex in L'? and suppose
that the red path of length (n+1)/2 has x* and y= as its initial and terminal vertex,
respectively. We use the the path py 4. from v to y* to determine the value of
g = b(C)r(pr,y+) — 7(C2)b(Pr,y«) in equation (1). We use the path py 5. from
v to zx in order to determine the value of vg = r(C1)b(pr,z+) — O(C1)T(Pre,z+) I
equation (2). We assume that 7, 2 (vx) is obtained using (s,¢)-walks and we split
01(1r) discussion into four parts def)ending on the type of the two-colored digraph
LY.

Lemma 4.1. For the two-colored digraph Lg) of type I we have 7y, 2 (vg) = (n® —

2n2 —n+2)/4+k for allk =1,2,... n.

PRrROOF. We first show that v, @ (vx) > (n®—2n*—n+2) /4+kforallk =1,2,...,n.

Since the red path of length (n 4+ 1)/2 in L'? is the path v, — vp_1 — -+ —

V(n—1)/2, We set * = v, and y* = v(,_1)/2. We split the proof into two cases.

Case1l: 1<k <(n—1)/2

Taking y* = v(,—1)/2, We see that there are two paths from vy, to v(,,—1)/2. They are
an ((n+1)/2,k)-path and an ((n —1)/2, k — 1)-path. Using the ((n+1)/2, k)-path
Pk, (n—1)/2 from vg to v(,_1)/2 and the definition of ug in equation (1) we find

uo = b(Co)r(pr,(n-1)/2 = (C2)b(Pk,(n-1)/2)
— 2 _
_ (n 1) <n+1>_n+1k:n 1_k(n—|—1). )

2 2 2 4 2
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Using the ((n — 1

)/2,k — 1)-path py (n_1)/2 from vy to v(,—1)/2 and the definition
of up in equation (1)

we have
ug = b(Co)r(pr,(n—-1)/2 — r(C2)b(Pk,(n—1)/2)
_(n n—1 n+1 n?+3  k(n+1)
- () () Hre =t R e

From equations (4) and (5) we conclude that ug = (n? —1)/4 — k(n + 1)/2.
Taking x* = vy, there is a unique path py, ,, from vy to v, which is a (0, k)-
path. Using this path and the definition of vy in equation (2) we have

vo = 7(C1)b(pk.n) — b(C1)r(Pr.n)

”;1 "3 00) = k(n — 1)/2

By Theorem 3.2 we have
3] 2w [ -w gy
(n®—n?-n+1)/8
- {(n3—3n2—n+3+8k)/8} (6)
Therefore, we conclude that
fngq@(vk):s—i—tZ(n3—2n2—n+2)/4+k (7)
forall k=1,2,...,(n—1)/2.

Case 2: (n+1)/2<k<n

Taking y* = v(,—_1)/2, then there is a unique path py (,—1)/2 from vi to v(,_1)/2
which is a (k — (n — 1)/2,0)-path. Using this path and considering the definition
of ug in equation (1) we have ug = k(n —1)/2 — (n — 1)?/4. Taking z* = v,,, there
is a unique path py, ,, from vy to v,. This path is a (k— (n—1)/2, (n — 1)/2)-path.
Using this path and the definition of vy in equation (2) we get vo = (n — 1)(2n —
4)/4 — k(n — 3)/2. By Theorem 3.2 we get

V@ (vp) > £(C1)ug + £(Co)vg = (n® —2n% —n +2)/4+ k (8)

forall k=(n+1)/2,(n+3)/2,...,n
Combining (7) and (8) we conclude that
’YLg)(wc) > (n® —2n® —n+2)/4+k. (9)
forall k =1,2,.
We next show the upper bound, that is v, ) (vp) < (n®=2n? —n+2)/4+k
for all k =1,2,...,n. We first show that v, @ (v1) = (n® —2n? —n+2)/4+1 and

then we use Proposmlon 3.4 in order to determine the upper bound for exponents
of other vertices. From (9) it is known that v, @ (v1) > (n® —2n* —n+2)/4 + 1.

Thus, it remains to show that v, ) (v1) < (n® —2n* —n+2)/44 1. By considering
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equation (6) we show that for each i = 1,2,...,n there is a walk from v; to v; with
composition
s] [ (n®-n?-—n+1)/8 10
{t} N [(n3—3n2—n+11)/8] ’ (10)

Let p1,; be a path from v; to v;, i = 1,2,...,n. Notice that since M is an
invertible matrix, the system

Z1 r(pw) | _ [ (n®*—=n?—n+1)/8
M |:l‘2:| + { b(p14) } - { (n®—=3n% —n+11)/8 (11)
has solution the integer vector

[ 2 } _ [ (n=3)(n+1)/44 (n+ 1)b(p1i)/2 — (n — 1)r(p1i) /2 }
zy | [ (n=1)/24 (n=3)r(p1:)/2 = (n = 1)b(pri) /2 '

If ¢ = 1, we can choose 7(p1,1) = b(p1,1) = 0 and hence we have that z; =
(n? —2n—3)/4 >0 and 29 = (n — 1)/2 > 0. If i = n, then using the (0,1)-path
we have z1 = (n —3)(n+1)/4+ (n+1)/2 >0 and 22 =0. If i = (n — 1)/2, then
using the ((n+1)/2,1)-path vy — vy, — Vp_1 = -+ = V(,_1)/2 We have 21 = 0 and
x2 = (n+1)(n—3)/4. Notice that for each vertex v;, i # n, (n —1)/2, there exists a
path py; from v1 to v; with 0 < r(p1;) < (n—3)/2 and 0 < b(p1;) < (n—3)/2. More
over if b(p1;) > 1, then either r(p1;) = (n—1)/2 or 7(p1;) = 1. These facts imply that
21 > 0 and 25 > 0. Hence we now conclude that the system (11) has a nonnegative
integer solution. Proposition 3.3 implies that v, @) (v1) < (n®—2n% —n+2)/4+1.
Combining this with (9) we have V@ (v1) = (n* —2n? —n +2)/4 + 1. Since for
every k =2,3,...,n we have d(vg,v1) = k — 1, Proposition 3.4 implies that

VL@ (vg) < (n3 —om% —n+ 2)/4 + k. (12)

forall k=1,2,...,n.
Now using (9) and (12) we conclude that v, o) (vx) = (n® —2n* —n+2)/4+k
forallk=1,2,...,n.

Lemma 4.2. For the two-colored digraph Lg) of type I we have v, c2) (vg) = (n®—
2n2 —3n+4)/4+k for allk=1,2,...,n.

PROOF. We first show that v, (vx) > (n® — 2n® — 3n 4+ 4)/4 + k for all k =

1,2,...,n. Since the red path of length (n +1)/2 in L is the path vg,_1y/2 —
U(n—3)/2 —> "+ —> V1 = Up —> Up_1, We set 2° = v, _1y/2 and y* = v, 1. We split
the proof into three cases.

Case1: 1<k <(n-1)/2
Taking y* = v,,—1, then there is a unique path py ,,—1 from v to v,,—1. This path is
a (k4 1,0)-path. Using this path and the definition of ug in equation (1) we have

up=(k+1)(n—1)/2 (13)
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Taking x* = v(,_1)/2, there are two paths py (,,—1)/2 from vy to v, _1y/2. They
are a (k,(n — 3)/2)-path and a (k+ 1, (n — 1)/2)-path. Using the (k, (n — 3)/2)-
path and the definition of vy in equation (2) we have vg = (n — 3)(n — 1 — 2k)/4.
Using the (k + 1, (n — 1)/2)-path and the definition of vy in equation (2) we have
vo = (n —3)(n — 1 —2k)/4+ 1. Hence, we conclude that

vo=(n—3)(n—1-2k)/4. (14)
By Theorem 3.2, equations (13) and (14) we conclude that
s (k+1)(n—-1)/2 [ (n®—n?-5n+5)/8+k
[t}ZM{(n—3)(n—1—2k)/4}_{(n3—3n2—n—|—3)/8 - (1)

From (15) we conclude that
s+t=7,(ve) > (n® =20 =3n+4)/4+k (16)
forall k=1,2,...,(n—1)/2.

Case2: (n+1)/2<k<n-1
Taking y* = v,_1, there is a unique path py n,_1 from v to v,_; which is a ((n +
1)/2,k — (n — 1)/2)-path. Using this path and the definition of ug in equation (1)
we have

ug = (n* —1)/2 — k(n+1)/2. (17)
Taking 2* = v(,_1)/2, there is a unique path py ,—_1)/2 from vy to v(,—1)/2. This
path is a (0,k — (n — 1)/2)-path. Using this path and the definition of vy in
equation (2), we have

vg = k(n —1)/2 — (n—1)%/4. (18)
Equations (17), (18) and Theorem 3.2 imply that
V@ (vg) > £(Cr)ug + £(Co)vg = (n® —2n% —3n+4)/4 +k (19)

forall k=(n+1)/2,(n+3)/2,...,n— 1.

Case 3: k=n

There is a (1, 0)-path pg n,—1 from vi to v,—1. Using this path and the definition of
ugp in equation (1) we have ug = (n—1)/2. There is a (1, (n —1)/2)-path pj (,—1)/2
from vg to v(,—1)/2. Using this path and the definition of vg in equation (2) we
find that vo = (n — 1)2/4 — (n — 3)/2. Theorem 3.2 implies that

Y@ (k) = L(Cr)ug + L(Cr)v = (n®—2n% —3n+4)/4+n

= *—2n* -3n+4)/4+k (20)
for k =n.
Now from (16), (19), and (20) we conclude that
Y@ (V) > (n®—2n% —3n+4+4)/4+k (21)

forall k=1,2,...,n.
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We next show the upper bound, that is YL@ (vp) < (n®—2n% —3n+4)/4+k
forall k =1,2,...,n. We first show that VL@ (v1) = (n®—2n2 —3n+4)/4+1 and
then we use Proposition 3.4 in order to determine the upper bound for exponents
of other vertices. From (16) it is known that 7y, ) (v1) > (n®—2n% —3n+4)/4+ 1.
Thus, it remains to show that v, ) (v1) < (n3—2n2— 3n+4)/4+41. By considering
(16) we show that for each i = 1,2,...,n there is a walk from v; to v; consisting
of (n® —n? — 5n + 13)/8 red arcs and (n® — 3n? — n + 3)/8 blue arcs.

Let py; be a path form vy to v;, ¢ = 1,2,...,n. Notice that the system

e[ ][ omnie ] e

has integer solution

{ z1 ] _ { b(p1,i) + (2 +b(p1,:) — r(p1:))(n—1)/2 }
2 | [ (n=3)[n—=3+2r(p1,)]/4—b(p1)(n—1)/2 |

If ¢ = 1, we choose 7(p11) = b(p1,1) = 0. This implies 1 = n—1 > 0 and
x9 = (n—3)%/4 > 0. Since for every i = 2,3...,n there is a path py; from v; to v;
with b(p1;) —r(p1;) > —1, we have x1 = b(p1,;) +[2+b(p1,i) —7(p1,:)](n—1)/2 > 0.
Notice also that for any ¢ = 2,3,...,n there is a path py; from v; to v; with
b(p1;) < (n —3)/2 and every such path py; has r(p1;) > 1. Hence 25 = (n — 3)[n —
3+2r(p1,i)]/4—0b(p1,i)(n—1)/2 > 0. Therefore the system (22) has a nonnegative
integer solution. Since v; lies on both cycles, Proposition 3.3 implies that

7L53>(Ul) <(n®—2n?—3n+4)/4+1. (23)

Now combining (16) and (23) we find that v, ) (v1) = (n® — 2n* — 3n +4)/4 + 1.
Since for any k = 1,2,...,n we have d(vg,v1) = k — 1, by Proposition 3.4 we have

v (k) < (n®—2n? —3n+4)/4+k (24)

forall k=1,2,...,n.
Finally, combining (21) and (24) we conclude that v, @ (vx) = (n® — 2n® —
3n+4)/4+kforall k=1,2,... n.

Lemma 4.3. For the two-colored digraph LSLQ) of type III we have 7, (2 (k) =
(n®—2n%—3n)/4+k forallk=1,2,... n.

PROOF. We first show that v, @ (vx) > (n® —2n® —3n)/4+k forallk = 1,2,...,n.
Since the red path of length (n + 1)/2 is the path v(,11)2 = V12 = -+ —
V1 = Uy, We set ¥ = v(,41)/2 and y* = v,. We split the proof into two cases.

Case1l: 1<k<(n+1)/2
Considering the (k,0)-path from vy to v, and the definition of ug in equation (1)
we have

ug = k(n—1)/2. (25)
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We note that there are two paths from vy to v(,41)/2. They are a (k —
1,(n — 3)/2)-path and a (k,(n — 1)/2)-path. Using the (k — 1,(n — 3)/2)-path
and the definition of vy in equation (2) we have that vg = (n — 3)(n — 2k + 1) /4.
Using the (k, (n — 1)/2)-path and the definition of vy in equation (2) we have
vo = (n —3)(n — 2k 4+ 1)/4 + 1. Hence, we conclude that

vo=(n—3)(n—2k+1)/4. (26)
Now by considering Theorem 3.2, equation (25) and equation (26) we have
3 _ 2
R TS et el B
Thus from (27) we conclude that
VL@ (vp) > (n® —2n% = 3n)/4 + k (28)
forall k=1,2,...,(n+1)/2.

Case2: (n+3)/2<k<n

Considering the ((n+1)/2,k—(n+1)/2)-path from vy to v, and the definition of ug
in equation (1) we have up = (n + 1)(n — k)/2. Considering the (0,k — (n + 1)/2)-
path from vy to v(,41)/2 and the definition of vy in equation (2) we have vy =
(n—1)(2k —n — 1)/4. By Theorem 3.2, we have

VL@ (vg) > £(C1)ug + £(Ca)vg = (n? —2n% — 3n)/4+ k (29)

forall k= (n+3)/2,(n+5)/2,...,n.
Now from (28) and (29) we conclude that

Y@ (vk) > (n® = 2n% = 3n) /4 + k (30)

forall k=1,2,...,n.

We next show that v, 2 (vx) < (n® —2n® —3n)/4 +k forall k =1,2,...,n.
For this purpose we first show that v, @ (v1) = (n® —2n” —3n)/4+1 and then we use
Proposition 3.4 in order to get the upper bounds for V@ (vg) for k =2,3,...,n.
From (30) it is inferred that v, ) (v1) > (n® —2n? — 3n)/4 + 1. It remains to show
that VL@ (v1) < (n3 —2n? — 3n)/4 + 1.

By considering (27) we show that for each vertex v;,s = 1,2,...,n, there is a
walk from v; to v; consisting of (n®—n?—5n+5)/8 red arcs and (n®—3n%—n+3)/8
blue arcs. For i =1,2,...,n let p;; be a path from v; to v;. Consider the system

of equations
o R e L e

The solution to the system (31) is the integer vector

[ Ty } _ [ b(p1,:) + (1 +b(p1,i) — r(p1,i))(n—1)/2 }
T2 (n=3)(n—=1)/4+r(pri)(n—3)/2=b(pr;)(n—1)/2 |
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If i = 1, we can choose 7(p1,1) = b(p1,1) = 0. This implies 1 = (n — 1)/2 > 0 and
29 = (n? — 4n + 3)/4 > 0. Notice that for each i = 2,3,...,n there is a path py;
from vy to v; with b(p1;) < (n — 3)/2. Hence, xo > 0. Moreover, there is a path
from v; to v; with 14 b(p1;) —r(ps1) > 0. Hence we have xq > 0. These imply that
the system (31) has a nonnegative integer solution. Since the vertex v; lies on both
cycles, by Proposition 3.3 we conclude that 7, ) (v1) < (n®—2n2?—3n)/4+1. Since
for each vertex v, k = 2,3,...,n, d(vg,v1) = k—1, Proposition 3.4 guarantees that

Y (V) < (n® —2n? —3n)/4+k (32)
forall k=1,2,...,n.

Now combining (30) and (32) we conclude that v, ) (v) = (n*—2n*—3n)/4+
kforall k=1,2,...,n.

Lemma 4.4. For the two-colored digraph LSIQ) of type IV we have 7, (k) =
(n>—2n2—n+6)/4+k forallk=1,2,...,n.

PROOF. Since the red path of length (n + 1)/2 is the path v,—1 = vp—9 = -+ =
V(n—3)/2, We set x* = v,_1 and y* = v(,_3)/2. We split the proof into three cases
depending on the position of vg.

Case1:1<k<(n-3)/2
There are two paths from vy to v(,_3)/2. They are a ((n —1)/2,k)-path and a
((n+1)/2,k+1)-path. Using the ((n —1)/2, k)-path we find from the definition of
ug in equation (1) that ug = (n—1)%/4—k(n+1)/2. Using the ((n+1)/2, k+1)-path
we find from the definition of ug in equation (1) that ug = (n—1)?/4—k(n+1)/2—1.
Hence we choose

up=(n—1)2/4—k(n+1)/2—-1=n*>-1)/4— (k+1)(n+1)/2. (33)

We note that there is a unique path py, ,,—1 from v to v,—1 which is a (0, k+1)-
path. Using this path we find from the definition of vy in equation (2) that

v=(k+1)(n-1)/2 (34)
Theorem 3.2, equation (33) and equation (34) imply that

s u | [ (n®—n*—n+1)/8
[t}>M[vo}_[(n3—3n2—n+11)/8+k : (35)
From (35) we conclude that
Y@ (k) > (n® —2n° —n46)/4+k (36)

forall k=1,2,...,(n—3)/2.

Case2:(n—1)/2<k<n-1

There is a unique py, (,—3)/2-path from vy to v(,,—3)/2 which is a (k — (n — 3)/2,0)-
path. Using this path, from the definition of ug in equation (1) we find that
uo = k(n—1)/2— (n—1)(n —3)/4. There is a unique path pj ,_1 from vy to v,_1
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which is a (k—(n—3)/2, (n—1)/2)-path. Using this path, from the definition of vy
in equation (2) we find that vg = (n—1)2/4+ (n—3)?/4— k(n — 3)/2. Theorem 3.2
implies

’}/L(nz)(vk) > U(Cr)ug + £(Ca)vg

= (n—=2)(k(n—1)/2—(n—-1)(n—3)/4)
+nl(n—1)*/44 (n—3)?/4 — k(n — 3)/2]
= *—-2n* —n+6)/4+k (37)
forallk=(n—-1)/2,(n+1)/2,...,n—1.

Case 3: k=n

There is a unique path from v to v(,,—_1)/2 which is a ((n+1)/2,1)-path. Using this
path we find from the definition of ug in equation (1) that ug = (n?—1)/4—(n+1)/2.
There is a unique path py ,,—1 from vy to v,—1 which is a (0, 1)-path. Using this path
we find from the definition of vy in equation (2) that vo = (n — 1)/2. Theorem 3.2

implies
s ug (n®—n?-n+1)/8
> =
{t}—M{vo] {(n3—3n2—n—|—11)/8 ’
and hence 7,  (vx) > (n® — 2n® — 5n 4 6) /4 + n. We note that for the (0,1)-path
from v,, to v,_1, the system

2] (]

has nonnegative integer solution x; = (n? — 1)/4 and x5 = 0. This implies there

. . . (n®—n?>-n+1)/8
is no walk from v, to v,_; with composition (n3 302 g s | Hence

VL@ (vn) > (n® — 2n? — 5n + 6)/4 + n. Notice that the shortest walk from v, to

V1 with at least (n® —n? —n +1)/8 red arcs and (n® — 3n%? — n + 11)/8 blue
arcs is the walk that starts at v,, moves to v,_» and then moves (n? — 1)/4 times
around the cycle C7 and back at v, _o, finally moves to v,_1. The composition of
(n®—n?+3n+5)/8

this walk is (n® — 302 + 30 +7)/8

] . Thus we now have

¥y (Un) > (n®—2n? +3n+6)/4=(n*>—2n*> —n +6)/4+n. (38)
From (36), (37) and (38) we conclude that
v (W) > (n° = 2n% —n +6)/4+ k (39)

forall k=1,2,...,n.
We next show 7, ) (vg) < (n® — 2n? — n + 6) + k by first showing that
Y@ (v1) = (n® —2n* —n 4 6)/4 + 1, and then use Proposition 3.4 to get upper

bound for exponent of the vertex vg, k = 2,3,...,n. From (36) we know that for
k=1,7,@(v) > (n®—2n*> —n+6)/4+1 and from (35) we know that this bound
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. . . .. (n®—n?—-n+1)/8
is obtained by walks with composition { (n® — 3n% —n +19)/8

show that 7, 2 (v1) < (n® — 2n* —n +6)/4 + 1. For each i = 1,2,...,k we show
that there is an (s, t)-walk wy ; from v; to v; with composition

r(wi;) ][ (n®=n?—n+1)/8

bwi) |~ | B®=3n2—n+19)/8 |-
For any vertex v;,i = 1,2,3,...,n let p;; be a path from vy to v;. The system

R R R P B

}. It remains to

has integer solution

{ 1 ] _ { r(p1,i) + ((n = 5)/2 4 b(p1,i) — r(p1))(n+1)/2 }
2 (2= b(pri))(n = 1)/2+r(p1i)(n - 3)/2 '

If i = 1, we can choose 7(p1,1) = b(p1,1) = 0. This implies z; = (n? —4n —5)/4 > 0
and zo = n—1 > 0. We note that for any vertex v;,i = 2,3, ..., n there is a path py;
from vy to v; with 2 < b(p1;) < (n—3)/2. Moreover, if 3 < b(p1;) < (n—3)/2, then
r(p1:) = (n—1)/2. Hence xz2 > 0. Notice also that for any vertex v;,i =2,3,...,n
we can find a path py; with b(p1;) —r(p1;) > —(n —5)/2. Hence z1 > 0. Hence the

system (40) has a nonnegative integer solution. Since the vertex v; lies on both
cycles, Proposition 3.3 guarantees that v, ) (v1) < (n® —2n%2 —n+6)/4+ 1. By
considering equation (39) we conclude that VL@ (v1) = (n® —2n% —n +6)/4 + 1.
Since for each k = 2,3,...,n we have d(vg,v1) = k — 1, Proposition 3.4 implies
that
VL@ (vp) < (n® —2n* —n+6)/4+k (41)
fork=1,2,...,n.
Combining (39) and (41) we conclude that vy(vy) = (n® —2n% —n+6) + k for
all k=1,2,...,n.

Theorem 4.5. Let Lg) be a primitive two-colored digraph on n > 5 vertices whose
underlying digraph is the digraph L, in Figure 1. If exp(Lg)) =(n3—-2n%2+1)/2,
then (n® —2n” —3n+4) /4 < v, @ (vp) < (n* —2n°+3n+6)/4 for allk =1,2,...,n

PrOOF. By Lemma 4.1 through Lemma 4.4 for each k = 1,2,...,n we have that
(n® —2n* =3n)/4+k < v, @ (vx) < (n® —2n® —n+6)/4+ k. This implies for any
k=1,2,...,n we have (n® —2n* —3n +4)/4 < 7, @ (vx) < (n® — 2n* +3n+6)/4.

We now discuss vertex exponents for the two-colored digraphs LSLQ ) whose
exponents is 2n? — 6n + 2.

Theorem 4.6. Let LSLQ) be a primitive two-colored digraph on n > 5 vertices whose
underlying digraph is the digraph L, in Figure 1. If exp(Lg)) =2n% —6n+2, then
for any vertex vg, k =1,2,...,n we have (n® —4n +5) < v, @ (vx) < (n* —2n —1).
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PROOF. Since exp(Lg)) = 2n2?—6n+2, Corollary 2.4 implies that L'? hasa unique
(2,0)-path that lies on both cycles. This implies the (2, 0)-path of L' is of the form
a— a—1— a—2for some 3 < a < n—2. We show that V@ (vp) = n?—3n+k+2—a
for all k = 1,2,...,n. We first show that vy (vx) > n? —3n+k +2 — a for all
k=1,2,...,n. We use path from v to v4_s to determine the value of the quantity
ug in equation (1) and we use path from vy to v, to determine the value of the
quantity vg in equation (2). We split the proof into three cases depending on the
position of the vertex vy.

Casel:1<k<a-—2
We note that there are two paths from vy, to v4—2. They area (n—1)/2—|(a—2—
k)/2],(n—=3)/2—[(a—2—k)/2])-path and a ((n+1)/2 = [(a—2—k)/2], (n—1)/2—
[(a — 2 —k)/2])-path. Using the first path and the definition of ug in equation (1)
we have ug = 1 + %H [a*g;’ﬂ — ”Tfl L%%J Using the second path and the
definition of ug in equation (1) we have ug = 2t [a=2=k] — n=l | a=2=k | " Hence
we conclude that
uw=Mm+1[(a—2-k)/2]/2—(n—-1)[(a —2—k)/2]/2. (42)
There are two paths from vy, to v,. They are a ((n—5)/2—|(a—2—k)/2], (n—
3)/2—[(a—2—k)])-path and a ((n—3)/2—[(a—2-k)/2], (n—1)/2=[(a=2-k)])-
path. Using the first path and the definition of vy in equation (2) we have vy =

n—3— ”Tfl (a;gfk] + ”7*3 La*g;kJ Using the second path and the definition of
vy in equation (2) we have vy = n — 2 — 251 [2=2=k] 4 n=3 |a=2=k | Hence we
conclude that

vp=n—-3—(m-1[(a—2-k&)/2]/2+ (n—3)[(a —2—k)/2]. (43)

Now Theorem 3.2, equation (42) and equation (43) imply that

IR
[ 1 | Mt ol we e e Y
- [E 3 _dn+3)/2—[(a—2—k)/2]

2 2 2 2
2 _ _ _ _k—
n®—2n—-3)/2—[(a —k 2)/2q (44)
Hence we now have
Yoo (k) = n®=3n—([(a—2-k)/2] +[(a—2~k)/2])
= n?—3n+k+2—-a (45)
fork=1,2,...,a—2.
Case2:k=a—1,a
There is a unique path from vy to v,—o and it is a (k — a + 2,0)-path. Using this
path and the definition of uy in equation (1) we have that

up=(n—1)(k—a+2)/2. (46)
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There are two paths from vy, to v,. They are a (k—a+24(n—>5)/2, (n—3)/2)-path
and a (k+2—a+(n—3)/2, (n—1)/2)-path. Using the first path and the definition of
vo in equation (2) we have that vg = n—3—(n—3)(k+2—a)/2. Using the second path
and the definition of vy in equation (2) we have that vg = n—2—(n—3)(k+2—a)/2.
Hence we conclude that

vw=n—-2—(n-3)(k+2—-a)/2. (47)
Now Theorem 3.2, equation (46) and equation (47) imply that

Ype (vk) > L(Cr)ug +£(C2)vo
= n—-2)n—1)(k—a+2)/24+n[(n—3)—(n—3)(k—a+2)/2]
= n*-3n+k+2-a (48)
forall k =a—1,a.
Case3d:a+1<k<n
There is a unique path from vy to v,_o which is ([(k — a)/2] + 2, [(k — a)/2])-
path. Using this path and the definition of ug in equation (1) we have wy =
(”—_1) (L J + 2) — ”J{l (kg W There is a unique path from v to v, which is a
(L(k— a)/2j [(k — a)/2])-path. Using this path and the definition of vy in equa-
tion (2) we have that vg = "7_1 LTQJ — HT_S |— ] By Theorem 3.2 we have

Y@ (k) = £(Cr)ug + £(C2)vo
(e )
+n<n;1 V;;aJ _n—2|—1 [kz;a'D

= 03 =3n+2+|(k—a)/2] +[(k—a)/2]
= n*-3n+k+2-a (49)

Hence

fora+1<k<n.
From equation (45), equation (48) and equation (49) we conclude that

yLszz(vk) >n® —3n+k+2-a (50)

forall k=1,2,...,n

We now show that 'ym?)(vk) <n?—3n+k+2—-afork=12,...,n. We
first show that V@ (v1) < n® —3n+ 3 —a and then we use Proposition 3.4 to show
that Y@ < n?—3n+k+2—afor k=2,3,...,n By considering equation (44) it
suffices to show that for each vertex v;,4 = 1,2,...,n there is a walk w; ; from v;
to v; with composition

r(wig)| (n2 —2n—3)/2 - |(a —3)/2]
{bml,n] = {( 3 dn+3)/2— [(a—3)/2]]" (51)
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For each i =1,2,...,n, let p;; be a path from v; to v;. We note that the solution
to the system

0 e e | IR

is the integer vector

{m] _ [ [(a—=3)/2](n+1)/2 = [(a—3)/2](n—1)/2 }
T2 n—3+[(a=3)/2/(n—3)/2—[(a-3)/2](n—1)/2
{b(pl,i) + (b(p1,i) — r(p1,i))(n — 1)/2] (53)
(r(p1,i) = b(p1,))(n —3)/2 = b(p1:)]
We show that 1 > 0 and 22 > 0. We consider two cases when a is even and a is
odd.
- If a is even, then [(a —3)/2] = (a — 2)/2 and [(a —3)/2] = (a — 4)/2. This
implies

{xl} _ [(n —1)/2+4(a—2)/2+b(p1:) — [r(p1,i) — b(p1i)](n — 1)/2]
Ta| (n—a—1)/2+4[r(pri) — b(p1i)l(n — 3)/2 = b(p1,:) '

Since a is even, we have that 0 < r(p1 ;) — b(p1:) < 2. If r(p1,;) — b(p1,i) =0, then
b(p1:) < (n—1—a)/2. This implies 1 > 0 and x5 > 0. If r(p1 ;) — b(p14) = 1,
there is a path p1; with b(p1,;) < (n — 3)/2. This implies z; > 0 and xo > 0. If
r(p1:) — b(p1,:) = 2, then b(p1;) > (n+ 1 — a)/2. This implies 1 > 0 and z > 0.
Therefore for each vertex v;,¢ = 1,2,...,n, there is a path p; ; from v; to v; such
that the system (52) has nonnegative integer solution 1 > 0 and z2 > 0.

If a is odd, then [(a — 3)/2] = [(a — 3)/2] = (a — 3)/2. This implies

{331} _ [ (a—=3)/2+b(p1,i) — [r(pr,i) — b(p1,1)](n —1)/2

za]  [n—3—(a—3)/2+[r(p1i) — b(pra)l(n — 3)/2 = b(p1,i)

Since a is odd, for each vertex v;,¢ = 1,2,...,n there is a path p;; with —1 <
T(pl,i) — b(pl,i) S 1. If T(Pl,i) - b(pl,i) = 717 there is a path P1,i with b(pl,i) S
(n —a)/2. This implies 1 > 0 and x5 > 0. If r(p1,;) — b(p1:) = O, there is a
path p1; with b(p1;) < (n — 3)/2. This implies z; > 0 and z2 > 0. Finally if
r(p1:) — b(p1,;) = 1, there is a path py ; with b(p1 ;) > (n — a + 2)/2. This implies
z1 > 0 and x93 > 0. Therefore for each vertex v;,i =1,2,...,n, there is a path p; ;
from v; to v; such that the system (52) has nonnegative integer solution zy > 0
and x9 > 0.

Since the system (52) has a nonnegative integer solution and the vertex v;
belongs to both cycles, Proposition 3.3 guarantees that V@ (v1) <n?—=3n+3—a.
Combining this with equation (45) we conclude that ’YL%z)(’Ul) =n?-3n+3—a.
Since for k = 2,3,...,n we have d(vg,d1) = k — 1, Proposition 3.4 implies that

Yo (vk) <n?’-3n+k+2-a (54)
fork=1,2,...,n.

Finally combining equation (50) and equation (54) we conclude that VL@ (vg) =
n?—3n+k+2—afork=12,...,n. Wenote that 3 < a <n — 2. This implies
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n2—4n+4+k§7L(2>(vk) <n?—3n+k—1. Therefore for any k =1,2,...,n we
have n? —4n +5 < ’yL@)(vk) <n?-—2n-1.
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