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Abstract. A two-colored digraph D(2) is primitive provided there are nonnegative

integers h and k such that for each pair of not necessarily distinct vertices u and v in

D(2) there exists a (h, k)-walk in D(2) from u to v. The exponent of a primitive two-

colored digraph D(2), exp(D(2)), is the smallest positive integer h+k taken over all

such nonnegative integers h and k. The exponent of a vertex v in D(2) is the smallest

positive integer s+ t such that for each vertex u in D(2) there is an (s, t)-walk from

v to u. We study the vertex exponents of primitive two-colored digraphs L
(2)
n on

n ≥ 5 vertices whose underlying digraph is the Hamiltonian digraph consisting of

the cycle v1 → vn → vn−1 → · · · → v2 → v1 and the arc v1 → vn−2. For such

two-colored digraph it is known that 2n2 − 6n+ 2 ≤ exp(L
(2)
n ) ≤ (n3 − 2n2 + 1)/2.

We show that if exp(L
(2)
n ) = (n3 − 2n2 + 1)/2, then its vertex exponents lie on

[(n3 − 2n2 − 3n+4)/4, (n3 − 2n2 +3n+6)/4] and if exp(L
(2)
n ) = 2n2 − 6n+2, then

its vertex exponents lie on [n2 − 4n+ 5, n2 − 2n− 1].
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Abstrak. Digraf dwiwarna D(2) adalah primitif dengan syarat terdapat bilangan

bulat nonnegatif h dan k sehingga untuk setiap pasangan yang tidak perlu berbeda

titik u dan v di D(2) terdapat sebuah jalan (h, k) di D(2) dari u ke v. Eksponen

dari primitif digraf dwiwarna D(2), yang dinotasikan dengan exp(D(2)), adalah

bilangan bulat positif terkecil h + k dari semua jumlahan yang mungkin bilangan

bulat nonnegatif h dan k . Eksponen dari sebuah titik v di D(2) adalah bilangan

bulat positif terkecil s+ t sehingga untuk tiap titik u di D(2) terdapat sebuah jalan

(s, t) dari v ke u. Pada paper ini akan dipelajari eksponen titik dari digraf dwiwarna

primitif L
(2)
n pada n ≥ 5 titik dengan digraf dasar adalah digraf Hamilton yang

memuat lingkaran v1 → vn → vn−1 → · · · → v2 → v1 dan busur v1 → vn−2. Untuk

digraf dwiwarna yang demikian telah diketahui bahwa 2n2 − 6n+ 2 ≤ exp(L
(2)
n ) ≤

(n3 − 2n2 +1)/2. Paper ini menunjukkan bahwa jika exp(L
(2)
n ) = (n3 − 2n2 +1)/2,

maka eksponen titiknya berada pada [(n3 − 2n2 − 3n+4)/4, (n3 − 2n2 +3n+6)/4]

dan jika exp(L
(2)
n ) = 2n2 − 6n+2, maka eksponen titiknya berada pada [n2 − 4n+

5, n2 − 2n− 1].

Kata kunci: Digraf dwiwarna, digraf primitif, eksponen, eksponen titik, digraf
Hamilton.

1. Introduction

Given a vector x we use the notation x ≥ 0 to show that x is a nonnegative
vector, that is, a vector each of whose entry is nonnegative. Thus for two vectors
x and y, the notion x ≥ y means that x− y ≥ 0.

A digraph D is strongly connected provided for each pair of vertices u and v
in D there is a uv-walk from u to v. A ministrong digraph is a strongly digraph
such that removal of any single arc will result in a not strongly connected digraph.
A strongly connected digraph D is primitive provided there exists a positive integer
ℓ such that for every pair of not necessarily distinct vertices u and v in D there is a
walk from u to v of length ℓ. The smallest of such positive integer ℓ is the exponent
of D denoted by exp(D).

By a two-colored digraph D(2) we mean a digraph D such that each of it
arcs is colored by either red or blue but not both colors. An (s, t)-walk in D(2) is
a walk of length s + t consisting of s red arcs and t blue arcs. For a walk w we
denote r(w) to be the number of red arcs in w and b(w) to be the number of blue

arcs in w. The length of w is ℓ(w) = r(w) + b(w) and the vector

[
r(w)
b(w)

]
is the

composition of the walk w. A two-colored digraph D(2) is primitive provided there
exist nonnegative integers h and k such that for each pair of vertices u and v in
D(2) there is an (h, k)-walk from u to v. The smallest of such positive integer h+k
is the exponent of D(2) and is denoted by exp(D(2)). Researches on exponents of
two-colored digraphs can be found in [2, 3, 5, 6] and [7].

Let D(2) be a strongly connected two-colored digraph and suppose that the
set of all cycles in D(2) is C = {C1, C2, . . . , Cq}. We define a cycle matrix of D(2)
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to be a 2 by q matrix

M =

[
r(C1) r(C2) · · · r(Cq)
b(C1) b(C2) · · · b(Cq)

]
,

that is M is a matrix such that its ith column is the composition of the ith cycle
Ci, i = 1, 2, . . . , q. If the rank of M is 1, the content of M is defined to be 0, and
the content of M is defined to be the greatest common divisors of the 2 by 2 minors
of M , otherwise. The following result, due to Fornasini and Valcher [1], gives an
algebraic characterization of a primitive two-colored digraph.

Theorem 1.1. [1] Let D(2) be a strongly connected two-colored digraph with at least
one arc of each color. Let M be a cycle matrix of D(2). The two-colored digraph
D(2) is primitive if and only if the content of M is 1.

Let D(2) be a two-colored digraph on n vertices v1, v2, . . . , vn. Gao and Shao
[4] define a more local concept of exponents of two-colored digraphs as follows. For
any vertex vk in D(2), k = 1, 2, . . . , n, the exponent of the vertex vk, denoted by
γD(2)(vk), is the smallest positive integer p1 + p2 such that for every vertex v in
D(2) there is a (p1, p2)-walk from vk to v. It is customary to order the vertices
v1, v2, . . . vn of D(2) such that γD(2)(v1) ≤ γD(2)(v2) ≤ · · · ≤ γD(2)(vn). Gao and
Shao [4] discuss the vertex exponents for primitive two-colored digraphs of Wielandt
type, that is a Hamiltonial digraph consisting of the cycle v1 → vn → vn−1 →
vn−2 → · · · → v2 → v1 and the arcs v1 → vn−1. Their results show that if the two-
colored Wielandt digraph W (2) has only one blue arc va → va−1, a = 2, 3, . . . , n−1,
then γD(2)(vk) = n2 − 2n+ k− a+1. If the two-colored Wielandt digraph has two
blue arcs then γD(2)(vk) = n2 − 2n + k or γD(2)(vk) = n2 − 2n + k + 1. Suwilo
[9] discusses the vertex exponents of two-colored ministrong digraphs D(2) on n
vertices whose underlying digraph is the primitive extremal ministrong digraph D
with exp(D) = n2 − 4n+ 6.

We present formulae for vertex exponent of two-colored digraphs whose un-
derlying digraph is the Hamiltonian digraph consisting of the cycle v1 → vn →
vn−1 → vn−2 → · · · → v2 → v1 and the arc v1 → vn−2 where n is an odd integer
with n ≥ 5. In Section 2 we discuss previous result on exponent of two-colored
Hamiltonian digraph. In Section 3 we present a way in setting up a lower and an
upper bound for vertex exponents. We use these results in Section 4 to find vertex
exponents for the class of two-colored Hamiltonian digraphs.

2. Two-colored Hamiltonian Digrahs

It is a well known result, see [7], that the largest exponent of a primitive
two-colored digraph lies on the interval [(n3−2n2+1)/2, (3n3+2n2−2n)/2] when
n is odd and lies on the interval [(n3 − 5n2 + 7n− 2)/2, (3n3 − 2n2 − 2n)/2] when
n is even. The left end of the first interval is obtained using two-colored digraphs
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consisting of two cycles whose underlying digraph is the primitive Hamiltonian di-
graph Ln on n ≥ 5 vertices which consists of an n-cycle v1 → vn → vn−1 → vn−2 →
vn−3 → · · · → v2 → v1 and the arc v1 → vn−2 as shown in Figure 1. Notice that the
digraph Ln consists of exactly two cycles, they are the n-cycle and the (n−2)-cycle
v1 → vn−2 → vn−3 → · · · → v2 → v1. Since Ln is primitive, it is necessary that

n is odd. Let L
(2)
n be a two-colored digraph with underlying digraph is Ln. Let

M be the cycle matrix of L
(2)
n . By Theorem 1.1 the following lemma, see [7, 8] for

proof, gives necessary and sufficient condition for L
(2)
n to be a primitive two-colored

digraph.

•v1•vn−2

•vn•vn−1

• v2
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Figure 1. Digraph Ln

Lemma 2.1. [7, 8] Let L
(2)
n be a two-colored digraph with underlying digraph Ln.

The digraph L
(2)
n is primitive if and only if M =

[
(n− 1)/2 (n+ 1)/2
(n− 3)/2 (n− 1)/2

]
.

The following theorem, due Suwilo [8] see also Shader and Suwilo [7], gives
the lower and upper bound for exponent of class of two-colored digraphs whose
underlying digraph is the digraph Ln.

Theorem 2.2. [7, 8] Let L
(2)
n be a two-colored digraph with underlying digraph Ln.

Then 2n2 − 6n+ 2 ≤ exp(L
(2)
n ) ≤ (n3 − 2n2 + 1)/2.

Furthermore Suwilo [8] characterizes necessary and sufficient conditions for

two-colored digraphs L
(2)
n to have exp(L

(2)
n ) = (n3 − 2n2 + 1)/2 and to have

exp(L
(2)
n ) = 2n2 − 6n+ 2, respectively.

Corollary 2.3. [8] Let L
(2)
n be a two-colored digraph with underlying digraph Ln.

The exp(L
(2)
n ) = (n3−2n2+1)/2 if and only if L

(2)
n has a red path of length (n+1)/2

and a blue path of length (n− 1)/2.

Corollary 2.4. [8] Let L
(2)
n be a two-colored digraph with underlying digraph Ln.

The exp(L
(2)
n ) = 2n2 − 6n+ 2 if and only if L

(2)
n has a unique (2, 0)-path and this

path lies on both cycles.
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Lemma 2.1 implies that for a two-colored digraph L
(2)
n to be primitive, the

n-cycles must contain exactly (n+1)/2 red arcs and the (n−2)-cycle must contain
exactly (n − 1)/2 red arcs. Corollary 2.3 implies that for the two-colored digraph

L
(2)
n to have exponent (n3 − 2n2 + 1)/2, the n-cycle must contain a red path of

length (n + 1)/2 and a blue path of length (n − 1)/2. This implies there are four

possible two-colored digraph L
(2)
n with exponent (n3 − 2n2 +1)/2. We characterize

them as follows.

• The two-colored digraph L
(2)
n is of Type I if the red arcs of L

(2)
n are the

arcs that lie on the path vn → vn−1 → vn−2 → · · · → v(n−1)/2 of length
(n+ 1)/2 plus the arc v1 → vn−2.

• The two-colored digraph L
(2)
n is of Type II if the red arcs of L

(2)
n are the

arcs that lie on the path v(n−1)/2 → v(n−3)/2 → · · · → 1 → vn → vn−1 of
length (n+ 1)/2 plus the arc v1 → vn−2.

• The two-colored digraph L
(2)
n is of Type III if the red arcs of L

(2)
n are the

arcs that lie on the path v(n+1)/2 → v(n−1)/2 → · · · → 2 → 1 → vn of
length (n+ 1)/2.

• The two-colored digraph L
(2)
n is of Type IV if the red arcs of L

(2)
n are the

arcs that lie on the path vn−1 → vn−2 → · · · → v(n−3)/2 of length (n+1)/2.

Considering Corollary 2.4, we have exp(L
(2)
n ) = 2n2 − 6n + 2 if and only if

the (2, 0)-path in L
(2)
n is the path a → a− 1 → a− 2 for some 3 ≤ a ≤ n− 2.

In Section 4 for two-colored digraphs L
(2)
n with exp(L

(2)
n ) = (n3 − 2n2 + 1)/2

we show that the exponents of its vertices lie on [(n3−2n2−3n+4)/4, (n3−2n2+

3n+6)/4]. For two-colored digraphs whose exp(L
(2)
n ) = 2n2 − 6n+2 we show that

the exponents of its vertices lie on [n2 − 4n+ 5, n2 − 2n− 1].

3. Bounds for vertex exponents

In this section, a way in setting up an upper and a lower bound for vertex
exponents of two-colored digraphs is discussed. We start with the lower bound
of vertex exponent especially for primitive two-colored digraphs consisting of two
cycles. We assume through out that the exponent of vertex vk, k = 1, 2, . . . , n is
obtained using (s, t)-walks.

Lemma 3.1. [9] Let D(2) be a primitive two-colored digraph consisting of two
cycles. Let vk be a vertex in D(2) and suppose there is an (s, t)-walk from vk to

each vertex vj in D(2) with

[
s
t

]
= M

[
q1
q2

]
for some nonnegative integers q1

and q2. Then

[
q1
q2

]
≥ M−1

[
r(pk,j)
b(pk,j)

]
for some path pk,j from vk to vj.
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Let vk be a vertex in D(2). We note that from Lemma 3.1 for the vertex vk
and any vertex vj in D we have[

q1
q2

]
≥ M−1

[
r(pk,j)
b(pk,j)

]
=

[
b(C2)r(pk,j)− r(C2)b(pk,j)
r(C1)b(pk,j)− b(C1)r(pk,j)

]
.

If for some vertex vj we have b(C2)r(pk,j)− r(C2)b(pk,j) ≥ 0, then we define

u0 = b(C2)r(pk,j)− r(C2)b(pk,j) (1)

If for some vertex vi we have r(C1)b(pk,i)− b(C1)r(pk,i) ≥ 0, then we define

v0 = r(C1)b(pk,i)− b(C1)r(pk,i) (2)

By Lemma 3.1 we have q1 ≥ u0 and q2 ≥ v0. This implies[
s
t

]
= M

[
q1
q2

]
≥ M

[
u0

v0

]
and hence

s+ t ≥ (r(C1) + b(C1))u0 + (r(C2) + b(C2))v0 = ℓ(C1)u0 + ℓ(C2)v0.

We have proved the following theorem.

Theorem 3.2. Let D(2) be a primitive two-colored digraph consisting of two cycles
C1 and C2 and let vk be a vertex in D(2). For some vertex vi and vj in D(2)

define u0 = b(C2)r(pk,j)− r(C2)b(pk,j) and v0 = r(C1)b(pk,i)− b(C1)r(pk,i). Then[
s
t

]
≥ M

[
u0

v0

]
and hence γD(2)(vk) ≥ ℓ(C1)u0 + ℓ(C2)v0.

We now discuss a way in setting up an upper bound. First we consider upper
bound for exponents of certain vertices two-colored digraph consisting two cycles.

Proposition 3.3. Let D(2) be a primitive two-colored digraph consisting of two
cycles C1 and C2. Suppose vk be a vertex of D(2) that belongs to both cycles C1

and C2. If for each i = 1, 2, . . . , n and for some positive integers s and t, there is
a path pk,i from vk to vi such that the system

Mx+

[
r(pk,i)
b(pk,i)

]
=

[
s
t

]
(3)

has nonnegative integer solution, then γD(2)(vk) ≤ s+ t.

Proof. Assume that the solution to the system (3) is x = (x1, x2)
T . Since D(2) is

primitive, then M is invertible and hence x1 and x2 cannot be both zero. We note
that vk belongs to both cycles and we consider three cases.

If x1, x2 > 0, then the walk that starts at vk, moves x1 and x2 times around
the cycles C1 and C2 respectively and back at vk, and then moves to vi along the
path pk,i is an (s, t)-walk from vk to vi. If x1 = 0 and x2 > 0, then the walk that
starts at vk, moves x2 times around the cycle C2 and back at vk, then moves to
vertex vi along the path pk,i is an (s, t)-walk from vk to vi. Similarly if x1 > 0 and
x2 = 0, then then the walk that starts at vk, moves x1 times around the cycle C1
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and back at vk, then moves to vertex vi along the path pk,i is an (s, t)-walk from
vk to vi. Therefore for every vertex vi, i = 1, 2, . . . , n there is an (s, t)-walk from vk
to vi. The definition of exponent of vertex vk implies that γD(2)(vk) ≤ s+ t.

Proposition 3.4 gives an upper bound of a vertex exponent in term of the
vertex exponent of a specified vertex. We define d(vk, v) to be the distance from
vk to v, that is the length of a shortest walk from vk to v.

Proposition 3.4. [9] Let D(2) be a primitive two-colored digraph on n vertices.
Let v be a vertex in D(2) with exponent γD(2)(v). For any vertex vk, k = 1, 2, . . . , n
in D(2) we have γD(2)(vk) ≤ γD(2)(v) + d(vk, v)

4. The vertex exponents

In this section we discuss the vertex exponents of class of two-colored digraphs

L
(2)
n whose underlying digraph is the digraph Ln in Figure 1. We first discuss the

case where exp(L
(2)
n ) = (n3 − 2n2 + 1)/2. Let vk be a vertex in L

(2)
n and suppose

that the red path of length (n+1)/2 has x∗ and y∗ as its initial and terminal vertex,
respectively. We use the the path pk,y∗ from vk to y∗ to determine the value of
u0 = b(C2)r(pk,y∗) − r(C2)b(pk,y∗) in equation (1). We use the path pk,x∗ from
vk to x∗ in order to determine the value of v0 = r(C1)b(pk,x∗) − b(C1)r(pk,x∗) in
equation (2). We assume that γ

L
(2)
n
(vk) is obtained using (s, t)-walks and we split

our discussion into four parts depending on the type of the two-colored digraph

L
(2)
n .

Lemma 4.1. For the two-colored digraph L
(2)
n of type I we have γ

L
(2)
n
(vk) = (n3 −

2n2 − n+ 2)/4 + k for all k = 1, 2, . . . , n.

Proof. We first show that γ
L

(2)
n
(vk) ≥ (n3−2n2−n+2)/4+k for all k = 1, 2, . . . , n.

Since the red path of length (n + 1)/2 in L
(2)
n is the path vn → vn−1 → · · · →

v(n−1)/2, we set x∗ = vn and y∗ = v(n−1)/2. We split the proof into two cases.

Case 1: 1 ≤ k ≤ (n− 1)/2
Taking y∗ = v(n−1)/2, we see that there are two paths from vk to v(n−1)/2. They are
an ((n+1)/2, k)-path and an ((n− 1)/2, k− 1)-path. Using the ((n+1)/2, k)-path
pk,(n−1)/2 from vk to v(n−1)/2 and the definition of u0 in equation (1) we find

u0 = b(C2)r(pk,(n−1)/2 − r(C2)b(pk,(n−1)/2)

=

(
n− 1

2

) (
n+ 1

2

)
− n+ 1

2
k =

n2 − 1

4
− k(n+ 1)

2
. (4)
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Using the ((n− 1)/2, k − 1)-path pk,(n−1)/2 from vk to v(n−1)/2 and the definition
of u0 in equation (1) we have

u0 = b(C2)r(pk,(n−1)/2 − r(C2)b(pk,(n−1)/2)

=

(
n− 1

2

)(
n− 1

2

)
− n+ 1

2
(k − 1) =

n2 + 3

4
− k(n+ 1)

2
. (5)

From equations (4) and (5) we conclude that u0 = (n2 − 1)/4− k(n+ 1)/2.

Taking x∗ = vn, there is a unique path pk,n from vk to vn which is a (0, k)-
path. Using this path and the definition of v0 in equation (2) we have

v0 = r(C1)b(pk,n)− b(C1)r(pk,n)

=
n− 1

2
k − n− 3

2
(0) = k(n− 1)/2

By Theorem 3.2 we have[
s
t

]
≥ M

[
u0

v0

]
= M

[
(n2 − 1)/4− k(n+ 1)/2
k(n− 1)/2

]
=

[
(n3 − n2 − n+ 1)/8
(n3 − 3n2 − n+ 3 + 8k)/8

]
. (6)

Therefore, we conclude that

γ
L

(2)
n
(vk) = s+ t ≥ (n3 − 2n2 − n+ 2)/4 + k (7)

for all k = 1, 2, . . . , (n− 1)/2.

Case 2: (n+ 1)/2 ≤ k ≤ n
Taking y∗ = v(n−1)/2, then there is a unique path pk,(n−1)/2 from vk to v(n−1)/2

which is a (k − (n − 1)/2, 0)-path. Using this path and considering the definition
of u0 in equation (1) we have u0 = k(n− 1)/2− (n− 1)2/4. Taking x∗ = vn, there
is a unique path pk,n from vk to vn. This path is a (k− (n− 1)/2, (n− 1)/2)-path.
Using this path and the definition of v0 in equation (2) we get v0 = (n − 1)(2n −
4)/4− k(n− 3)/2. By Theorem 3.2 we get

γ
L

(2)
n
(vk) ≥ ℓ(C1)u0 + ℓ(C2)v0 = (n3 − 2n2 − n+ 2)/4 + k (8)

for all k = (n+ 1)/2, (n+ 3)/2, . . . , n.

Combining (7) and (8) we conclude that

γ
L

(2)
n
(vk) ≥ (n3 − 2n2 − n+ 2)/4 + k. (9)

for all k = 1, 2, . . . , n.

We next show the upper bound, that is γ
L

(2)
n
(vk) ≤ (n3 − 2n2 − n+ 2)/4 + k

for all k = 1, 2, . . . , n. We first show that γ
L

(2)
n
(v1) = (n3 − 2n2 − n+ 2)/4 + 1 and

then we use Proposition 3.4 in order to determine the upper bound for exponents
of other vertices. From (9) it is known that γ

L
(2)
n
(v1) ≥ (n3 − 2n2 − n + 2)/4 + 1.

Thus, it remains to show that γ
L

(2)
n
(v1) ≤ (n3 − 2n2 −n+2)/4+1. By considering
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equation (6) we show that for each i = 1, 2, . . . , n there is a walk from v1 to vi with
composition [

s
t

]
=

[
(n3 − n2 − n+ 1)/8
(n3 − 3n2 − n+ 11)/8

]
. (10)

Let p1,i be a path from v1 to vi, i = 1, 2, . . . , n. Notice that since M is an
invertible matrix, the system

M

[
x1

x2

]
+

[
r(p1i)
b(p1i)

]
=

[
(n3 − n2 − n+ 1)/8
(n3 − 3n2 − n+ 11)/8

]
(11)

has solution the integer vector[
x1

x2

]
=

[
(n− 3)(n+ 1)/4 + (n+ 1)b(p1i)/2− (n− 1)r(p1i)/2
(n− 1)/2 + (n− 3)r(p1i)/2− (n− 1)b(p1i)/2

]
.

If i = 1, we can choose r(p1,1) = b(p1,1) = 0 and hence we have that x1 =
(n2 − 2n − 3)/4 > 0 and x2 = (n − 1)/2 > 0. If i = n, then using the (0, 1)-path
we have x1 = (n− 3)(n+ 1)/4 + (n+ 1)/2 ≥ 0 and x2 = 0. If i = (n− 1)/2, then
using the ((n+1)/2,1)-path v1 → vn → vn−1 → · · · → v(n−1)/2 we have x1 = 0 and
x2 = (n+1)(n−3)/4. Notice that for each vertex vi, i ̸= n, (n−1)/2, there exists a
path p1i from v1 to vi with 0 ≤ r(p1i) ≤ (n−3)/2 and 0 ≤ b(p1i) ≤ (n−3)/2. More
over if b(p1i) ≥ 1, then either r(p1i) = (n−1)/2 or r(p1i) = 1. These facts imply that
x1 > 0 and x2 > 0. Hence we now conclude that the system (11) has a nonnegative
integer solution. Proposition 3.3 implies that γ

L
(2)
n
(v1) ≤ (n3 − 2n2 − n+ 2)/4 + 1.

Combining this with (9) we have γ
L

(2)
n
(v1) = (n3 − 2n2 − n + 2)/4 + 1. Since for

every k = 2, 3, . . . , n we have d(vk, v1) = k − 1, Proposition 3.4 implies that

γ
L

(2)
n
(vk) ≤ (n3 − 2n2 − n+ 2)/4 + k. (12)

for all k = 1, 2, . . . , n.

Now using (9) and (12) we conclude that γ
L

(2)
n
(vk) = (n3−2n2−n+2)/4+k

for all k = 1, 2, . . . , n.

Lemma 4.2. For the two-colored digraph L
(2)
n of type II we have γ

L
(2)
n
(vk) = (n3−

2n2 − 3n+ 4)/4 + k for all k = 1, 2, . . . , n.

Proof. We first show that γ
L

(2)
n
(vk) ≥ (n3 − 2n2 − 3n + 4)/4 + k for all k =

1, 2, . . . , n. Since the red path of length (n + 1)/2 in L
(2)
n is the path v(n−1)/2 →

v(n−3)/2 → · · · → v1 → vn → vn−1, we set x∗ = v(n−1)/2 and y∗ = vn−1. We split
the proof into three cases.

Case 1: 1 ≤ k ≤ (n− 1)/2
Taking y∗ = vn−1, then there is a unique path pk,n−1 from vk to vn−1. This path is
a (k + 1, 0)-path. Using this path and the definition of u0 in equation (1) we have

u0 = (k + 1)(n− 1)/2 (13)
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Taking x∗ = v(n−1)/2, there are two paths pk,(n−1)/2 from vk to v(n−1)/2. They
are a (k, (n − 3)/2)-path and a (k + 1, (n − 1)/2)-path. Using the (k, (n − 3)/2)-
path and the definition of v0 in equation (2) we have v0 = (n − 3)(n − 1 − 2k)/4.
Using the (k + 1, (n − 1)/2)-path and the definition of v0 in equation (2) we have
v0 = (n− 3)(n− 1− 2k)/4 + 1. Hence, we conclude that

v0 = (n− 3)(n− 1− 2k)/4. (14)

By Theorem 3.2, equations (13) and (14) we conclude that[
s
t

]
≥ M

[
(k + 1)(n− 1)/2
(n− 3)(n− 1− 2k)/4

]
=

[
(n3 − n2 − 5n+ 5)/8 + k
(n3 − 3n2 − n+ 3)/8

]
. (15)

From (15) we conclude that

s+ t = γ
L

(2)
n
(vk) ≥ (n3 − 2n2 − 3n+ 4)/4 + k (16)

for all k = 1, 2, . . . , (n− 1)/2.

Case 2: (n+ 1)/2 ≤ k ≤ n− 1
Taking y∗ = vn−1, there is a unique path pk,n−1 from vk to vn−1 which is a ((n+
1)/2, k − (n− 1)/2)-path. Using this path and the definition of u0 in equation (1)
we have

u0 = (n2 − 1)/2− k(n+ 1)/2. (17)

Taking x∗ = v(n−1)/2, there is a unique path pk,(n−1)/2 from vk to v(n−1)/2. This
path is a (0, k − (n − 1)/2)-path. Using this path and the definition of v0 in
equation (2), we have

v0 = k(n− 1)/2− (n− 1)2/4. (18)

Equations (17), (18) and Theorem 3.2 imply that

γ
L

(2)
n
(vk) ≥ ℓ(C1)u0 + ℓ(C2)v0 = (n3 − 2n2 − 3n+ 4)/4 + k (19)

for all k = (n+ 1)/2, (n+ 3)/2, . . . , n− 1.

Case 3: k = n
There is a (1, 0)-path pk,n−1 from vk to vn−1. Using this path and the definition of
u0 in equation (1) we have u0 = (n− 1)/2. There is a (1, (n− 1)/2)-path pk,(n−1)/2

from vk to v(n−1)/2. Using this path and the definition of v0 in equation (2) we

find that v0 = (n− 1)2/4− (n− 3)/2. Theorem 3.2 implies that

γ
L

(2)
n
(vk) ≥ ℓ(C1)u0 + ℓ(C2)v0 = (n3 − 2n2 − 3n+ 4)/4 + n

= (n3 − 2n2 − 3n+ 4)/4 + k (20)

for k = n.

Now from (16), (19), and (20) we conclude that

γ
L

(2)
n
(vk) ≥ (n3 − 2n2 − 3n+ 4)/4 + k (21)

for all k = 1, 2, . . . , n.
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We next show the upper bound, that is γ
L

(2)
n
(vk) ≤ (n3− 2n2− 3n+4)/4+ k

for all k = 1, 2, . . . , n. We first show that γ
L

(2)
n
(v1) = (n3 − 2n2 − 3n+4)/4+1 and

then we use Proposition 3.4 in order to determine the upper bound for exponents
of other vertices. From (16) it is known that γ

L
(2)
n
(v1) ≥ (n3 − 2n2 − 3n+4)/4+ 1.

Thus, it remains to show that γ
L

(2)
n
(v1) ≤ (n3−2n2−3n+4)/4+1. By considering

(16) we show that for each i = 1, 2, . . . , n there is a walk from v1 to vi consisting
of (n3 − n2 − 5n+ 13)/8 red arcs and (n3 − 3n2 − n+ 3)/8 blue arcs.

Let p1i be a path form v1 to vi, i = 1, 2, . . . , n. Notice that the system

M

[
x1

x2

]
+

[
r(p1i)
b(p1i)

]
=

[
(n3 − n2 − 5n+ 13)/8
(n3 − 3n2 − n+ 3)/8

]
(22)

has integer solution[
x1

x2

]
=

[
b(p1,i) + (2 + b(p1,i)− r(p1,i))(n− 1)/2
(n− 3)[n− 3 + 2r(p1,i)]/4− b(p1,i)(n− 1)/2

]
.

If i = 1, we choose r(p1,1) = b(p1,1) = 0. This implies x1 = n − 1 > 0 and
x2 = (n− 3)2/4 > 0. Since for every i = 2, 3 . . . , n there is a path p1i from v1 to vi
with b(p1i)− r(p1i) ≥ −1, we have x1 = b(p1,i)+ [2+ b(p1,i)− r(p1,i)](n− 1)/2 ≥ 0.
Notice also that for any i = 2, 3, . . . , n there is a path p1i from v1 to vi with
b(p1i) ≤ (n− 3)/2 and every such path p1i has r(p1i) ≥ 1. Hence x2 = (n− 3)[n−
3+ 2r(p1,i)]/4− b(p1,i)(n− 1)/2 ≥ 0. Therefore the system (22) has a nonnegative
integer solution. Since v1 lies on both cycles, Proposition 3.3 implies that

γ
L

(2)
n
(v1) ≤ (n3 − 2n2 − 3n+ 4)/4 + 1. (23)

Now combining (16) and (23) we find that γ
L

(2)
n
(v1) = (n3 − 2n2 − 3n + 4)/4 + 1.

Since for any k = 1, 2, . . . , n we have d(vk, v1) = k − 1, by Proposition 3.4 we have

γ
L

(2)
n
(vk) ≤ (n3 − 2n2 − 3n+ 4)/4 + k (24)

for all k = 1, 2, . . . , n.

Finally, combining (21) and (24) we conclude that γ
L

(2)
n
(vk) = (n3 − 2n2 −

3n+ 4)/4 + k for all k = 1, 2, . . . , n.

Lemma 4.3. For the two-colored digraph L
(2)
n of type III we have γ

L
(2)
n
(vk) =

(n3 − 2n2 − 3n)/4 + k for all k = 1, 2, . . . , n.

Proof. We first show that γ
L

(2)
n
(vk) ≥ (n3−2n2−3n)/4+k for all k = 1, 2, . . . , n.

Since the red path of length (n + 1)/2 is the path v(n+1)/2 → v(n−1)/2 → · · · →
v1 → vn, we set x∗ = v(n+1)/2 and y∗ = vn. We split the proof into two cases.

Case 1: 1 ≤ k ≤ (n+ 1)/2
Considering the (k, 0)-path from vk to vn and the definition of u0 in equation (1)
we have

u0 = k(n− 1)/2. (25)



12 Syahmarani and Suwilo

We note that there are two paths from vk to v(n+1)/2. They are a (k −
1, (n − 3)/2)-path and a (k, (n − 1)/2)-path. Using the (k − 1, (n − 3)/2)-path
and the definition of v0 in equation (2) we have that v0 = (n − 3)(n − 2k + 1)/4.
Using the (k, (n − 1)/2)-path and the definition of v0 in equation (2) we have
v0 = (n− 3)(n− 2k + 1)/4 + 1. Hence, we conclude that

v0 = (n− 3)(n− 2k + 1)/4. (26)

Now by considering Theorem 3.2, equation (25) and equation (26) we have[
s
t

]
≥ M

[
(n− 1)/2
(n− 3)(n− 2k + 1)/4

]
=

[
(n3 − n2 − 5n− 3)/8 + k
(n3 − 3n2 − n+ 3)/8

]
. (27)

Thus from (27) we conclude that

γ
L

(2)
n
(vk) ≥ (n3 − 2n2 − 3n)/4 + k (28)

for all k = 1, 2, . . . , (n+ 1)/2.

Case 2: (n+ 3)/2 ≤ k ≤ n
Considering the ((n+1)/2, k−(n+1)/2)-path from vk to vn and the definition of u0

in equation (1) we have u0 = (n+ 1)(n− k)/2. Considering the (0, k − (n+ 1)/2)-
path from vk to v(n+1)/2 and the definition of v0 in equation (2) we have v0 =
(n− 1)(2k − n− 1)/4. By Theorem 3.2, we have

γ
L

(2)
n
(vk) ≥ ℓ(C1)u0 + ℓ(C2)v0 = (n2 − 2n2 − 3n)/4 + k (29)

for all k = (n+ 3)/2, (n+ 5)/2, . . . , n.

Now from (28) and (29) we conclude that

γ
L

(2)
n
(vk) ≥ (n3 − 2n2 − 3n)/4 + k (30)

for all k = 1, 2, . . . , n.

We next show that γ
L

(2)
n
(vk) ≤ (n3 − 2n2 − 3n)/4 + k for all k = 1, 2, . . . , n.

For this purpose we first show that γ
L

(2)
n
(v1) = (n3−2n2−3n)/4+1 and then we use

Proposition 3.4 in order to get the upper bounds for γ
L

(2)
n
(vk) for k = 2, 3, . . . , n.

From (30) it is inferred that γ
L

(2)
n
(v1) ≥ (n3 − 2n2 − 3n)/4 + 1. It remains to show

that γ
L

(2)
n
(v1) ≤ (n3 − 2n2 − 3n)/4 + 1.

By considering (27) we show that for each vertex vi, i = 1, 2, . . . , n, there is a
walk from v1 to vi consisting of (n3−n2−5n+5)/8 red arcs and (n3−3n2−n+3)/8
blue arcs. For i = 1, 2, . . . , n let p1,i be a path from v1 to vi. Consider the system
of equations

M

[
x1

x2

]
+

[
r(p1,i)
b(p1,i)

]
=

[
(n3 − n2 − 5n+ 5)/8
(n3 − 3n2 − n+ 3)/8

]
. (31)

The solution to the system (31) is the integer vector[
x1

x2

]
=

[
b(p1,i) + (1 + b(p1,i)− r(p1,i))(n− 1)/2
(n− 3)(n− 1)/4 + r(p1,i)(n− 3)/2− b(p1,i)(n− 1)/2

]
.
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If i = 1, we can choose r(p1,1) = b(p1,1) = 0. This implies x1 = (n− 1)/2 > 0 and
x2 = (n2 − 4n + 3)/4 > 0. Notice that for each i = 2, 3, . . . , n there is a path p1i
from v1 to vi with b(p1i) ≤ (n − 3)/2. Hence, x2 ≥ 0. Moreover, there is a path
from v1 to vi with 1+ b(p1i)− r(pi1) ≥ 0. Hence we have x1 ≥ 0. These imply that
the system (31) has a nonnegative integer solution. Since the vertex v1 lies on both
cycles, by Proposition 3.3 we conclude that γ

L
(2)
n
(v1) ≤ (n3−2n2−3n)/4+1. Since

for each vertex vk, k = 2, 3, . . . , n, d(vk, v1) = k−1, Proposition 3.4 guarantees that

γ
L

(2)
n
(vk) ≤ (n3 − 2n2 − 3n)/4 + k (32)

for all k = 1, 2, . . . , n.

Now combining (30) and (32) we conclude that γ
L

(2)
n
(vk) = (n3−2n2−3n)/4+

k for all k = 1, 2, . . . , n.

Lemma 4.4. For the two-colored digraph L
(2)
n of type IV we have γ

L
(2)
n
(vk) =

(n3 − 2n2 − n+ 6)/4 + k for all k = 1, 2, . . . , n.

Proof. Since the red path of length (n+ 1)/2 is the path vn−1 → vn−2 → · · · →
v(n−3)/2, we set x∗ = vn−1 and y∗ = v(n−3)/2. We split the proof into three cases
depending on the position of vk.

Case 1 : 1 ≤ k ≤ (n− 3)/2
There are two paths from vk to v(n−3)/2. They are a ((n − 1)/2, k)-path and a
((n+1)/2, k+1)-path. Using the ((n− 1)/2, k)-path we find from the definition of
u0 in equation (1) that u0 = (n−1)2/4−k(n+1)/2. Using the ((n+1)/2, k+1)-path
we find from the definition of u0 in equation (1) that u0 = (n−1)2/4−k(n+1)/2−1.
Hence we choose

u0 = (n− 1)2/4− k(n+ 1)/2− 1 = (n2 − 1)/4− (k + 1)(n+ 1)/2. (33)

We note that there is a unique path pk,n−1 from vk to vn−1 which is a (0, k+1)-
path. Using this path we find from the definition of v0 in equation (2) that

v0 = (k + 1)(n− 1)/2 (34)

Theorem 3.2, equation (33) and equation (34) imply that[
s
t

]
≥ M

[
u0

v0

]
=

[
(n3 − n2 − n+ 1)/8
(n3 − 3n2 − n+ 11)/8 + k

]
. (35)

From (35) we conclude that

γ
L

(2)
n
(vk) ≥ (n3 − 2n2 − n+ 6)/4 + k (36)

for all k = 1, 2, . . . , (n− 3)/2.

Case 2 : (n− 1)/2 ≤ k ≤ n− 1
There is a unique pk,(n−3)/2-path from vk to v(n−3)/2 which is a (k− (n− 3)/2, 0)-
path. Using this path, from the definition of u0 in equation (1) we find that
u0 = k(n− 1)/2− (n− 1)(n− 3)/4. There is a unique path pk,n−1 from vk to vn−1
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which is a (k− (n−3)/2, (n−1)/2)-path. Using this path, from the definition of v0
in equation (2) we find that v0 = (n−1)2/4+(n−3)2/4−k(n−3)/2. Theorem 3.2
implies

γ
L

(2)
n
(vk) ≥ ℓ(C1)u0 + ℓ(C2)v0

= (n− 2)(k(n− 1)/2− (n− 1)(n− 3)/4)

+ n[(n− 1)2/4 + (n− 3)2/4− k(n− 3)/2]

= (n3 − 2n2 − n+ 6)/4 + k (37)

for all k = (n− 1)/2, (n+ 1)/2, . . . , n− 1.

Case 3: k = n
There is a unique path from vk to v(n−1)/2 which is a ((n+1)/2, 1)-path. Using this

path we find from the definition of u0 in equation (1) that u0 = (n2−1)/4−(n+1)/2.
There is a unique path pk,n−1 from vk to vn−1 which is a (0, 1)-path. Using this path
we find from the definition of v0 in equation (2) that v0 = (n− 1)/2. Theorem 3.2
implies [

s
t

]
≥ M

[
u0

v0

]
=

[
(n3 − n2 − n+ 1)/8
(n3 − 3n2 − n+ 11)/8

]
,

and hence γ
L

(2)
n
(vk) ≥ (n3 − 2n2 − 5n+ 6)/4 + n. We note that for the (0, 1)-path

from vn to vn−1, the system

M

[
x1

x2

]
+

[
0
1

]
=

[
(n3 − n2 − n+ 1)/8
(n3 − 3n2 − n+ 11)/8

]
has nonnegative integer solution x1 = (n2 − 1)/4 and x2 = 0. This implies there

is no walk from vn to vn−1 with composition

[
(n3 − n2 − n+ 1)/8
(n3 − 3n2 − n+ 11)/8

]
. Hence

γ
L

(2)
n
(vn) > (n3 − 2n2 − 5n + 6)/4 + n. Notice that the shortest walk from vn to

vn−1 with at least (n3 − n2 − n + 1)/8 red arcs and (n3 − 3n2 − n + 11)/8 blue
arcs is the walk that starts at vn, moves to vn−2 and then moves (n2 − 1)/4 times
around the cycle C1 and back at vn−2, finally moves to vn−1. The composition of

this walk is

[
(n3 − n2 + 3n+ 5)/8
(n3 − 3n2 + 3n+ 7)/8

]
. Thus we now have

γ
L

(2)
n
(vn) ≥ (n3 − 2n2 + 3n+ 6)/4 = (n3 − 2n2 − n+ 6)/4 + n. (38)

From (36), (37) and (38) we conclude that

γ
L

(2)
n
(vk) ≥ (n3 − 2n2 − n+ 6)/4 + k (39)

for all k = 1, 2, . . . , n.

We next show γ
L

(2)
n
(vk) ≤ (n3 − 2n2 − n + 6) + k by first showing that

γ
L

(2)
n
(v1) = (n3 − 2n2 − n + 6)/4 + 1, and then use Proposition 3.4 to get upper

bound for exponent of the vertex vk, k = 2, 3, . . . , n. From (36) we know that for
k = 1, γ

L
(2)
n
(v1) ≥ (n3 − 2n2 −n+6)/4+1 and from (35) we know that this bound
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is obtained by walks with composition

[
(n3 − n2 − n+ 1)/8
(n3 − 3n2 − n+ 19)/8

]
. It remains to

show that γ
L

(2)
n
(v1) ≤ (n3 − 2n2 − n + 6)/4 + 1. For each i = 1, 2, . . . , k we show

that there is an (s, t)-walk w1,i from v1 to vi with composition[
r(w1,i)
b(w1,i)

]
=

[
(n3 − n2 − n+ 1)/8
(n3 − 3n2 − n+ 19)/8

]
.

For any vertex vi, i = 1, 2, 3, . . . , n let p1i be a path from v1 to vi. The system

M

[
x1

x2

]
+

[
r(p1i)
b(p1i)

]
=

[
(n3 − n2 − n+ 1)/8
(n3 − 3n2 − n+ 19)/8

]
(40)

has integer solution[
x1

x2

]
=

[
r(p1,i) + ((n− 5)/2 + b(p1,i)− r(p1,i))(n+ 1)/2
(2− b(p1,i))(n− 1)/2 + r(p1,i)(n− 3)/2

]
.

If i = 1, we can choose r(p1,1) = b(p1,1) = 0. This implies x1 = (n2−4n−5)/4 > 0
and x2 = n−1 > 0. We note that for any vertex vi, i = 2, 3, . . . , n there is a path p1i
from v1 to vi with 2 ≤ b(p1i) ≤ (n−3)/2. Moreover, if 3 ≤ b(p1i) ≤ (n−3)/2, then
r(p1i) = (n− 1)/2. Hence x2 ≥ 0. Notice also that for any vertex vi, i = 2, 3, . . . , n
we can find a path p1i with b(p1i)− r(p1i) ≥ −(n− 5)/2. Hence x1 ≥ 0. Hence the
system (40) has a nonnegative integer solution. Since the vertex v1 lies on both
cycles, Proposition 3.3 guarantees that γ

L
(2)
n
(v1) ≤ (n3 − 2n2 − n + 6)/4 + 1. By

considering equation (39) we conclude that γ
L

(2)
n
(v1) = (n3 − 2n2 − n + 6)/4 + 1.

Since for each k = 2, 3, . . . , n we have d(vk, v1) = k − 1, Proposition 3.4 implies
that

γ
L

(2)
n
(vk) ≤ (n3 − 2n2 − n+ 6)/4 + k (41)

for k = 1, 2, . . . , n.

Combining (39) and (41) we conclude that γ(vk) = (n3− 2n2−n+6)+ k for
all k = 1, 2, . . . , n.

Theorem 4.5. Let L
(2)
n be a primitive two-colored digraph on n ≥ 5 vertices whose

underlying digraph is the digraph Ln in Figure 1. If exp(L
(2)
n ) = (n3 − 2n2 + 1)/2,

then (n3−2n2−3n+4)/4 ≤ γ
L

(2)
n
(vk) ≤ (n3−2n2+3n+6)/4 for all k = 1, 2, . . . , n

Proof. By Lemma 4.1 through Lemma 4.4 for each k = 1, 2, . . . , n we have that
(n3 − 2n2 − 3n)/4+ k ≤ γ

L
(2)
n
(vk) ≤ (n3 − 2n2 − n+6)/4+ k. This implies for any

k = 1, 2, . . . , n we have (n3 − 2n2 − 3n+ 4)/4 ≤ γ
L

(2)
n
(vk) ≤ (n3 − 2n2 + 3n+ 6)/4.

We now discuss vertex exponents for the two-colored digraphs L
(2)
n whose

exponents is 2n2 − 6n+ 2.

Theorem 4.6. Let L
(2)
n be a primitive two-colored digraph on n ≥ 5 vertices whose

underlying digraph is the digraph Ln in Figure 1. If exp(L
(2)
n ) = 2n2− 6n+2, then

for any vertex vk, k = 1, 2, . . . , n we have (n2− 4n+5) ≤ γ
L

(2)
n
(vk) ≤ (n2− 2n− 1).
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Proof. Since exp(L
(2)
n ) = 2n2−6n+2, Corollary 2.4 implies that L

(2)
n has a unique

(2, 0)-path that lies on both cycles. This implies the (2, 0)-path of L
(2)
n is of the form

a → a−1 → a−2 for some 3 ≤ a ≤ n−2. We show that γ
L

(2)
n
(vk) = n2−3n+k+2−a

for all k = 1, 2, . . . , n. We first show that γD(2)(vk) ≥ n2 − 3n + k + 2 − a for all
k = 1, 2, . . . , n. We use path from vk to va−2 to determine the value of the quantity
u0 in equation (1) and we use path from vk to va to determine the value of the
quantity v0 in equation (2). We split the proof into three cases depending on the
position of the vertex vk.

Case 1 : 1 ≤ k ≤ a− 2
We note that there are two paths from vk to va−2. They are a ((n−1)/2−⌊(a−2−
k)/2⌋, (n−3)/2−⌈(a−2−k)/2⌉)-path and a ((n+1)/2−⌊(a−2−k)/2⌋, (n−1)/2−
⌈(a− 2− k)/2⌉)-path. Using the first path and the definition of u0 in equation (1)
we have u0 = 1 + n+1

2

⌈
a−2−k

2

⌉
− n−1

2

⌊
a−2−k

2

⌋
. Using the second path and the

definition of u0 in equation (1) we have u0 = n+1
2

⌈
a−2−k

2

⌉
− n−1

2

⌊
a−2−k

2

⌋
. Hence

we conclude that

u0 = (n+ 1)⌈(a− 2− k)/2⌉/2− (n− 1)⌊(a− 2− k)/2⌋/2. (42)

There are two paths from vk to va. They are a ((n−5)/2−⌊(a−2−k)/2⌋, (n−
3)/2−⌈(a−2−k)⌉)-path and a ((n−3)/2−⌊(a−2−k)/2⌋, (n−1)/2−⌈(a−2−k)⌉)-
path. Using the first path and the definition of v0 in equation (2) we have v0 =
n− 3− n−1

2

⌈
a−2−k

2

⌉
+ n−3

2

⌊
a−2−k

2

⌋
. Using the second path and the definition of

v0 in equation (2) we have v0 = n − 2 − n−1
2

⌈
a−2−k

2

⌉
+ n−3

2

⌊
a−2−k

2

⌋
. Hence we

conclude that

v0 = n− 3− (n− 1)⌈(a− 2− k)/2⌉/2 + (n− 3)⌊(a− 2− k)/2⌋. (43)

Now Theorem 3.2, equation (42) and equation (43) imply that

[
s
t

]
≥ M

[
u0

v0

]
=

[
(n− 1)/2 (n+ 1)/2
(n− 3)/2 (n− 1)/2

] [
n+1
2

⌈
a−2−k

2

⌉
− n−1

2

⌊
a−2−k

2

⌋
n− 3− n−1

2

⌈
a−2−k

2

⌉
+ n−3

2

⌊
a−2−k

2

⌋]
=

[
(n2 − 2n− 3)/2− ⌊(a− k − 2)/2⌋
(n3 − 4n+ 3)/2− ⌈(a− 2− k)/2⌉

]
(44)

Hence we now have

γD(2)(vk) ≥ n2 − 3n− (⌊(a− 2− k)/2⌋+ ⌈(a− 2− k)/2⌉)
= n2 − 3n+ k + 2− a (45)

for k = 1, 2, . . . , a− 2.

Case 2 : k = a− 1, a
There is a unique path from vk to va−2 and it is a (k − a + 2, 0)-path. Using this
path and the definition of u0 in equation (1) we have that

u0 = (n− 1)(k − a+ 2)/2. (46)
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There are two paths from vk to va. They are a (k−a+2+(n−5)/2, (n−3)/2)-path
and a (k+2−a+(n−3)/2, (n−1)/2)-path. Using the first path and the definition of
v0 in equation (2) we have that v0 = n−3−(n−3)(k+2−a)/2. Using the second path
and the definition of v0 in equation (2) we have that v0 = n−2−(n−3)(k+2−a)/2.
Hence we conclude that

v0 = n− 2− (n− 3)(k + 2− a)/2. (47)

Now Theorem 3.2, equation (46) and equation (47) imply that

γD(2)(vk) ≥ ℓ(C1)u0 + ℓ(C2)v0

= (n− 2)(n− 1)(k − a+ 2)/2 + n[(n− 3)− (n− 3)(k − a+ 2)/2]

= n2 − 3n+ k + 2− a (48)

for all k = a− 1, a.

Case 3 : a+ 1 ≤ k ≤ n
There is a unique path from vk to va−2 which is (⌊(k − a)/2⌋ + 2, ⌈(k − a)/2⌉)-
path. Using this path and the definition of u0 in equation (1) we have u0 =(
n−1
2

) (⌊
k−a
2

⌋
+ 2

)
− n+1

2

⌈
k−a
2

⌉
. There is a unique path from vk to va which is a

(⌊(k − a)/2⌋, ⌈(k − a)/2⌉)-path. Using this path and the definition of v0 in equa-
tion (2) we have that v0 = n−1

2

⌊
k−a
2

⌋
− n−3

2

⌈
k−a
2

⌉
. By Theorem 3.2 we have

γ
L

(2)
n
(vk) ≥ ℓ(C1)u0 + ℓ(C2)v0

= (n− 2)

(
n− 1

2

(⌊
k − a

2

⌋
+ 2

)
− n+ 1

2

⌈
k − a

2

⌉)
+n

(
n− 1

2

⌊
k − a

2

⌋
− n+ 1

2

⌈
k − a

2

⌉)

Hence

= n3 − 3n+ 2 + ⌊(k − a)/2⌋+ ⌈(k − a)/2⌉
= n2 − 3n+ k + 2− a (49)

for a+ 1 ≤ k ≤ n.

From equation (45), equation (48) and equation (49) we conclude that

γ
L

(2
n
(vk) ≥ n3 − 3n+ k + 2− a (50)

for all k = 1, 2, . . . , n.

We now show that γ
L

(2)
n
(vk) ≤ n3 − 3n + k + 2 − a for k = 1, 2, . . . , n. We

first show that γ
L

(2)
n
(v1) ≤ n3− 3n+3−a and then we use Proposition 3.4 to show

that γ
L

(2)
n

≤ n2 − 3n+ k+2− a for k = 2, 3, . . . , n. By considering equation (44) it

suffices to show that for each vertex vi, i = 1, 2, . . . , n there is a walk w1,i from v1
to vi with composition[

r(w1,i)
b(w1,i)

]
=

[
(n2 − 2n− 3)/2− ⌊(a− 3)/2⌋
(n3 − 4n+ 3)/2− ⌈(a− 3)/2⌉

]
. (51)
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For each i = 1, 2, . . . , n, let p1,i be a path from v1 to vi. We note that the solution
to the system

M

[
x1

x2

]
+

[
r(p1,i)
b(p1,i)

]
=

[
(n2 − 2n− 3)/2− ⌊(a− 3)/2⌋
(n3 − 4n+ 3)/2− ⌈(a− 3)/2⌉

]
(52)

is the integer vector[
x1

x2

]
=

[
⌈(a− 3)/2⌉(n+ 1)/2− ⌊(a− 3)/2⌋(n− 1)/2

n− 3 + ⌊(a− 3)/2⌋(n− 3)/2− ⌈(a− 3)/2⌉(n− 1)/2

]
+

[
b(p1,i) + (b(p1,i)− r(p1,i))(n− 1)/2
(r(p1,i)− b(p1,i))(n− 3)/2− b(p1,i)

]
. (53)

We show that x1 ≥ 0 and x2 ≥ 0. We consider two cases when a is even and a is
odd.

If a is even, then ⌈(a− 3)/2⌉ = (a− 2)/2 and ⌊(a− 3)/2⌋ = (a− 4)/2. This
implies[

x1

x2

]
=

[
(n− 1)/2 + (a− 2)/2 + b(p1,i)− [r(p1,i)− b(p1,i)](n− 1)/2

(n− a− 1)/2 + [r(p1,i)− b(p1,i)](n− 3)/2− b(p1,i)

]
.

Since a is even, we have that 0 ≤ r(p1,i)− b(p1,i) ≤ 2. If r(p1,i)− b(p1,i) = 0, then
b(p1,i) ≤ (n − 1 − a)/2. This implies x1 > 0 and x2 ≥ 0. If r(p1,i) − b(p1,i) = 1,
there is a path p1,i with b(p1,i) ≤ (n − 3)/2. This implies x1 > 0 and x2 > 0. If
r(p1,i)− b(p1,i) = 2, then b(p1,i) ≥ (n+ 1− a)/2. This implies x1 ≥ 0 and x2 > 0.
Therefore for each vertex vi, i = 1, 2, . . . , n, there is a path p1,i from v1 to vi such
that the system (52) has nonnegative integer solution x1 ≥ 0 and x2 ≥ 0.

If a is odd, then ⌈(a− 3)/2⌉ = ⌊(a− 3)/2⌋ = (a− 3)/2. This implies[
x1

x2

]
=

[
(a− 3)/2 + b(p1,i)− [r(p1,i)− b(p1,i)](n− 1)/2

n− 3− (a− 3)/2 + [r(p1,i)− b(p1,i)](n− 3)/2− b(p1,i)

]
.

Since a is odd, for each vertex vi, i = 1, 2, . . . , n there is a path p1,i with −1 ≤
r(p1,i) − b(p1,i) ≤ 1. If r(p1,i) − b(p1,i) = −1, there is a path p1,i with b(p1,i) ≤
(n − a)/2. This implies x1 > 0 and x2 ≥ 0. If r(p1,i) − b(p1,i) = 0, there is a
path p1,i with b(p1,i) ≤ (n − 3)/2. This implies x1 > 0 and x2 > 0. Finally if
r(p1,i)− b(p1,i) = 1, there is a path p1,i with b(p1,i) ≥ (n− a+ 2)/2. This implies
x1 ≥ 0 and x2 > 0. Therefore for each vertex vi, i = 1, 2, . . . , n, there is a path p1,i
from v1 to vi such that the system (52) has nonnegative integer solution x1 ≥ 0
and x2 ≥ 0.

Since the system (52) has a nonnegative integer solution and the vertex v1
belongs to both cycles, Proposition 3.3 guarantees that γ

L
(2)
n
(v1) ≤ n2−3n+3−a.

Combining this with equation (45) we conclude that γ
L

(2)
n
(v1) = n2 − 3n + 3 − a.

Since for k = 2, 3, . . . , n we have d(vk, d1) = k − 1, Proposition 3.4 implies that

γ
L

(2)
n
(vk) ≤ n2 − 3n+ k + 2− a (54)

for k = 1, 2, . . . , n.

Finally combining equation (50) and equation (54) we conclude that γ
L

(2)
n
(vk) =

n2 − 3n+ k + 2− a for k = 1, 2, . . . , n. We note that 3 ≤ a ≤ n− 2. This implies
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n2 − 4n+4+ k ≤ γ
L

(2)
n
(vk) ≤ n2 − 3n+ k− 1. Therefore for any k = 1, 2, . . . , n we

have n2 − 4n+ 5 ≤ γ
L

(2)
n
(vk) ≤ n2 − 2n− 1.
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