VERTEX EXPONENTS OF A CLASS OF TWO-COLORED HAMILTONIAN DIGRAPHS

AGHNI SYAHMARANI¹ AND SAIB SUWILO²

¹Department of Mathematics, University of Sumatera Utara, Indonesia Department of Mathematics, University of Sumatera Utara, Indonesia, saib@usu.ac.id

Abstract. A two-colored digraph $D^{(2)}$ is primitive provided there are nonnegative integers h and k such that for each pair of not necessarily distinct vertices u and v in $D^{(2)}$ there exists a (h, k)-walk in $D^{(2)}$ from u to v. The exponent of a primitive two-colored digraph $D^{(2)}$, $\exp(D^{(2)})$, is the smallest positive integer h + k taken over all such nonnegative integers h and k. The exponent of a vertex v in $D^{(2)}$ is the smallest positive integer s + t such that for each vertex u in $D^{(2)}$ there is an (s, t)-walk from v to u. We study the vertex exponents of primitive two-colored digraphs $L_n^{(2)}$ on $n \ge 5$ vertices whose underlying digraph is the Hamiltonian digraph consisting of the cycle $v_1 \rightarrow v_n \rightarrow v_{n-1} \rightarrow \cdots \rightarrow v_2 \rightarrow v_1$ and the arc $v_1 \rightarrow v_{n-2}$. For such two-colored digraph it is known that $2n^2 - 6n + 2 \le \exp(L_n^{(2)}) \le (n^3 - 2n^2 + 1)/2$. We show that if $\exp(L_n^{(2)}) = (n^3 - 2n^2 + 1)/2$, then its vertex exponents lie on $[(n^3 - 2n^2 - 3n + 4)/4, (n^3 - 2n^2 + 3n + 6)/4]$ and if $\exp(L_n^{(2)}) = 2n^2 - 6n + 2$, then its vertex exponents lie on $[n^2 - 4n + 5, n^2 - 2n - 1]$.

 $K\!ey$ words: Two-colored digraph, primitive digraph, exponent, vertex exponent, hamiltonian digraph.

²⁰⁰⁰ Mathematics Subject Classification: 05C15, 05C20. Received: 28-10-2012, revised: 09-01-2012, accepted: 17-01-2012.

Abstrak. Digraf dwiwarna $D^{(2)}$ adalah primitif dengan syarat terdapat bilangan bulat nonnegatif h dan k sehingga untuk setiap pasangan yang tidak perlu berbeda titik u dan v di $D^{(2)}$ terdapat sebuah jalan (h, k) di $D^{(2)}$ dari u ke v. Eksponen dari primitif digraf dwiwarna $D^{(2)}$, yang dinotasikan dengan $\exp(D^{(2)})$, adalah bilangan bulat positif terkecil h + k dari semua jumlahan yang mungkin bilangan bulat nonnegatif h dan k. Eksponen dari sebuah titik v di $D^{(2)}$ adalah bilangan bulat positif terkecil s + t sehingga untuk tiap titik u di $D^{(2)}$ terdapat sebuah jalan (s, t) dari v ke u. Pada paper ini akan dipelajari eksponen titik dari digraf dwiwarna primitif $L_n^{(2)}$ pada $n \ge 5$ titik dengan digraf dasar adalah digraf Hamilton yang memuat lingkaran $v_1 \rightarrow v_n \rightarrow v_{n-1} \rightarrow \cdots \rightarrow v_2 \rightarrow v_1$ dan busur $v_1 \rightarrow v_{n-2}$. Untuk digraf dwiwarna yang demikian telah diketahui bahwa $2n^2 - 6n + 2 \le \exp(L_n^{(2)}) \le (n^3 - 2n^2 + 1)/2$. Paper ini menunjukkan bahwa jika $\exp(L_n^{(2)}) = (n^3 - 2n^2 + 1)/2$, maka eksponen titiknya berada pada $[(n^3 - 2n^2 - 3n + 4)/4, (n^3 - 2n^2 + 3n + 6)/4]$ dan jika $\exp(L_n^{(2)}) = 2n^2 - 6n + 2$, maka eksponen titiknya berada pada $[n^2 - 4n + 5, n^2 - 2n - 1]$.

 Kata $\mathit{kunci:}$ Digraf dwiwarna, digraf primitif, eksponen, eksponen titik, digraf Hamilton.

1. Introduction

Given a vector \mathbf{x} we use the notation $\mathbf{x} \ge 0$ to show that \mathbf{x} is a nonnegative vector, that is, a vector each of whose entry is nonnegative. Thus for two vectors \mathbf{x} and \mathbf{y} , the notion $\mathbf{x} \ge \mathbf{y}$ means that $\mathbf{x} - \mathbf{y} \ge 0$.

A digraph D is strongly connected provided for each pair of vertices u and vin D there is a uv-walk from u to v. A ministrong digraph is a strongly digraph such that removal of any single arc will result in a not strongly connected digraph. A strongly connected digraph D is *primitive* provided there exists a positive integer ℓ such that for every pair of not necessarily distinct vertices u and v in D there is a walk from u to v of length ℓ . The smallest of such positive integer ℓ is the *exponent* of D denoted by exp(D).

By a two-colored digraph $D^{(2)}$ we mean a digraph D such that each of it arcs is colored by either red or blue but not both colors. An (s, t)-walk in $D^{(2)}$ is a walk of length s + t consisting of s red arcs and t blue arcs. For a walk w we denote r(w) to be the number of red arcs in w and b(w) to be the number of blue arcs in w. The length of w is $\ell(w) = r(w) + b(w)$ and the vector $\begin{bmatrix} r(w) \\ b(w) \end{bmatrix}$ is the composition of the walk w. A two-colored digraph $D^{(2)}$ is primitive provided there

exist nonnegative integers h and k such that for each pair of vertices u and v in $D^{(2)}$ there is an (h,k)-walk from u to v. The smallest of such positive integer h + k is the *exponent* of $D^{(2)}$ and is denoted by $\exp(D^{(2)})$. Researches on exponents of two-colored digraphs can be found in [2, 3, 5, 6] and [7].

Let $D^{(2)}$ be a strongly connected two-colored digraph and suppose that the set of all cycles in $D^{(2)}$ is $C = \{C_1, C_2, \ldots, C_q\}$. We define a cycle matrix of $D^{(2)}$

to be a 2 by q matrix

$$M = \begin{bmatrix} r(C_1) & r(C_2) & \cdots & r(C_q) \\ b(C_1) & b(C_2) & \cdots & b(C_q) \end{bmatrix},$$

that is M is a matrix such that its *i*th column is the composition of the *i*th cycle C_i , i = 1, 2, ..., q. If the rank of M is 1, the content of M is defined to be 0, and the content of M is defined to be the greatest common divisors of the 2 by 2 minors of M, otherwise. The following result, due to Fornasini and Valcher [1], gives an algebraic characterization of a primitive two-colored digraph.

Theorem 1.1. [1] Let $D^{(2)}$ be a strongly connected two-colored digraph with at least one arc of each color. Let M be a cycle matrix of $D^{(2)}$. The two-colored digraph $D^{(2)}$ is primitive if and only if the content of M is 1.

Let $D^{(2)}$ be a two-colored digraph on n vertices v_1, v_2, \ldots, v_n . Gao and Shao [4] define a more *local* concept of exponents of two-colored digraphs as follows. For any vertex v_k in $D^{(2)}, k = 1, 2, \ldots, n$, the exponent of the vertex v_k , denoted by $\gamma_{D^{(2)}}(v_k)$, is the smallest positive integer $p_1 + p_2$ such that for every vertex v in $D^{(2)}$ there is a (p_1, p_2) -walk from v_k to v. It is customary to order the vertices v_1, v_2, \ldots, v_n of $D^{(2)}$ such that $\gamma_{D^{(2)}}(v_1) \leq \gamma_{D^{(2)}}(v_2) \leq \cdots \leq \gamma_{D^{(2)}}(v_n)$. Gao and Shao [4] discuss the vertex exponents for primitive two-colored digraphs of Wielandt type, that is a Hamiltonial digraph consisting of the cycle $v_1 \rightarrow v_n \rightarrow v_{n-1} \rightarrow v_{n-2} \rightarrow \cdots \rightarrow v_2 \rightarrow v_1$ and the arcs $v_1 \rightarrow v_{n-1}$. Their results show that if the two-colored Wielandt digraph $W^{(2)}$ has only one blue arc $v_a \rightarrow v_{a-1}, a = 2, 3, \ldots, n-1$, then $\gamma_{D^{(2)}}(v_k) = n^2 - 2n + k - a + 1$. If the two-colored Wielandt digraph has two blue arcs then $\gamma_{D^{(2)}}(v_k) = n^2 - 2n + k - a + 1$. Suwilo [9] discusses the vertex exponents of two-colored ministrong digraphs $D^{(2)}$ on n vertices whose underlying digraph is the primitive extremal ministrong digraph D with $\exp(D) = n^2 - 4n + 6$.

We present formulae for vertex exponent of two-colored digraphs whose underlying digraph is the Hamiltonian digraph consisting of the cycle $v_1 \rightarrow v_n \rightarrow v_{n-1} \rightarrow v_{n-2} \rightarrow \cdots \rightarrow v_2 \rightarrow v_1$ and the arc $v_1 \rightarrow v_{n-2}$ where *n* is an odd integer with $n \geq 5$. In Section 2 we discuss previous result on exponent of two-colored Hamiltonian digraph. In Section 3 we present a way in setting up a lower and an upper bound for vertex exponents. We use these results in Section 4 to find vertex exponents for the class of two-colored Hamiltonian digraphs.

2. Two-colored Hamiltonian Digrahs

It is a well known result, see [7], that the largest exponent of a primitive two-colored digraph lies on the interval $[(n^3 - 2n^2 + 1)/2, (3n^3 + 2n^2 - 2n)/2]$ when n is odd and lies on the interval $[(n^3 - 5n^2 + 7n - 2)/2, (3n^3 - 2n^2 - 2n)/2]$ when n is even. The left end of the first interval is obtained using two-colored digraphs

consisting of two cycles whose underlying digraph is the primitive Hamiltonian digraph L_n on $n \ge 5$ vertices which consists of an *n*-cycle $v_1 \to v_n \to v_{n-1} \to v_{n-2} \to v_{n-3} \to \cdots \to v_2 \to v_1$ and the arc $v_1 \to v_{n-2}$ as shown in Figure 1. Notice that the digraph L_n consists of exactly two cycles, they are the *n*-cycle and the (n-2)-cycle $v_1 \to v_{n-2} \to v_{n-3} \to \cdots \to v_2 \to v_1$. Since L_n is primitive, it is necessary that n is odd. Let $L_n^{(2)}$ be a two-colored digraph with underlying digraph is L_n . Let M be the cycle matrix of $L_n^{(2)}$. By Theorem 1.1 the following lemma, see [7, 8] for proof, gives necessary and sufficient condition for $L_n^{(2)}$ to be a primitive two-colored digraph.

Figure 1. Digraph L_n

Lemma 2.1. [7, 8] Let $L_n^{(2)}$ be a two-colored digraph with underlying digraph L_n . The digraph $L_n^{(2)}$ is primitive if and only if $M = \begin{bmatrix} (n-1)/2 & (n+1)/2 \\ (n-3)/2 & (n-1)/2 \end{bmatrix}$.

The following theorem, due Suwilo [8] see also Shader and Suwilo [7], gives the lower and upper bound for exponent of class of two-colored digraphs whose underlying digraph is the digraph L_n .

Theorem 2.2. [7, 8] Let $L_n^{(2)}$ be a two-colored digraph with underlying digraph L_n . Then $2n^2 - 6n + 2 \leq \exp(L_n^{(2)}) \leq (n^3 - 2n^2 + 1)/2$.

Furthermore Suwilo [8] characterizes necessary and sufficient conditions for two-colored digraphs $L_n^{(2)}$ to have $\exp(L_n^{(2)}) = (n^3 - 2n^2 + 1)/2$ and to have $\exp(L_n^{(2)}) = 2n^2 - 6n + 2$, respectively.

Corollary 2.3. [8] Let $L_n^{(2)}$ be a two-colored digraph with underlying digraph L_n . The $\exp(L_n^{(2)}) = (n^3 - 2n^2 + 1)/2$ if and only if $L_n^{(2)}$ has a red path of length (n+1)/2and a blue path of length (n-1)/2.

Corollary 2.4. [8] Let $L_n^{(2)}$ be a two-colored digraph with underlying digraph L_n . The $\exp(L_n^{(2)}) = 2n^2 - 6n + 2$ if and only if $L_n^{(2)}$ has a unique (2,0)-path and this path lies on both cycles.

Lemma 2.1 implies that for a two-colored digraph $L_n^{(2)}$ to be primitive, the *n*-cycles must contain exactly (n+1)/2 red arcs and the (n-2)-cycle must contain exactly (n-1)/2 red arcs. Corollary 2.3 implies that for the two-colored digraph $L_n^{(2)}$ to have exponent $(n^3 - 2n^2 + 1)/2$, the *n*-cycle must contain a red path of length (n+1)/2 and a blue path of length (n-1)/2. This implies there are four possible two-colored digraph $L_n^{(2)}$ with exponent $(n^3 - 2n^2 + 1)/2$. We characterize them as follows.

- The two-colored digraph $L_n^{(2)}$ is of Type *I* if the red arcs of $L_n^{(2)}$ are the arcs that lie on the path $v_n \to v_{n-1} \to v_{n-2} \to \cdots \to v_{(n-1)/2}$ of length (n+1)/2 plus the arc $v_1 \to v_{n-2}$.
- The two-colored digraph $L_n^{(2)}$ is of Type II if the red arcs of $L_n^{(2)}$ are the arcs that lie on the path $v_{(n-1)/2} \to v_{(n-3)/2} \to \cdots \to 1 \to v_n \to v_{n-1}$ of length (n+1)/2 plus the arc $v_1 \to v_{n-2}$.
- The two-colored digraph $L_n^{(2)}$ is of Type *III* if the red arcs of $L_n^{(2)}$ are the arcs that lie on the path $v_{(n+1)/2} \rightarrow v_{(n-1)/2} \rightarrow \cdots \rightarrow 2 \rightarrow 1 \rightarrow v_n$ of length (n+1)/2.
- The two-colored digraph $L_n^{(2)}$ is of Type *IV* if the red arcs of $L_n^{(2)}$ are the arcs that lie on the path $v_{n-1} \rightarrow v_{n-2} \rightarrow \cdots \rightarrow v_{(n-3)/2}$ of length (n+1)/2.

Considering Corollary 2.4, we have $\exp(L_n^{(2)}) = 2n^2 - 6n + 2$ if and only if the (2,0)-path in $L_n^{(2)}$ is the path $a \to a - 1 \to a - 2$ for some $3 \le a \le n - 2$.

In Section 4 for two-colored digraphs $L_n^{(2)}$ with $\exp(L_n^{(2)}) = (n^3 - 2n^2 + 1)/2$ we show that the exponents of its vertices lie on $[(n^3 - 2n^2 - 3n + 4)/4, (n^3 - 2n^2 + 3n + 6)/4]$. For two-colored digraphs whose $\exp(L_n^{(2)}) = 2n^2 - 6n + 2$ we show that the exponents of its vertices lie on $[n^2 - 4n + 5, n^2 - 2n - 1]$.

3. Bounds for vertex exponents

In this section, a way in setting up an upper and a lower bound for vertex exponents of two-colored digraphs is discussed. We start with the lower bound of vertex exponent especially for primitive two-colored digraphs consisting of two cycles. We assume through out that the exponent of vertex v_k , k = 1, 2, ..., n is obtained using (s, t)-walks.

Lemma 3.1. [9] Let $D^{(2)}$ be a primitive two-colored digraph consisting of two cycles. Let v_k be a vertex in $D^{(2)}$ and suppose there is an (s,t)-walk from v_k to each vertex v_j in $D^{(2)}$ with $\begin{bmatrix} s \\ t \end{bmatrix} = M \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$ for some nonnegative integers q_1 and q_2 . Then $\begin{bmatrix} q_1 \\ q_2 \end{bmatrix} \ge M^{-1} \begin{bmatrix} r(p_{k,j}) \\ b(p_{k,j}) \end{bmatrix}$ for some path $p_{k,j}$ from v_k to v_j .

Let v_k be a vertex in $D^{(2)}$. We note that from Lemma 3.1 for the vertex v_k and any vertex v_j in D we have

$$\begin{bmatrix} q_1 \\ q_2 \end{bmatrix} \ge M^{-1} \begin{bmatrix} r(p_{k,j}) \\ b(p_{k,j}) \end{bmatrix} = \begin{bmatrix} b(C_2)r(p_{k,j}) - r(C_2)b(p_{k,j}) \\ r(C_1)b(p_{k,j}) - b(C_1)r(p_{k,j}) \end{bmatrix}.$$

If for some vertex v_j we have $b(C_2)r(p_{k,j}) - r(C_2)b(p_{k,j}) \ge 0$, then we define

 $u_0 = b(C_2)r(p_{k,j}) - r(C_2)b(p_{k,j})$ (1)

If for some vertex v_i we have $r(C_1)b(p_{k,i}) - b(C_1)r(p_{k,i}) \ge 0$, then we define

$$v_0 = r(C_1)b(p_{k,i}) - b(C_1)r(p_{k,i})$$
(2)

By Lemma 3.1 we have $q_1 \ge u_0$ and $q_2 \ge v_0$. This implies

$$\left[\begin{array}{c}s\\t\end{array}\right] = M \left[\begin{array}{c}q_1\\q_2\end{array}\right] \ge M \left[\begin{array}{c}u_0\\v_0\end{array}\right]$$

and hence

$$s+t \ge (r(C_1)+b(C_1))u_0 + (r(C_2)+b(C_2))v_0 = \ell(C_1)u_0 + \ell(C_2)v_0$$

We have proved the following theorem.

Theorem 3.2. Let $D^{(2)}$ be a primitive two-colored digraph consisting of two cycles C_1 and C_2 and let v_k be a vertex in $D^{(2)}$. For some vertex v_i and v_j in $D^{(2)}$ define $u_0 = b(C_2)r(p_{k,j}) - r(C_2)b(p_{k,j})$ and $v_0 = r(C_1)b(p_{k,i}) - b(C_1)r(p_{k,i})$. Then $\begin{bmatrix} s \\ t \end{bmatrix} \ge M \begin{bmatrix} u_0 \\ v_0 \end{bmatrix}$ and hence $\gamma_{D^{(2)}}(v_k) \ge \ell(C_1)u_0 + \ell(C_2)v_0$.

We now discuss a way in setting up an upper bound. First we consider upper bound for exponents of certain vertices two-colored digraph consisting two cycles.

Proposition 3.3. Let $D^{(2)}$ be a primitive two-colored digraph consisting of two cycles C_1 and C_2 . Suppose v_k be a vertex of $D^{(2)}$ that belongs to both cycles C_1 and C_2 . If for each i = 1, 2, ..., n and for some positive integers s and t, there is a path $p_{k,i}$ from v_k to v_i such that the system

$$M\mathbf{x} + \begin{bmatrix} r(p_{k,i}) \\ b(p_{k,i}) \end{bmatrix} = \begin{bmatrix} s \\ t \end{bmatrix}$$
(3)

has nonnegative integer solution, then $\gamma_{D^{(2)}}(v_k) \leq s + t$.

PROOF. Assume that the solution to the system (3) is $\mathbf{x} = (x_1, x_2)^T$. Since $D^{(2)}$ is primitive, then M is invertible and hence x_1 and x_2 cannot be both zero. We note that v_k belongs to both cycles and we consider three cases.

If $x_1, x_2 > 0$, then the walk that starts at v_k , moves x_1 and x_2 times around the cycles C_1 and C_2 respectively and back at v_k , and then moves to v_i along the path $p_{k,i}$ is an (s,t)-walk from v_k to v_i . If $x_1 = 0$ and $x_2 > 0$, then the walk that starts at v_k , moves x_2 times around the cycle C_2 and back at v_k , then moves to vertex v_i along the path $p_{k,i}$ is an (s,t)-walk from v_k to v_i . Similarly if $x_1 > 0$ and $x_2 = 0$, then then the walk that starts at v_k , moves x_1 times around the cycle C_1

and back at v_k , then moves to vertex v_i along the path $p_{k,i}$ is an (s, t)-walk from v_k to v_i . Therefore for every vertex $v_i, i = 1, 2, ..., n$ there is an (s, t)-walk from v_k to v_i . The definition of exponent of vertex v_k implies that $\gamma_{D^{(2)}}(v_k) \leq s + t$.

Proposition 3.4 gives an upper bound of a vertex exponent in term of the vertex exponent of a specified vertex. We define $d(v_k, v)$ to be the distance from v_k to v, that is the length of a shortest walk from v_k to v.

Proposition 3.4. [9] Let $D^{(2)}$ be a primitive two-colored digraph on n vertices. Let v be a vertex in $D^{(2)}$ with exponent $\gamma_{D^{(2)}}(v)$. For any vertex $v_k, k = 1, 2, ..., n$ in $D^{(2)}$ we have $\gamma_{D^{(2)}}(v_k) \leq \gamma_{D^{(2)}}(v) + d(v_k, v)$

4. The vertex exponents

In this section we discuss the vertex exponents of class of two-colored digraphs $L_n^{(2)}$ whose underlying digraph is the digraph L_n in Figure 1. We first discuss the case where $\exp(L_n^{(2)}) = (n^3 - 2n^2 + 1)/2$. Let v_k be a vertex in $L_n^{(2)}$ and suppose that the red path of length (n+1)/2 has x* and y* as its initial and terminal vertex, respectively. We use the the path $p_{k,y*}$ from v_k to y* to determine the value of $u_0 = b(C_2)r(p_{k,y*}) - r(C_2)b(p_{k,y*})$ in equation (1). We use the path $p_{k,x*}$ from v_k to x* in order to determine the value of $v_0 = r(C_1)b(p_{k,x*}) - b(C_1)r(p_{k,x*})$ in equation (2). We assume that $\gamma_{L_n^{(2)}}(v_k)$ is obtained using (s, t)-walks and we split our discussion into four parts depending on the type of the two-colored digraph $L_n^{(2)}$.

Lemma 4.1. For the two-colored digraph $L_n^{(2)}$ of type I we have $\gamma_{L_n^{(2)}}(v_k) = (n^3 - 2n^2 - n + 2)/4 + k$ for all k = 1, 2, ..., n.

PROOF. We first show that $\gamma_{L_n^{(2)}}(v_k) \ge (n^3 - 2n^2 - n + 2)/4 + k$ for all $k = 1, 2, \ldots, n$. Since the red path of length (n + 1)/2 in $L_n^{(2)}$ is the path $v_n \to v_{n-1} \to \cdots \to v_{(n-1)/2}$, we set $x^* = v_n$ and $y^* = v_{(n-1)/2}$. We split the proof into two cases.

Case 1: $1 \le k \le (n-1)/2$

Taking $y^* = v_{(n-1)/2}$, we see that there are two paths from v_k to $v_{(n-1)/2}$. They are an ((n+1)/2, k)-path and an ((n-1)/2, k-1)-path. Using the ((n+1)/2, k)-path $p_{k,(n-1)/2}$ from v_k to $v_{(n-1)/2}$ and the definition of u_0 in equation (1) we find

$$u_{0} = b(C_{2})r(p_{k,(n-1)/2} - r(C_{2})b(p_{k,(n-1)/2})$$

= $\left(\frac{n-1}{2}\right)\left(\frac{n+1}{2}\right) - \frac{n+1}{2}k = \frac{n^{2}-1}{4} - \frac{k(n+1)}{2}.$ (4)

SYAHMARANI AND SUWILO

Using the ((n-1)/2, k-1)-path $p_{k,(n-1)/2}$ from v_k to $v_{(n-1)/2}$ and the definition of u_0 in equation (1) we have

$$u_{0} = b(C_{2})r(p_{k,(n-1)/2} - r(C_{2})b(p_{k,(n-1)/2}) = \left(\frac{n-1}{2}\right)\left(\frac{n-1}{2}\right) - \frac{n+1}{2}(k-1) = \frac{n^{2}+3}{4} - \frac{k(n+1)}{2}.$$
 (5)

From equations (4) and (5) we conclude that $u_0 = (n^2 - 1)/4 - k(n+1)/2$.

Taking $x^* = v_n$, there is a unique path $p_{k,n}$ from v_k to v_n which is a (0, k)-path. Using this path and the definition of v_0 in equation (2) we have

$$v_0 = r(C_1)b(p_{k,n}) - b(C_1)r(p_{k,n})$$

= $\frac{n-1}{2}k - \frac{n-3}{2}(0) = k(n-1)/2$

By Theorem 3.2 we have

$$\begin{bmatrix} s \\ t \end{bmatrix} \ge M \begin{bmatrix} u_0 \\ v_0 \end{bmatrix} = M \begin{bmatrix} (n^2 - 1)/4 - k(n+1)/2 \\ k(n-1)/2 \end{bmatrix}$$
$$= \begin{bmatrix} (n^3 - n^2 - n + 1)/8 \\ (n^3 - 3n^2 - n + 3 + 8k)/8 \end{bmatrix}.$$
(6)

Therefore, we conclude that

$$\gamma_{L_n^{(2)}}(v_k) = s + t \ge (n^3 - 2n^2 - n + 2)/4 + k \tag{7}$$

for all $k = 1, 2, \ldots, (n-1)/2$.

Case 2: $(n+1)/2 \le k \le n$

Taking $y^* = v_{(n-1)/2}$, then there is a unique path $p_{k,(n-1)/2}$ from v_k to $v_{(n-1)/2}$ which is a (k - (n - 1)/2, 0)-path. Using this path and considering the definition of u_0 in equation (1) we have $u_0 = k(n - 1)/2 - (n - 1)^2/4$. Taking $x^* = v_n$, there is a unique path $p_{k,n}$ from v_k to v_n . This path is a (k - (n - 1)/2, (n - 1)/2)-path. Using this path and the definition of v_0 in equation (2) we get $v_0 = (n - 1)(2n - 4)/4 - k(n - 3)/2$. By Theorem 3.2 we get

$$\gamma_{L_n^{(2)}}(v_k) \ge \ell(C_1)u_0 + \ell(C_2)v_0 = (n^3 - 2n^2 - n + 2)/4 + k \tag{8}$$

for all $k = (n+1)/2, (n+3)/2, \dots, n$.

Combining (7) and (8) we conclude that

$$\gamma_{L_n^{(2)}}(v_k) \ge (n^3 - 2n^2 - n + 2)/4 + k.$$
(9)

for all k = 1, 2, ..., n.

We next show the upper bound, that is $\gamma_{L_n^{(2)}}(v_k) \leq (n^3 - 2n^2 - n + 2)/4 + k$ for all $k = 1, 2, \ldots, n$. We first show that $\gamma_{L_n^{(2)}}(v_1) = (n^3 - 2n^2 - n + 2)/4 + 1$ and then we use Proposition 3.4 in order to determine the upper bound for exponents of other vertices. From (9) it is known that $\gamma_{L_n^{(2)}}(v_1) \geq (n^3 - 2n^2 - n + 2)/4 + 1$. Thus, it remains to show that $\gamma_{L_n^{(2)}}(v_1) \leq (n^3 - 2n^2 - n + 2)/4 + 1$. By considering

equation (6) we show that for each i = 1, 2, ..., n there is a walk from v_1 to v_i with composition

$$\begin{bmatrix} s \\ t \end{bmatrix} = \begin{bmatrix} (n^3 - n^2 - n + 1)/8 \\ (n^3 - 3n^2 - n + 11)/8 \end{bmatrix}.$$
 (10)

Let $p_{1,i}$ be a path from v_1 to v_i , i = 1, 2, ..., n. Notice that since M is an invertible matrix, the system

$$M\begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} r(p_{1i})\\ b(p_{1i}) \end{bmatrix} = \begin{bmatrix} (n^3 - n^2 - n + 1)/8\\ (n^3 - 3n^2 - n + 11)/8 \end{bmatrix}$$
(11)

has solution the integer vector

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} (n-3)(n+1)/4 + (n+1)b(p_{1i})/2 - (n-1)r(p_{1i})/2 \\ (n-1)/2 + (n-3)r(p_{1i})/2 - (n-1)b(p_{1i})/2 \end{bmatrix}.$$

If i = 1, we can choose $r(p_{1,1}) = b(p_{1,1}) = 0$ and hence we have that $x_1 = (n^2 - 2n - 3)/4 > 0$ and $x_2 = (n - 1)/2 > 0$. If i = n, then using the (0, 1)-path we have $x_1 = (n - 3)(n + 1)/4 + (n + 1)/2 \ge 0$ and $x_2 = 0$. If i = (n - 1)/2, then using the ((n+1)/2, 1)-path $v_1 \rightarrow v_n \rightarrow v_{n-1} \rightarrow \cdots \rightarrow v_{(n-1)/2}$ we have $x_1 = 0$ and $x_2 = (n + 1)(n - 3)/4$. Notice that for each vertex $v_i, i \ne n, (n - 1)/2$, there exists a path p_{1i} from v_1 to v_i with $0 \le r(p_{1i}) \le (n - 3)/2$ and $0 \le b(p_{1i}) \le (n - 3)/2$. More over if $b(p_{1i}) \ge 1$, then either $r(p_{1i}) = (n - 1)/2$ or $r(p_{1i}) = 1$. These facts imply that $x_1 > 0$ and $x_2 > 0$. Hence we now conclude that the system (11) has a nonnegative integer solution. Proposition 3.3 implies that $\gamma_{L_n^{(2)}}(v_1) \le (n^3 - 2n^2 - n + 2)/4 + 1$. Since for every $k = 2, 3, \ldots, n$ we have $d(v_k, v_1) = k - 1$, Proposition 3.4 implies that

$$\gamma_{L_{\pi}^{(2)}}(v_k) \le (n^3 - 2n^2 - n + 2)/4 + k.$$
(12)

for all k = 1, 2, ..., n.

Now using (9) and (12) we conclude that $\gamma_{L_n^{(2)}}(v_k) = (n^3 - 2n^2 - n + 2)/4 + k$ for all k = 1, 2, ..., n.

Lemma 4.2. For the two-colored digraph $L_n^{(2)}$ of type II we have $\gamma_{L_n^{(2)}}(v_k) = (n^3 - 2n^2 - 3n + 4)/4 + k$ for all k = 1, 2, ..., n.

PROOF. We first show that $\gamma_{L_n^{(2)}}(v_k) \geq (n^3 - 2n^2 - 3n + 4)/4 + k$ for all $k = 1, 2, \ldots, n$. Since the red path of length (n+1)/2 in $L_n^{(2)}$ is the path $v_{(n-1)/2} \rightarrow v_{(n-3)/2} \rightarrow \cdots \rightarrow v_1 \rightarrow v_n \rightarrow v_{n-1}$, we set $x^* = v_{(n-1)/2}$ and $y^* = v_{n-1}$. We split the proof into three cases.

Case 1: $1 \le k \le (n-1)/2$

Taking $y^* = v_{n-1}$, then there is a unique path $p_{k,n-1}$ from v_k to v_{n-1} . This path is a (k+1, 0)-path. Using this path and the definition of u_0 in equation (1) we have

$$u_0 = (k+1)(n-1)/2 \tag{13}$$

Taking $x^* = v_{(n-1)/2}$, there are two paths $p_{k,(n-1)/2}$ from v_k to $v_{(n-1)/2}$. They are a (k, (n-3)/2)-path and a (k+1, (n-1)/2)-path. Using the (k, (n-3)/2)path and the definition of v_0 in equation (2) we have $v_0 = (n-3)(n-1-2k)/4$. Using the (k+1, (n-1)/2)-path and the definition of v_0 in equation (2) we have $v_0 = (n-3)(n-1-2k)/4 + 1$. Hence, we conclude that

$$v_0 = (n-3)(n-1-2k)/4.$$
(14)

By Theorem 3.2, equations (13) and (14) we conclude that

$$\begin{bmatrix} s \\ t \end{bmatrix} \ge M \begin{bmatrix} (k+1)(n-1)/2 \\ (n-3)(n-1-2k)/4 \end{bmatrix} = \begin{bmatrix} (n^3 - n^2 - 5n + 5)/8 + k \\ (n^3 - 3n^2 - n + 3)/8 \end{bmatrix}.$$
 (15)

From (15) we conclude that

$$s + t = \gamma_{L_n^{(2)}}(v_k) \ge (n^3 - 2n^2 - 3n + 4)/4 + k \tag{16}$$

for all $k = 1, 2, \dots, (n-1)/2$.

Case 2: $(n+1)/2 \le k \le n-1$

Taking $y^* = v_{n-1}$, there is a unique path $p_{k,n-1}$ from v_k to v_{n-1} which is a ((n + 1)/2, k - (n - 1)/2)-path. Using this path and the definition of u_0 in equation (1) we have

$$u_0 = (n^2 - 1)/2 - k(n+1)/2.$$
(17)

Taking $x^* = v_{(n-1)/2}$, there is a unique path $p_{k,(n-1)/2}$ from v_k to $v_{(n-1)/2}$. This path is a (0, k - (n-1)/2)-path. Using this path and the definition of v_0 in equation (2), we have

$$v_0 = k(n-1)/2 - (n-1)^2/4.$$
 (18)

Equations (17), (18) and Theorem 3.2 imply that

$$\gamma_{L^{(2)}}(v_k) \ge \ell(C_1)u_0 + \ell(C_2)v_0 = (n^3 - 2n^2 - 3n + 4)/4 + k \tag{19}$$

for all $k = (n+1)/2, (n+3)/2, \dots, n-1$.

Case 3: k = n

There is a (1,0)-path $p_{k,n-1}$ from v_k to v_{n-1} . Using this path and the definition of u_0 in equation (1) we have $u_0 = (n-1)/2$. There is a (1, (n-1)/2)-path $p_{k,(n-1)/2}$ from v_k to $v_{(n-1)/2}$. Using this path and the definition of v_0 in equation (2) we find that $v_0 = (n-1)^2/4 - (n-3)/2$. Theorem 3.2 implies that

$$\gamma_{L_n^{(2)}}(v_k) \geq \ell(C_1)u_0 + \ell(C_2)v_0 = (n^3 - 2n^2 - 3n + 4)/4 + n$$

= $(n^3 - 2n^2 - 3n + 4)/4 + k$ (20)

for k = n.

Now from (16), (19), and (20) we conclude that

$$\gamma_{L^{(2)}}(v_k) \ge (n^3 - 2n^2 - 3n + 4)/4 + k \tag{21}$$

for all k = 1, 2, ..., n.

We next show the upper bound, that is $\gamma_{L_n^{(2)}}(v_k) \leq (n^3 - 2n^2 - 3n + 4)/4 + k$ for all $k = 1, 2, \ldots, n$. We first show that $\gamma_{L_n^{(2)}}(v_1) = (n^3 - 2n^2 - 3n + 4)/4 + 1$ and then we use Proposition 3.4 in order to determine the upper bound for exponents of other vertices. From (16) it is known that $\gamma_{L_n^{(2)}}(v_1) \geq (n^3 - 2n^2 - 3n + 4)/4 + 1$. Thus, it remains to show that $\gamma_{L_n^{(2)}}(v_1) \leq (n^3 - 2n^2 - 3n + 4)/4 + 1$. By considering (16) we show that for each $i = 1, 2, \ldots, n$ there is a walk from v_1 to v_i consisting of $(n^3 - n^2 - 5n + 13)/8$ red arcs and $(n^3 - 3n^2 - n + 3)/8$ blue arcs.

Let p_{1i} be a path form v_1 to v_i , i = 1, 2, ..., n. Notice that the system

$$M\begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} r(p_{1i})\\ b(p_{1i}) \end{bmatrix} = \begin{bmatrix} (n^3 - n^2 - 5n + 13)/8\\ (n^3 - 3n^2 - n + 3)/8 \end{bmatrix}$$
(22)

has integer solution

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b(p_{1,i}) + (2 + b(p_{1,i}) - r(p_{1,i}))(n-1)/2 \\ (n-3)[n-3 + 2r(p_{1,i})]/4 - b(p_{1,i})(n-1)/2 \end{bmatrix}.$$

If i = 1, we choose $r(p_{1,1}) = b(p_{1,1}) = 0$. This implies $x_1 = n - 1 > 0$ and $x_2 = (n-3)^2/4 > 0$. Since for every i = 2, 3, ..., n there is a path p_{1i} from v_1 to v_i with $b(p_{1i}) - r(p_{1i}) \ge -1$, we have $x_1 = b(p_{1,i}) + [2+b(p_{1,i}) - r(p_{1,i})](n-1)/2 \ge 0$. Notice also that for any i = 2, 3, ..., n there is a path p_{1i} from v_1 to v_i with $b(p_{1i}) \le (n-3)/2$ and every such path p_{1i} has $r(p_{1i}) \ge 1$. Hence $x_2 = (n-3)[n-3+2r(p_{1,i})]/4 - b(p_{1,i})(n-1)/2 \ge 0$. Therefore the system (22) has a nonnegative integer solution. Since v_1 lies on both cycles, Proposition 3.3 implies that

$$\gamma_{L_n^{(2)}}(v_1) \le (n^3 - 2n^2 - 3n + 4)/4 + 1.$$
(23)

Now combining (16) and (23) we find that $\gamma_{L_n^{(2)}}(v_1) = (n^3 - 2n^2 - 3n + 4)/4 + 1$. Since for any $k = 1, 2, \ldots, n$ we have $d(v_k, v_1) = k - 1$, by Proposition 3.4 we have

$$\gamma_{L_n^{(2)}}(v_k) \le (n^3 - 2n^2 - 3n + 4)/4 + k \tag{24}$$

for all k = 1, 2, ..., n.

Finally, combining (21) and (24) we conclude that $\gamma_{L_n^{(2)}}(v_k) = (n^3 - 2n^2 - 3n + 4)/4 + k$ for all k = 1, 2, ..., n.

Lemma 4.3. For the two-colored digraph $L_n^{(2)}$ of type III we have $\gamma_{L_n^{(2)}}(v_k) = (n^3 - 2n^2 - 3n)/4 + k$ for all k = 1, 2, ..., n.

PROOF. We first show that $\gamma_{L_n^{(2)}}(v_k) \ge (n^3 - 2n^2 - 3n)/4 + k$ for all $k = 1, 2, \ldots, n$. Since the red path of length (n + 1)/2 is the path $v_{(n+1)/2} \to v_{(n-1)/2} \to \cdots \to v_1 \to v_n$, we set $x^* = v_{(n+1)/2}$ and $y^* = v_n$. We split the proof into two cases.

Case 1: $1 \le k \le (n+1)/2$

Considering the (k, 0)-path from v_k to v_n and the definition of u_0 in equation (1) we have

$$u_0 = k(n-1)/2. (25)$$

We note that there are two paths from v_k to $v_{(n+1)/2}$. They are a (k - 1, (n-3)/2)-path and a (k, (n-1)/2)-path. Using the (k - 1, (n-3)/2)-path and the definition of v_0 in equation (2) we have that $v_0 = (n-3)(n-2k+1)/4$. Using the (k, (n-1)/2)-path and the definition of v_0 in equation (2) we have $v_0 = (n-3)(n-2k+1)/4 + 1$. Hence, we conclude that

$$v_0 = (n-3)(n-2k+1)/4.$$
(26)

Now by considering Theorem 3.2, equation (25) and equation (26) we have

$$\begin{bmatrix} s \\ t \end{bmatrix} \ge M \begin{bmatrix} (n-1)/2 \\ (n-3)(n-2k+1)/4 \end{bmatrix} = \begin{bmatrix} (n^3 - n^2 - 5n - 3)/8 + k \\ (n^3 - 3n^2 - n + 3)/8 \end{bmatrix}.$$
 (27)

Thus from (27) we conclude that

$$\gamma_{L_n^{(2)}}(v_k) \ge (n^3 - 2n^2 - 3n)/4 + k \tag{28}$$

for all $k = 1, 2, \dots, (n+1)/2$.

Case 2: $(n+3)/2 \le k \le n$

Considering the ((n+1)/2, k-(n+1)/2)-path from v_k to v_n and the definition of u_0 in equation (1) we have $u_0 = (n+1)(n-k)/2$. Considering the (0, k-(n+1)/2)path from v_k to $v_{(n+1)/2}$ and the definition of v_0 in equation (2) we have $v_0 = (n-1)(2k-n-1)/4$. By Theorem 3.2, we have

$$\gamma_{L_n^{(2)}}(v_k) \ge \ell(C_1)u_0 + \ell(C_2)v_0 = (n^2 - 2n^2 - 3n)/4 + k \tag{29}$$

for all $k = (n+3)/2, (n+5)/2, \dots, n$.

Now from (28) and (29) we conclude that

$$\gamma_{L_n^{(2)}}(v_k) \ge (n^3 - 2n^2 - 3n)/4 + k \tag{30}$$

for all k = 1, 2, ..., n.

We next show that $\gamma_{L_n^{(2)}}(v_k) \leq (n^3 - 2n^2 - 3n)/4 + k$ for all $k = 1, 2, \ldots, n$. For this purpose we first show that $\gamma_{L_n^{(2)}}(v_1) = (n^3 - 2n^2 - 3n)/4 + 1$ and then we use Proposition 3.4 in order to get the upper bounds for $\gamma_{L_n^{(2)}}(v_k)$ for $k = 2, 3, \ldots, n$. From (30) it is inferred that $\gamma_{L_n^{(2)}}(v_1) \geq (n^3 - 2n^2 - 3n)/4 + 1$. It remains to show that $\gamma_{L_n^{(2)}}(v_1) \leq (n^3 - 2n^2 - 3n)/4 + 1$.

By considering (27) we show that for each vertex v_i , i = 1, 2, ..., n, there is a walk from v_1 to v_i consisting of $(n^3 - n^2 - 5n + 5)/8$ red arcs and $(n^3 - 3n^2 - n + 3)/8$ blue arcs. For i = 1, 2, ..., n let $p_{1,i}$ be a path from v_1 to v_i . Consider the system of equations

$$M\begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} r(p_{1,i})\\ b(p_{1,i}) \end{bmatrix} = \begin{bmatrix} (n^3 - n^2 - 5n + 5)/8\\ (n^3 - 3n^2 - n + 3)/8 \end{bmatrix}.$$
 (31)

The solution to the system (31) is the integer vector

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b(p_{1,i}) + (1+b(p_{1,i})-r(p_{1,i}))(n-1)/2 \\ (n-3)(n-1)/4 + r(p_{1,i})(n-3)/2 - b(p_{1,i})(n-1)/2 \end{bmatrix}$$

If i = 1, we can choose $r(p_{1,1}) = b(p_{1,1}) = 0$. This implies $x_1 = (n-1)/2 > 0$ and $x_2 = (n^2 - 4n + 3)/4 > 0$. Notice that for each $i = 2, 3, \ldots, n$ there is a path p_{1i} from v_1 to v_i with $b(p_{1i}) \leq (n-3)/2$. Hence, $x_2 \geq 0$. Moreover, there is a path from v_1 to v_i with $1 + b(p_{1i}) - r(p_{i1}) \geq 0$. Hence we have $x_1 \geq 0$. These imply that the system (31) has a nonnegative integer solution. Since the vertex v_1 lies on both cycles, by Proposition 3.3 we conclude that $\gamma_{L_n^{(2)}}(v_1) \leq (n^3 - 2n^2 - 3n)/4 + 1$. Since for each vertex $v_k, k = 2, 3, \ldots, n, d(v_k, v_1) = k - 1$, Proposition 3.4 guarantees that

$$\gamma_{L^{(2)}}(v_k) \le (n^3 - 2n^2 - 3n)/4 + k \tag{32}$$

for all k = 1, 2, ..., n.

Now combining (30) and (32) we conclude that $\gamma_{L_n^{(2)}}(v_k) = (n^3 - 2n^2 - 3n)/4 + k$ for all $k = 1, 2, \ldots, n$.

Lemma 4.4. For the two-colored digraph $L_n^{(2)}$ of type IV we have $\gamma_{L_n^{(2)}}(v_k) = (n^3 - 2n^2 - n + 6)/4 + k$ for all k = 1, 2, ..., n.

PROOF. Since the red path of length (n+1)/2 is the path $v_{n-1} \rightarrow v_{n-2} \rightarrow \cdots \rightarrow v_{(n-3)/2}$, we set $x^* = v_{n-1}$ and $y^* = v_{(n-3)/2}$. We split the proof into three cases depending on the position of v_k .

Case 1: $1 \le k \le (n-3)/2$

There are two paths from v_k to $v_{(n-3)/2}$. They are a ((n-1)/2, k)-path and a ((n+1)/2, k+1)-path. Using the ((n-1)/2, k)-path we find from the definition of u_0 in equation (1) that $u_0 = (n-1)^2/4 - k(n+1)/2$. Using the ((n+1)/2, k+1)-path we find from the definition of u_0 in equation (1) that $u_0 = (n-1)^2/4 - k(n+1)/2 - 1$. Hence we choose

$$u_0 = (n-1)^2/4 - k(n+1)/2 - 1 = (n^2 - 1)/4 - (k+1)(n+1)/2.$$
 (33)

We note that there is a unique path $p_{k,n-1}$ from v_k to v_{n-1} which is a (0, k+1)path. Using this path we find from the definition of v_0 in equation (2) that

$$v_0 = (k+1)(n-1)/2 \tag{34}$$

Theorem 3.2, equation (33) and equation (34) imply that

$$\begin{bmatrix} s \\ t \end{bmatrix} \ge M \begin{bmatrix} u_0 \\ v_0 \end{bmatrix} = \begin{bmatrix} (n^3 - n^2 - n + 1)/8 \\ (n^3 - 3n^2 - n + 11)/8 + k \end{bmatrix}.$$
 (35)

From (35) we conclude that

$$\gamma_{L^{(2)}}(v_k) \ge (n^3 - 2n^2 - n + 6)/4 + k \tag{36}$$

for all $k = 1, 2, \dots, (n-3)/2$.

Case 2: $(n-1)/2 \le k \le n-1$

There is a unique $p_{k,(n-3)/2}$ -path from v_k to $v_{(n-3)/2}$ which is a (k - (n-3)/2, 0)-path. Using this path, from the definition of u_0 in equation (1) we find that $u_0 = k(n-1)/2 - (n-1)(n-3)/4$. There is a unique path $p_{k,n-1}$ from v_k to v_{n-1}

which is a (k - (n-3)/2, (n-1)/2)-path. Using this path, from the definition of v_0 in equation (2) we find that $v_0 = (n-1)^2/4 + (n-3)^2/4 - k(n-3)/2$. Theorem 3.2 implies

$$\gamma_{L_n^{(2)}}(v_k) \geq \ell(C_1)u_0 + \ell(C_2)v_0$$

= $(n-2)(k(n-1)/2 - (n-1)(n-3)/4)$
+ $n[(n-1)^2/4 + (n-3)^2/4 - k(n-3)/2]$
= $(n^3 - 2n^2 - n + 6)/4 + k$ (37)

for all $k = (n-1)/2, (n+1)/2, \dots, n-1$.

Case 3: k = n

There is a unique path from v_k to $v_{(n-1)/2}$ which is a ((n+1)/2, 1)-path. Using this path we find from the definition of u_0 in equation (1) that $u_0 = (n^2-1)/4 - (n+1)/2$. There is a unique path $p_{k,n-1}$ from v_k to v_{n-1} which is a (0, 1)-path. Using this path we find from the definition of v_0 in equation (2) that $v_0 = (n-1)/2$. Theorem 3.2 implies

$$\begin{bmatrix} s \\ t \end{bmatrix} \ge M \begin{bmatrix} u_0 \\ v_0 \end{bmatrix} = \begin{bmatrix} (n^3 - n^2 - n + 1)/8 \\ (n^3 - 3n^2 - n + 11)/8 \end{bmatrix}$$

and hence $\gamma_{L_n^{(2)}}(v_k) \ge (n^3 - 2n^2 - 5n + 6)/4 + n$. We note that for the (0, 1)-path from v_n to v_{n-1} , the system

$$M\begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} 0\\ 1 \end{bmatrix} = \begin{bmatrix} (n^3 - n^2 - n + 1)/8\\ (n^3 - 3n^2 - n + 11)/8 \end{bmatrix}$$

has nonnegative integer solution $x_1 = (n^2 - 1)/4$ and $x_2 = 0$. This implies there is no walk from v_n to v_{n-1} with composition $\begin{bmatrix} (n^3 - n^2 - n + 1)/8 \\ (n^3 - 3n^2 - n + 11)/8 \end{bmatrix}$. Hence $\gamma_{L_n^{(2)}}(v_n) > (n^3 - 2n^2 - 5n + 6)/4 + n$. Notice that the shortest walk from v_n to v_{n-1} with at least $(n^3 - n^2 - n + 1)/8$ red arcs and $(n^3 - 3n^2 - n + 11)/8$ blue arcs is the walk that starts at v_n , moves to v_{n-2} and then moves $(n^2 - 1)/4$ times around the cycle C_1 and back at v_{n-2} , finally moves to v_{n-1} . The composition of this walk is $\begin{bmatrix} (n^3 - n^2 + 3n + 5)/8 \\ (n^3 - 3n^2 + 3n + 7)/8 \end{bmatrix}$. Thus we now have

$$\gamma_{L_n^{(2)}}(v_n) \ge (n^3 - 2n^2 + 3n + 6)/4 = (n^3 - 2n^2 - n + 6)/4 + n.$$
 (38)

From (36), (37) and (38) we conclude that

$$\gamma_{L_n^{(2)}}(v_k) \ge (n^3 - 2n^2 - n + 6)/4 + k \tag{39}$$

for all k = 1, 2, ..., n.

We next show $\gamma_{L_n^{(2)}}(v_k) \leq (n^3 - 2n^2 - n + 6) + k$ by first showing that $\gamma_{L_n^{(2)}}(v_1) = (n^3 - 2n^2 - n + 6)/4 + 1$, and then use Proposition 3.4 to get upper bound for exponent of the vertex $v_k, k = 2, 3, \ldots, n$. From (36) we know that for $k = 1, \gamma_{L_n^{(2)}}(v_1) \geq (n^3 - 2n^2 - n + 6)/4 + 1$ and from (35) we know that this bound

is obtained by walks with composition $\begin{bmatrix} (n^3 - n^2 - n + 1)/8 \\ (n^3 - 3n^2 - n + 19)/8 \end{bmatrix}$. It remains to show that $\gamma_{L_n^{(2)}}(v_1) \leq (n^3 - 2n^2 - n + 6)/4 + 1$. For each $i = 1, 2, \ldots, k$ we show that there is an (s, t)-walk $w_{1,i}$ from v_1 to v_i with composition

$$\begin{bmatrix} r(w_{1,i}) \\ b(w_{1,i}) \end{bmatrix} = \begin{bmatrix} (n^3 - n^2 - n + 1)/8 \\ (n^3 - 3n^2 - n + 19)/8 \end{bmatrix}$$

For any vertex v_i , i = 1, 2, 3, ..., n let p_{1i} be a path from v_1 to v_i . The system

$$M\begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} r(p_{1i})\\ b(p_{1i}) \end{bmatrix} = \begin{bmatrix} (n^3 - n^2 - n + 1)/8\\ (n^3 - 3n^2 - n + 19)/8 \end{bmatrix}$$
(40)

has integer solution

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} r(p_{1,i}) + ((n-5)/2 + b(p_{1,i}) - r(p_{1,i}))(n+1)/2 \\ (2 - b(p_{1,i}))(n-1)/2 + r(p_{1,i})(n-3)/2 \end{bmatrix}.$$

If i = 1, we can choose $r(p_{1,1}) = b(p_{1,1}) = 0$. This implies $x_1 = (n^2 - 4n - 5)/4 > 0$ and $x_2 = n - 1 > 0$. We note that for any vertex $v_i, i = 2, 3, \ldots, n$ there is a path p_{1i} from v_1 to v_i with $2 \le b(p_{1i}) \le (n-3)/2$. Moreover, if $3 \le b(p_{1i}) \le (n-3)/2$, then $r(p_{1i}) = (n-1)/2$. Hence $x_2 \ge 0$. Notice also that for any vertex $v_i, i = 2, 3, \ldots, n$ we can find a path p_{1i} with $b(p_{1i}) - r(p_{1i}) \ge -(n-5)/2$. Hence $x_1 \ge 0$. Hence the system (40) has a nonnegative integer solution. Since the vertex v_1 lies on both cycles, Proposition 3.3 guarantees that $\gamma_{L_n^{(2)}}(v_1) \le (n^3 - 2n^2 - n + 6)/4 + 1$. By considering equation (39) we conclude that $\gamma_{L_n^{(2)}}(v_1) = (n^3 - 2n^2 - n + 6)/4 + 1$. Since for each $k = 2, 3, \ldots, n$ we have $d(v_k, v_1) = k - 1$, Proposition 3.4 implies that

$$\gamma_{L_n^{(2)}}(v_k) \le (n^3 - 2n^2 - n + 6)/4 + k \tag{41}$$

for k = 1, 2, ..., n.

Combining (39) and (41) we conclude that $\gamma(v_k) = (n^3 - 2n^2 - n + 6) + k$ for all $k = 1, 2, \ldots, n$.

Theorem 4.5. Let $L_n^{(2)}$ be a primitive two-colored digraph on $n \ge 5$ vertices whose underlying digraph is the digraph L_n in Figure 1. If $\exp(L_n^{(2)}) = (n^3 - 2n^2 + 1)/2$, then $(n^3 - 2n^2 - 3n + 4)/4 \le \gamma_{L_n^{(2)}}(v_k) \le (n^3 - 2n^2 + 3n + 6)/4$ for all k = 1, 2, ..., n

PROOF. By Lemma 4.1 through Lemma 4.4 for each k = 1, 2, ..., n we have that $(n^3 - 2n^2 - 3n)/4 + k \le \gamma_{L_n^{(2)}}(v_k) \le (n^3 - 2n^2 - n + 6)/4 + k$. This implies for any k = 1, 2, ..., n we have $(n^3 - 2n^2 - 3n + 4)/4 \le \gamma_{L_n^{(2)}}(v_k) \le (n^3 - 2n^2 + 3n + 6)/4$.

We now discuss vertex exponents for the two-colored digraphs $L_n^{(2)}$ whose exponents is $2n^2 - 6n + 2$.

Theorem 4.6. Let $L_n^{(2)}$ be a primitive two-colored digraph on $n \ge 5$ vertices whose underlying digraph is the digraph L_n in Figure 1. If $\exp(L_n^{(2)}) = 2n^2 - 6n + 2$, then for any vertex $v_k, k = 1, 2, ..., n$ we have $(n^2 - 4n + 5) \le \gamma_{L_n^{(2)}}(v_k) \le (n^2 - 2n - 1)$. PROOF. Since $\exp(L_n^{(2)}) = 2n^2 - 6n + 2$, Corollary 2.4 implies that $L_n^{(2)}$ has a unique (2,0)-path that lies on both cycles. This implies the (2,0)-path of $L_n^{(2)}$ is of the form $a \to a-1 \to a-2$ for some $3 \le a \le n-2$. We show that $\gamma_{L_n^{(2)}}(v_k) = n^2 - 3n + k + 2 - a$ for all $k = 1, 2, \ldots, n$. We first show that $\gamma_{D^{(2)}}(v_k) \ge n^2 - 3n + k + 2 - a$ for all $k = 1, 2, \ldots, n$. We use path from v_k to v_{a-2} to determine the value of the quantity u_0 in equation (1) and we use path from v_k to v_a to determine the value of the quantity v_0 in equation (2). We split the proof into three cases depending on the position of the vertex v_k .

Case $1: 1 \le k \le a-2$

We note that there are two paths from v_k to v_{a-2} . They are a $((n-1)/2 - \lfloor (a-2-k)/2 \rfloor, (n-3)/2 - \lceil (a-2-k)/2 \rceil)$ -path and a $((n+1)/2 - \lfloor (a-2-k)/2 \rfloor, (n-1)/2 - \lceil (a-2-k)/2 \rceil)$ -path. Using the first path and the definition of u_0 in equation (1) we have $u_0 = 1 + \frac{n+1}{2} \lceil \frac{a-2-k}{2} \rceil - \frac{n-1}{2} \lfloor \frac{a-2-k}{2} \rceil$. Using the second path and the definition of u_0 in equation (1) we have $u_0 = \frac{n+1}{2} \lceil \frac{a-2-k}{2} \rceil - \frac{n-1}{2} \lfloor \frac{a-2-k}{2} \rceil$. Hence we conclude that

$$u_0 = (n+1) \lceil (a-2-k)/2 \rceil / 2 - (n-1) \lfloor (a-2-k)/2 \rfloor / 2.$$
(42)

There are two paths from v_k to v_a . They are a $((n-5)/2 - \lfloor (a-2-k)/2 \rfloor, (n-3)/2 - \lceil (a-2-k) \rceil)$ -path and a $((n-3)/2 - \lfloor (a-2-k)/2 \rfloor, (n-1)/2 - \lceil (a-2-k) \rceil)$ -path. Using the first path and the definition of v_0 in equation (2) we have $v_0 = n - 3 - \frac{n-1}{2} \left\lceil \frac{a-2-k}{2} \right\rceil + \frac{n-3}{2} \left\lfloor \frac{a-2-k}{2} \right\rfloor$. Using the second path and the definition of v_0 in equation (2) we have $v_0 = n - 2 - \frac{n-1}{2} \left\lceil \frac{a-2-k}{2} \right\rceil + \frac{n-3}{2} \left\lfloor \frac{a-2-k}{2} \right\rfloor$. Hence we conclude that

$$v_0 = n - 3 - (n - 1) \lceil (a - 2 - k)/2 \rceil / 2 + (n - 3) \lfloor (a - 2 - k)/2 \rfloor.$$
(43)

Now Theorem 3.2, equation (42) and equation (43) imply that

$$\begin{bmatrix} s \\ t \end{bmatrix} \geq M \begin{bmatrix} u_0 \\ v_0 \end{bmatrix}$$

$$= \begin{bmatrix} (n-1)/2 & (n+1)/2 \\ (n-3)/2 & (n-1)/2 \end{bmatrix} \begin{bmatrix} \frac{n+1}{2} \left\lceil \frac{a-2-k}{2} \right\rceil - \frac{n-1}{2} \left\lfloor \frac{a-2-k}{2} \right\rfloor \\ n-3 - \frac{n-1}{2} \left\lceil \frac{a-2-k}{2} \right\rceil + \frac{n-3}{2} \left\lfloor \frac{a-2-k}{2} \right\rfloor \end{bmatrix}$$

$$= \begin{bmatrix} (n^2 - 2n - 3)/2 - \lfloor (a - k - 2)/2 \rfloor \\ (n^3 - 4n + 3)/2 - \lceil (a - 2 - k)/2 \rceil \end{bmatrix}$$

$$(44)$$

Hence we now have

$$\gamma_{D^{(2)}}(v_k) \geq n^2 - 3n - (\lfloor (a - 2 - k)/2 \rfloor + \lceil (a - 2 - k)/2 \rceil) = n^2 - 3n + k + 2 - a$$
(45)

for $k = 1, 2, \dots, a - 2$.

 $Case \ 2: k = a - 1, a$

There is a unique path from v_k to v_{a-2} and it is a (k-a+2, 0)-path. Using this path and the definition of u_0 in equation (1) we have that

$$u_0 = (n-1)(k-a+2)/2.$$
(46)

There are two paths from v_k to v_a . They are a (k-a+2+(n-5)/2, (n-3)/2)-path and a (k+2-a+(n-3)/2, (n-1)/2)-path. Using the first path and the definition of v_0 in equation (2) we have that $v_0 = n-3-(n-3)(k+2-a)/2$. Using the second path and the definition of v_0 in equation (2) we have that $v_0 = n-2-(n-3)(k+2-a)/2$. Hence we conclude that

$$v_0 = n - 2 - (n - 3)(k + 2 - a)/2.$$
(47)

Now Theorem 3.2, equation (46) and equation (47) imply that

$$\gamma_{D^{(2)}}(v_k) \geq \ell(C_1)u_0 + \ell(C_2)v_0$$

= $(n-2)(n-1)(k-a+2)/2 + n[(n-3)-(n-3)(k-a+2)/2]$
= $n^2 - 3n + k + 2 - a$ (48)

for all k = a - 1, a.

Case
$$3: a+1 \le k \le n$$

There is a unique path from v_k to v_{a-2} which is $(\lfloor (k-a)/2 \rfloor + 2, \lceil (k-a)/2 \rceil)$ -path. Using this path and the definition of u_0 in equation (1) we have $u_0 = \left(\frac{n-1}{2}\right)\left(\lfloor \frac{k-a}{2} \rfloor + 2\right) - \frac{n+1}{2} \lceil \frac{k-a}{2} \rceil$. There is a unique path from v_k to v_a which is a $(\lfloor (k-a)/2 \rfloor, \lceil (k-a)/2 \rceil)$ -path. Using this path and the definition of v_0 in equation (2) we have that $v_0 = \frac{n-1}{2} \lfloor \frac{k-a}{2} \rfloor - \frac{n-3}{2} \lceil \frac{k-a}{2} \rceil$. By Theorem 3.2 we have

$$\begin{aligned} \gamma_{L_n^{(2)}}(v_k) &\geq \ell(C_1)u_0 + \ell(C_2)v_0 \\ &= (n-2)\left(\frac{n-1}{2}\left(\left\lfloor\frac{k-a}{2}\right\rfloor + 2\right) - \frac{n+1}{2}\left\lceil\frac{k-a}{2}\right\rceil\right) \\ &+ n\left(\frac{n-1}{2}\left\lfloor\frac{k-a}{2}\right\rfloor - \frac{n+1}{2}\left\lceil\frac{k-a}{2}\right\rceil\right) \end{aligned}$$

Hence

$$= n^{3} - 3n + 2 + \lfloor (k-a)/2 \rfloor + \lceil (k-a)/2 \rceil$$

= $n^{2} - 3n + k + 2 - a$ (49)

for $a+1 \leq k \leq n$.

From equation (45), equation (48) and equation (49) we conclude that

$$\gamma_{L_{n}^{(2)}}(v_{k}) \ge n^{3} - 3n + k + 2 - a \tag{50}$$

for all k = 1, 2, ..., n.

We now show that $\gamma_{L_n^{(2)}}(v_k) \leq n^3 - 3n + k + 2 - a$ for k = 1, 2, ..., n. We first show that $\gamma_{L_n^{(2)}}(v_1) \leq n^3 - 3n + 3 - a$ and then we use Proposition 3.4 to show that $\gamma_{L_n^{(2)}} \leq n^2 - 3n + k + 2 - a$ for k = 2, 3, ..., n. By considering equation (44) it suffices to show that for each vertex $v_i, i = 1, 2, ..., n$ there is a walk $w_{1,i}$ from v_1 to v_i with composition

$$\begin{bmatrix} r(w_{1,i}) \\ b(w_{1,i}) \end{bmatrix} = \begin{bmatrix} (n^2 - 2n - 3)/2 - \lfloor (a - 3)/2 \rfloor \\ (n^3 - 4n + 3)/2 - \lceil (a - 3)/2 \rceil \end{bmatrix}.$$
 (51)

For each i = 1, 2, ..., n, let $p_{1,i}$ be a path from v_1 to v_i . We note that the solution to the system

$$M\begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} r(p_{1,i})\\ b(p_{1,i}) \end{bmatrix} = \begin{bmatrix} (n^2 - 2n - 3)/2 - \lfloor (a - 3)/2 \rfloor\\ (n^3 - 4n + 3)/2 - \lceil (a - 3)/2 \rceil \end{bmatrix}$$
(52)

is the integer vector

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \lceil (a-3)/2 \rceil (n+1)/2 - \lfloor (a-3)/2 \rfloor (n-1)/2 \\ n-3 + \lfloor (a-3)/2 \rfloor (n-3)/2 - \lceil (a-3)/2 \rceil (n-1)/2 \end{bmatrix} \\ + \begin{bmatrix} b(p_{1,i}) + (b(p_{1,i}) - r(p_{1,i}))(n-1)/2 \\ (r(p_{1,i}) - b(p_{1,i}))(n-3)/2 - b(p_{1,i}) \end{bmatrix}.$$
(53)

We show that $x_1 \ge 0$ and $x_2 \ge 0$. We consider two cases when a is even and a is odd.

If a is even, then $\lceil (a-3)/2 \rceil = (a-2)/2$ and $\lfloor (a-3)/2 \rfloor = (a-4)/2$. This implies

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} (n-1)/2 + (a-2)/2 + b(p_{1,i}) - [r(p_{1,i}) - b(p_{1,i})](n-1)/2 \\ (n-a-1)/2 + [r(p_{1,i}) - b(p_{1,i})](n-3)/2 - b(p_{1,i}) \end{bmatrix}.$$

Since a is even, we have that $0 \le r(p_{1,i}) - b(p_{1,i}) \le 2$. If $r(p_{1,i}) - b(p_{1,i}) = 0$, then $b(p_{1,i}) \le (n-1-a)/2$. This implies $x_1 > 0$ and $x_2 \ge 0$. If $r(p_{1,i}) - b(p_{1,i}) = 1$, there is a path $p_{1,i}$ with $b(p_{1,i}) \le (n-3)/2$. This implies $x_1 > 0$ and $x_2 > 0$. If $r(p_{1,i}) - b(p_{1,i}) = 2$, then $b(p_{1,i}) \ge (n+1-a)/2$. This implies $x_1 \ge 0$ and $x_2 > 0$. Therefore for each vertex $v_i, i = 1, 2, \ldots, n$, there is a path $p_{1,i}$ from v_1 to v_i such that the system (52) has nonnegative integer solution $x_1 \ge 0$ and $x_2 \ge 0$.

If a is odd, then $\lceil (a-3)/2 \rceil = \lfloor (a-3)/2 \rfloor = (a-3)/2$. This implies

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} (a-3)/2 + b(p_{1,i}) - [r(p_{1,i}) - b(p_{1,i})](n-1)/2 \\ n-3 - (a-3)/2 + [r(p_{1,i}) - b(p_{1,i})](n-3)/2 - b(p_{1,i}) \end{bmatrix}$$

Since a is odd, for each vertex $v_i, i = 1, 2, ..., n$ there is a path $p_{1,i}$ with $-1 \leq r(p_{1,i}) - b(p_{1,i}) \leq 1$. If $r(p_{1,i}) - b(p_{1,i}) = -1$, there is a path $p_{1,i}$ with $b(p_{1,i}) \leq (n-a)/2$. This implies $x_1 > 0$ and $x_2 \geq 0$. If $r(p_{1,i}) - b(p_{1,i}) = 0$, there is a path $p_{1,i}$ with $b(p_{1,i}) \leq (n-3)/2$. This implies $x_1 > 0$ and $x_2 > 0$. Finally if $r(p_{1,i}) - b(p_{1,i}) = 1$, there is a path $p_{1,i}$ with $b(p_{1,i}) \geq (n-a+2)/2$. This implies $x_1 \geq 0$ and $x_2 > 0$. Therefore for each vertex $v_i, i = 1, 2, ..., n$, there is a path $p_{1,i}$ from v_1 to v_i such that the system (52) has nonnegative integer solution $x_1 \geq 0$ and $x_2 \geq 0$.

Since the system (52) has a nonnegative integer solution and the vertex v_1 belongs to both cycles, Proposition 3.3 guarantees that $\gamma_{L_n^{(2)}}(v_1) \leq n^2 - 3n + 3 - a$. Combining this with equation (45) we conclude that $\gamma_{L_n^{(2)}}(v_1) = n^2 - 3n + 3 - a$. Since for $k = 2, 3, \ldots, n$ we have $d(v_k, d_1) = k - 1$, Proposition 3.4 implies that

$$\gamma_{L^{(2)}}(v_k) \le n^2 - 3n + k + 2 - a \tag{54}$$

for k = 1, 2, ..., n.

Finally combining equation (50) and equation (54) we conclude that $\gamma_{L_n^{(2)}}(v_k) = n^2 - 3n + k + 2 - a$ for k = 1, 2, ..., n. We note that $3 \le a \le n - 2$. This implies

 $n^2 - 4n + 4 + k \leq \gamma_{L_n^{(2)}}(v_k) \leq n^2 - 3n + k - 1$. Therefore for any $k = 1, 2, \dots, n$ we have $n^2 - 4n + 5 \leq \gamma_{L_n^{(2)}}(v_k) \leq n^2 - 2n - 1$.

References

- Fornasini, E. and Valcher, M. E., "Primitivity positive matrix pairs: algebraic characterization graph theoritic description and 2D systems interpretations", SIAM J. Matrix Anal. Appl. 19 (1998), 71–88
- [2] Gao, Y. and Shao, Y., "Exponents of two-colored digraphs with cycles", *Linear Algebra Appl.* 407 (2005), 263–276
- [3] Gao, Y. and Shao, Y., "Exponents of a class two-colored digraphs", *Linear and Multilinear Algebra* 53 (3) (2005), 175–188
- [4] Gao, Y. and Shao, Y., "Generalized exponents of primitive two-colored digraphs", *Linear Algebra Appl.* 430 (2009), 1550–1565
- [5] Lee, S. G. and Yang, J. M., "Bound for 2-exponents of primitive extremal ministrong digraphs", Commun. Korean. Math. Soc. 20 no. 1 (2005), 51–62
- [6] Huang, F. and Liu, B., "Exponents of a class of two-colored digraphs with two cycles", *Linear Algebra and Appl. 429* (2008), 658–672
- [7] Shader, B. L. and Suwilo, S., "Exponents of nonnegative matrix pairs", *Linear Algebra Appl.* 263 (2003), 275–293
- [8] Suwilo, S., On 2-exponents of 2-digraphs, Ph.D. Dissertation, University of Wyoming, 2001.
- [9] Suwilo, S., "Vertex Exponents of two-colored primitive extremal ministrong digraphs", Global Journal of Technology and Optimization, Vol 2 No 2 (2011), 166–174