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Abstract. Generalized quaternion group (Q4n) is a group of order 4n that is

generated by two elements x and y with the properties x2n = y4 = e and xy = yx−1.

The coprime graph of Q4n, denoted by ΩQ4n
, is a graph with the vertices are

elements of Q4n and the edges are formed by two elements that have coprime order.

The first result of this paper presents that ΩQ4n
is a tripartite graph for n is an

odd prime and ΩQ4n is a star graph for n is a power of 2. The second one presents

the connectivity indices of ΩQ4n . Connectivity indices of a graph is a research area

in mathematics that popularly applied in chemistry. There are six indices that are

presented in this paper, those are first Zagreb index, second Zagreb index, Wiener

index, hyper-Wiener index, Harary index, and Szeged index.

Key words and Phrases: Generalized quaternion group, Zagreb indices, Wiener
indices, Harary index, Szeged index.

1. INTRODUCTION

Graph theory has been widely applied in many fields. One of them is in chem-
istry, which is related to connectivity indices. Connectivity indices are molecular
descriptor which is computed based on the molecular graph of chemical compound.
The molecular graph can be assumed as a graph. There are some kinds of connec-
tivity indices that are interesting to be discussed. Such indices are hyper-Wiener,
Harary, the first Zagreb, the second Zagreb, and Szeged. Some of these indices can
be used to analyze the chemical properties of paraffines [9].

There are many kinds of research relating to graph and group theory since the
properties of a group can be easily seen when a graph represents that group. There
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are some previous results that have been discussed related to connectivity indices
of a graph, especially in mathematics. Some of the results are determining connec-
tivity indices of non-commuting graph of dihedral group (D2n) [1] and generalized
quaternion group (Q4n) [8]. Other than the non-commuting graph, another kind
of graph represents a group, namely a coprime graph. Recently, not many studies
have learned connectivity indices of the graph associated with groups. Moreover,
the quaternion group has similar properties to the dihedral group. Therefore we
are interested in studying the connectivity indices of the coprime graph of Q4n.

2. PRELIMINARIES

In this section we present some definitions that are needed in this study.

Definition 2.1. [11] Let n be a natural number. The generalized quaternion group,
denoted by Q4n, is defined as

Q4n =< x, y|x2n = y4 = e, xy = yx−1 >= {xiyj |0 6 i 6 2n− 1, j = 0, 1}.

Hence the order of Q4n is 4n.

Definition 2.2. [5] Let G be a finite group and g ∈ G. The order of g, denoted
by |g|, is the smallest natural number n such that gn = e, where e is an identity
element of G.

Definition 2.3. [7] Let G be a finite group. The coprime graph of G, denoted by
ΩG, is a graph with vertex set V (ΩG) = G and edge set E(ΩG) =

{
uv| gcd(|u|, |v|) =

1
}

.

Definition 2.4. [2] Let k be a natural number, a graph Ω is a k−partite graph if
its vertex set, V (Ω) can be partitioned into k subsets V1, V2, ..., Vk such that every
edge of Ω joins vertices in two different partite sets. A 2−partite graph is called
bipartite and 3−partite graph is called tripartite.

Definition 2.5. [2] A complete k−partite graph Ω is a k−partite graph that two
vertices are adjacent in Ω if and only if the vertices belong to different partite sets.
If |Vi| = ni for 1 6 i 6 k, then Ω is denoted by Kn1,n2,...,nk

. For complete bipartite
graph K1,n is also called a star graph, denoted by Sn.

Example 2.6. Let V1 = {v1}, V2 = {v2, v3} and V3 = {v4, v5, v6}, then we have
the complete tripartite graph K1,2,3 as follows

Graph K1,2,3
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Definition 2.7. [3] Let Ω be a simple connected graph. The first Zagreb index of
Ω, denoted by M1(Ω), is defined as

M1(Ω) =
∑

v∈V (Ω)

(deg(v))2

where deg(v) is degree of vertex v, i.e. the number of edges that incident to v.

Definition 2.8. [3] Let Ω be a simple connected graph. The second Zagreb index
of Ω, denoted by M2(Ω), is defined as

M2(Ω) =
∑

uv∈E(Ω)

deg(u).deg(v)

where deg(v) is degree of vertex v.

Definition 2.9. [4] Let Ω be a simple connected graph. The Wiener index of Ω,
denoted by W (Ω), is defined as

W (Ω) =
∑

u,v∈V (Ω)

d(u, v)

where d(u, v) is the distance between vertex u and v, i.e. the number of edges in
shortest path connecting u and v.

Definition 2.10. [10] Let Ω be a simple connected graph. The hyper-Wiener index
of Ω, denoted by WW (Ω), is defined as

WW (Ω) =
1

2

W (Ω) +
∑

u,v∈V (Ω)

(d(u, v))2


where d(u, v) is the distance between vertex u and v.

Definition 2.11. [10] Let Ω be a simple connected graph. The Harary index of Ω,
denoted by H(Ω), is defined as

H(Ω) =
∑

u,v∈V (Ω)

1

d(u, v)

where d(u, v) is the distance between vertex u and v.

Definition 2.12. [6] Let Ω be a simple connected graph and e = uv be an edge of
Ω. The Szeged index of Ω, denoted by Sz(Ω), is defined as

Sz(Ω) =
∑

e∈E(Ω)

|N1(e|Ω)|.|N2(e|Ω)|.

where N1(e|Ω) = {w ∈ V (Ω)|d(w, u) < d(w, v)} and

N2(e|Ω) = {w ∈ V (Ω)|d(w, v) < d(w, u)}.

Example 2.13. Let K1,2,3 be a complete tripartite graph (Example 2.6). Then
we have M1(K1,2,3) = 84,M2(K1,2,3) = 157,W (K1,2,3) = 19,WW (K1,2,3) =
23, H(K1,2,3) = 13, and Sz(K1,2,3) = 37.
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3. RESULTS AND DISCUSSIONS

This section consists of two subsections. The first subsection discuss about
the coprime graph of Q4n and the second one discuss about its connectivity indices.

3.1. Coprime Graph of Generalized Quaternion Group. In this subsection,
we determine the coprime graph of Q4n. Since the adjacency of the vertices depends
on the order of elements of Q4n, then firstly we determine the order of elements of
Q4n on the following lemma.

Lemma 3.1. Let Q4n be a generalized quaternion group. Then the order of its
elements are showed as follows

|xiyj | =

{ 2n
gcd(i,2n) , for j = 0

4, for j = 1

where xiyj 6= e and 0 6 i < 2n.

Proof. Let Q4n = {xiyj |0 6 i 6 2n− 1, j = 0, 1}, then there are two cases.

Case 1. The order of elements xiyj for 0 < i < 2n and j = 0.

According to Definition 2.1 we have x2n = e, therefore (xi)
2n

gcd(i,2n) =

(x2n)
i

gcd(i,2n) = e. Suppose that there is m ∈ N and (xi)m = xim = e, then
2n devides im and we have 2n

gcd(i,2n) devides m which means 2n
gcd(i,2n) is the

smallest natural number satisfies (xi)
2n

gcd(i,2n) = e. Thus |xi| = 2n
gcd(i,2n) .

Case 2. The order of elements xiyj for 0 6 i < 2n and j = 1.
a. Let m = 1, clearly (xiy)m = xiy 6= e.
b. Let m = 2, by induction we will show that

(xiy)2 = xi−
⌊

i
2

⌋
y2x
−
(
i−
⌊

i
2

⌋)
6= e.

For i = 1, we have (xy)2 = xy2x−1 = y2 6= e

Assume that for i = k we have (xky)2 = xk−
⌊

k
2

⌋
y2x
−
(
k−
⌊

k
2

⌋)
, then

we have

(xk+1y)2 = (xk+1y)(xk+1y)

= x(xky)xk(xy)

= x(xky)(xky)x−1

= xx

(
k−
⌊

k
2

⌋)
y2x
−
(
k−
⌊

k
2

⌋)
x−1

= x

(
k+1−

⌊
k+1
2

⌋)
y2x
−
(
k+1−

⌊
k+1
2

⌋)
.

c. Let m = 3, by induction we have

(xiy)3 = x

(
i−
⌈

i
2

⌉)
y3x
−
(
i−
⌊

i
2

⌋)
6= e.

The proof is similar to case 2b, hence it is omitted.
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d. Let m = 4, by induction we have

(xiy)4 = x

(
i−
⌈

i
2

⌉)
y4x
−
(
i−
⌈

i
2

⌉)
= x

(
i−
⌈

i
2

⌉)
ex
−
(
i−
⌈

i
2

⌉)
= e.

The proof is similar to case 2b, hence it is omitted.
Thus |xiy| = 4. �

The next result is the shape of the coprime graph of generalized quaternion
group that presented in the following theorem.

Theorem 3.2. Let Q4n be a generalized quaternion group and ΩQ4n
be the coprime

graph of generalized quaternion group. Then

i. ΩQ4n
is a tripartite graph for n is an odd prime

ii. ΩQ4n
is a star graph for n is a power of 2.

Proof. Since |e| = 1 and |xiyj | 6= 1 for i, j 6= 0, then clearly that vertex e is
adjacent to any other vertices of ΩQ4n

.

i. Let S = {x2k|1 6 k 6 n − 1} and T = {xiy, xj |j 6= 2k, 1 6 k 6 n −
1 and 0 6 i 6 2n − 1}. Then the partition of V (ΩQ4n) is {{e}, S, T}.
According to Lemma 3.1, each vertex x2k ∈ S has the same order, i.e. n,
which means any two vertices in S are not adjacent. For vertices in T , we
divide into three groups, those are vertex xn, vertex set x2k+1 for 1 6 k 6
n− 1, and vertex set xiy for 0 6 i 6 2n− 1. Therefore from Lemma 3.1 we
have gcd(|xn|, |x2k+1|) 6= 1, gcd(|xn|, |xiy|) 6= 1, and gcd(|x2k+1|, |xiy|) 6= 1
which means any vertices in T is not adjacent to each other. Since n is an
odd prime, then gcd(|x2k|, |xn|) = 1. Hence S and T cannot be in the same
partition. Thus ΩQ4n

is a tripartite graph.
ii. Let {{e}, V (ΩQ4n

)− {e}} be a partition of V (ΩQ4n
). Since n is a power of

2, then from Lemma 3.1 we have the order of non identity elements in Q4n

are not coprime which means the vertices in V (ΩQ4n
)−{e} are not adjacent

to each other. Since only vertex e that is adjacent to 4n − 1 vertices on
ΩQ4n then ΩQ4n is a complete bipartite graph K1,4n−1, i.e. a star graph
S4n−1.

�

Example 3.3. Let n = 3 and n = 4 = 22, then we have the coprime graph of Q12

and Q16 as follows:

(a) Graph ΩQ12
and (b) Graph ΩQ16
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For n is an odd prime, we redefine the vertex set and edge set of ΩQ4n
to

make easier in determining its connectivity indices.

Let V (ΩQ4n
) = {e} ∪ {xn} ∪ [x2k+1] ∪ [x2k] ∪ [xiy], where

[x2k+1] = {x2k+1|0 6 k 6 n− 1 and 2k + 1 6= n}

[x2k] = {x2k|1 6 k 6 n− 1}
[xiy] = {xiy|0 6 i 6 2n− 1}

and let E(ΩQ4n) = {a} ∪ [b] ∪ [c] ∪ [d] ∪ [f ] ∪ [g], where

a = exn

[b] = {bk = ex2k+1|0 6 k 6 n− 1 and 2k + 1 6= n}

[c] = {ck = ex2k|1 6 k 6 n− 1}
[d] = {di = exiy|0 6 i 6 2n− 1}

[f ] = {fk = xnx2k|1 6 k 6 n− 1}

[g] = {gki = x2kxiy|1 6 k 6 n− 1, 0 6 i 6 2n− 1}

Based on the enumerate above, we can illustrate ΩQ4n
as follows:

Graph ΩQ4n for n is an odd prime.

3.2. Connectivity Indices. The connectivity indices of ΩQ4n
are determined on

the following results.

Theorem 3.4. Let ΩQ4n
be the coprime graph of generalized quaternion group.

The first Zagreb index of ΩQ4n is

M1(ΩQ4n) =
{

6n3 + 21n2 − 11n− 4, for n is an odd prime
4n(4n− 1), for n is a power of 2.

Proof. Let n be an odd prime. Firstly we determine the degree of each vertex of
ΩQ4n

based on Figure 3.1.

(i) Since vertex e is adjacent to any other vertices of ΩQ4n , then deg(e) = 4n−1.
(ii) Since vertex xn is adjacent to all vertices in [x2k] and vertex e, then

deg(xn) = n.
(iii) Since each vertex in [x2k+1] is adjacent to only vertex e, then deg(x2k+1) =

1.
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(iv) Since each vertex in [x2k] is adjacent to all vertices in [xiy], vertex xn and
vertex e, then deg(x2k) = 2n + 2.

(v) Since each vertex in [xiy] is adjacent to all vertices in [x2k] and vertex e,
then deg(xiy) = n.

Therefore

M1(ΩQ4n
) =

∑
v∈V (ΩQ4n

)

(deg(v))2

= (deg(e))2 + (deg(xn))2 +
∑

v∈[x2k+1]

(deg(v))2 +
∑

v∈[x2k]

(deg(v))2 +
∑

v∈[xiy]

(deg(v))2

= (4n− 1)2 + n2 + (n− 1).12 + (n− 1)(2n + 2)2 + 2n.n2

= 6n3 + 21n2 − 11n− 4.

Let n be a power of 2. Since ΩQ4n is a star graph S4n−1, then deg(e) = 4n−1
and deg(v) = 1 for v ∈ V (ΩQ4n

)− {e}. Therefore

M1(ΩQ4n
) =

∑
v∈V (ΩQ4n

)

(deg(v))2

= (deg(e))2 +
∑

v∈V (ΩQ4n
)−{e}

(deg(v))2

= (4n− 1)2 + (4n− 1)

= 4n(4n− 1).

�

Theorem 3.5. Let ΩQ4n
be the coprime graph of generalized quaternion group.

The second Zagreb index of ΩQ4n is

M2(ΩQ4n
) =

{
4n4 + 18n3 − 16n + 3, for n is an odd prime
(4n− 1)2, for n is a power of 2.

Proof. Let n be an odd prime. From Figure 3.1 and proof of Theorem 3.4, we
have

M2(ΩQ4n) =
∑

uv∈E(ΩQ4n
)

deg(u)deg(v)

= deg(e)deg(xn) +
∑

uv∈[b]

deg(u)deg(v) +
∑

uv∈[c]

deg(u)deg(v) +
∑

uv∈[d]

deg(u)deg(v)

+
∑

uv∈[f ]

deg(u)deg(v) +
∑

uv∈[g]

deg(u)deg(v)

= (4n− 1)n + (n− 1)(4n− 1) + (n− 1)(4n− 1)(2n + 2) + 2n(4n− 1)n

+ (n− 1)n(2n + 2) + (n− 1)2n(2n + 2)n

= 4n4 + 18n3 − 16n + 3.
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Let n be a power of 2. Since ΩQ4n
is a star graph S4n−1, then E(ΩQ4n

) =
{ev|v ∈ V (ΩQ4n

)− {e}}. Therefore

M2(ΩQ4n) =
∑

ev∈E(ΩQ4n
)

deg(e)deg(v)

= (4n− 1).(4n− 1).1

= (4n− 1)2.

�

Theorem 3.6. Let ΩQ4n
be the coprime graph of generalized quaternion group.

The Wiener index of ΩQ4n
is

W (ΩQ4n) =
{

14n2 − 7n + 2, for n is an odd prime
(4n− 1)2, for n is a power of 2.

Proof. Let n be an odd prime. From Figure 3.1 we can easily determine the
distance between any two vertices on ΩQ4n

. Therefore

W (ΩQ4n
) =

∑
u,v∈V (ΩQ4n

)

d(u, v)

=
∑

v∈V (ΩQ4n
)−{e}

d(e, v) +
∑

u∈[x2k],v∈[xiy]

d(u, v) +
∑

u∈[x2k+1],v∈{xn}∪[xiy]∪[x2k]

d(u, v)

+
∑

v∈[x2k]

d(xn, v) +
∑

v∈[xiy]

d(xn, v) +
∑

u,v∈[x2k+1]

d(u, v) +
∑

u,v∈[x2k]

d(u, v)

+
∑

u,v∈[xiy]

d(u, v)

= (4n− 1).1 + (n− 1).2n.1 + (n− 1).3n.2 + (n− 1).1 + 2n.2

+

(
n− 1

2

)
.2 +

(
n− 1

2

)
.2 +

(
2n
2

)
.2

= 14n2 − 7n + 2.

Let n be a power of 2. Since ΩQ4n
is a star graph S4n−1, then the distance

between vertex e and any other vertices on ΩQ4n
is one and the distance is two for

any two vertices in V (ΩQ4n
)− {e}. Therefore

W (ΩQ4n) =
∑

v∈V (ΩQ4n
)−{e}

d(e, v) +
∑

u,v∈V (ΩQ4n
)−{e}

d(u, v)

= (4n− 1).1 +

(
4n− 1

2

)
.2

= (4n− 1)2.

�
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Theorem 3.7. Let ΩQ4n
be the coprime graph of generalized quaternion group.

The hyper-Wiener index of ΩQ4n
is

WW (ΩQ4n) =
{

20n2 − 12n + 4, for n is an odd prime
24n2 − 14n + 2, for n is a power of 2.

Proof. Let n be an odd prime. Firstly we determine the sum of square of the
distance between any two vertices of ΩQ4n

as follows∑
u,v∈V (ΩQ4n

)

(d(u, v))2 =
∑

v∈V (ΩQ4n
)−{e}

(d(e, v))2 +
∑

v∈[x2k]

(d(xn, v))2 +
∑

v∈[xiy]

(d(xn, v))2

+
∑

u∈[x2k],v∈[xiy]

(d(u, v))2 +
∑

u∈[x2k+1],v∈{xn}∪[xiy]∪[x2k]

(d(u, v))2

+
∑

u,v∈[x2k+1]

(d(u, v))2 +
∑

u,v∈[x2k]

(d(u, v))2 +
∑

u,v∈[xiy]

(d(u, v))2

= (4n− 1).12 + (n− 1).12 + 2n.22 + (n− 1).2n.12 + (n− 1).3n.22

+

(
n− 1

2

)
.22 +

(
n− 1

2

)
.22 +

(
2n
2

)
.22

= 26n2 − 17n + 6.

Referring Theorem 3.6 we have

WW (ΩQ4n
) =

1

2

W (ΩQ4n
) +

∑
u,v∈V (ΩQ4n

)

(d(u, v))2


=

1

2

(
(14n2 − 7n + 2) + (26n2 − 17n + 6)

)
= 20n2 − 12n + 4.

Let n be a power of 2. According to Theorem 3.6 and its proof, we have

WW (ΩQ4n
) =

1

2

W (ΩQ4n
) +

∑
u,v∈V (ΩQ4n

)

(d(u, v))2


=

1

2

(
(4n− 1)2 + (4n− 1).12 +

(
4n− 1

2

)
.22

)
= 24n2 − 14n + 2.

�

Theorem 3.8. Let ΩQ4n be the coprime graph of generalized quaternion group.
The Harary index of ΩQ4n is

H(ΩQ4n
) =

{ 1
2 (10n2 + n− 2), for n is an odd prime

1
2 (4n− 1)(2n + 1), for n is a power of 2.
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Proof. Since the Harary index is the summation of inverse of distances between
any two vertices of ΩQ4n

, then we can determine it based on the proof of Theorem
3.6. Therefore, for n is an odd prime we have

H(ΩQ4n
) =

∑
u,v∈V (ΩQ4n

)

1

d(u, v)

=
∑

v∈V (ΩQ4n
)−{e}

1

d(e, v)
+

∑
u∈[x2k],v∈[xiy]

1

d(u, v)
+

∑
u∈[x2k+1],v∈{xn}∪[xiy]∪[x2k]

1

d(u, v)

+
∑

v∈[x2k]

1

d(xn, v)
+

∑
v∈[xiy]

1

d(xn, v)
+

∑
u,v∈[x2k+1]

1

d(u, v)
+

∑
u,v∈[x2k]

1

d(u, v)
+

∑
u,v∈[xiy]

1

d(u, v)

= (4n− 1).1 + (n− 1).2n.1 + (n− 1).3n.
1

2
+ (n− 1).1 + 2n.

1

2

+

(
n− 1

2

)
.
1

2
+

(
n− 1

2

)
.
1

2
+

(
2n
2

)
.
1

2

=
1

2
(10n2 + n− 2).

For n is a power of 2 we have

H(ΩQ4n
) =

∑
v∈V (ΩQ4n

)−{e}

1

d(e, v)
+

∑
u,v∈V (ΩQ4n

)−{e}

1

d(u, v)

= (4n− 1).1 +

(
4n− 1

2

)
.
1

2

=
1

2
(4n− 1)(2n + 1).

�

Theorem 3.9. Let ΩQ4n be the coprime graph of generalized quaternion group.
The Szeged index of ΩQ4n is

Sz(ΩQ4n
) =

{ 4n4 − 4n3 + 3n2 + 1, for n is an odd prime
(4n− 1)(4n− 2), for n is a power of 2.

Proof. Let n be an odd prime. From Figure 3.1 we can determine the vertices of
ΩQ4n

which are closer to one of two vertices that are adjacent as follows:

(i) Edge a = exn.

N1(a|ΩQ4n
) = {u ∈ V (ΩQ4n

)|d(u, e) < d(u, xn)} = [x2k+1] ∪ [xiy]

N2(a|ΩQ4n
) = {u ∈ V (ΩQ4n

)|d(u, xn) < d(u, e) = {xn}.

Thus |N1(a|ΩQ4n
)| = (n− 1) + 2n = 3n− 1 and |N2(a|ΩQ4n

)| = 1.
(ii) Edge bk = ex2k+1, for k ∈ {0, 1, 2, ..., n− 1 and 2k + 1 6= n}.

N1(bk|ΩQ4n
) = {u ∈ V (ΩQ4n

)|d(u, e) < d(u, x2k+1)} = {xn} ∪ [x2k] ∪ [xiy]

N2(bk|ΩQ4n) = {u ∈ V (ΩQ4n)|d(u, x2k+1) < d(u, e) = {x2k+1}.
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Thus |N1(bk|ΩQ4n
)| = 1 + (n− 1) + 2n = 3n and |N2(bk|ΩQ4n

)| = 1.
(iii) Edge ck = ex2k, for k ∈ {1, 2, 3, ..., n− 1}.

N1(ck|ΩQ4n
) = {u ∈ V (ΩQ4n

)|d(u, e) < d(u, x2k)} = [x2k+1]

N2(ck|ΩQ4n
) = {u ∈ V (ΩQ4n

)|d(u, x2k) < d(u, e) = {x2k}.

Thus |N1(ck|ΩQ4n
)| = n− 1 and |N2(ck|ΩQ4n

)| = 1.
(iv) Edge di = exiy, for i ∈ {0, 1, 2, ..., 2n− 1}.

N1(di|ΩQ4n) = {u ∈ V (ΩQ4n)|d(u, e) < d(u, xiy)} = {xn} ∪ [x2k+1]

N2(di|ΩQ4n) = {u ∈ V (ΩQ4n)|d(u, xiy) < d(u, e) = {xiy}.

Thus |N1(di|ΩQ4n)| = 1 + (n− 1) = n and |N2(di|ΩQ4n)| = 1.
(v) Edge fk = xnx2k, for k ∈ {1, 2, 3, ..., n− 1}.

N1(fk|ΩQ4n
) = {u ∈ V (ΩQ4n

)|d(u, xn) < d(u, x2k)} = {x2j |j 6= k} ∪ {xn}

N2(fk|ΩQ4n) = {u ∈ V (ΩQ4n)|d(u, x2k) < d(u, xn) = {x2k} ∪ [xiy].

Thus |N1(fk|ΩQ4n
)| = (n− 1− 1) + 1 = n− 1 and |N2(fk|ΩQ4n

)| = 1 + 2n.
(vi) Edge gki = x2kxiy, for k ∈ {1, 2, 3, ..., n− 1} and i ∈ {0, 1, 2, ..., 2n− 1}.

N1(gki|ΩQ4n
) = {u ∈ V (ΩQ4n

)|d(u, x2k) < d(u, xiy)} = {xjy|j 6= i} ∪ {xn} ∪ {x2k}

N2(gki|ΩQ4n) = {u ∈ V (ΩQ4n)|d(u, xiy) < d(u, x2k) = {x2j |j 6= k} ∪ {xiy}.

Thus |N1(gki|ΩQ4n
)| = 1 + 1 + (2n − 1) = 2n + 1 and |N2(gki|ΩQ4n

)| =
(n− 1− 1) + 1 = n− 1.

Therefore

Sz(ΩQ4n
) =

∑
x∈E(ΩQ4n

)

|N1(x|ΩQ4n
)|.|N1(x|ΩQ4n

)|

= |N1(a|ΩQ4n
)|.|N2(a|ΩQ4n

)|+
∑
bk∈[b]

|N1(bk|ΩQ4n
)|.|N2(bk|ΩQ4n

)|

+
∑
ck∈[c]

|N1(ck|ΩQ4n)|.|N2(ck|ΩQ4n)|+
∑
di∈[d]

|N1(di|ΩQ4n)|.|N2(di|ΩQ4n)|

+
∑

fk∈[f ]

|N1(fk|ΩQ4n)|.|N2(fk|ΩQ4n)|+
∑

gki∈[g]

|N1(gki|ΩQ4n)|.|N2(gki|ΩQ4n)|

= 1.(3n− 1).1 + (n− 1).3n.1 + (n− 1)(n− 1).1 + 2n.n.1

+ (n− 1).(n− 1)(1 + 2n) + (n− 1).2n.(2n + 1).(n− 1)

= 4n4 − 4n3 + 3n2 + 1.

Let n be a power of 2. Let V (ΩQ4n) = {e, v1, v2, ..., v4n−1} and E(ΩQ4n) =
{ei = evi|1 6 i 6 4n− 1}. Hence

N1(ei|ΩQ4n
) = {u ∈ V (ΩQ4n

)|d(u, e) < d(u, vi)} = {vj |j 6= i}
N2(ei|ΩQ4n) = {u ∈ V (ΩQ4n)|d(u, vi) < d(u, e) = {vi}.



296 S. Zahidah, D.M. Mahanani, and K.L. Oktaviana

Thus |N1(ei|ΩQ4n
)| = (4n− 1)− 1 = 4n− 2 and |N2(ei|ΩQ4n

)| = 1. Therefore

Sz(ΩQ4n
) =

4n−1∑
i=1

|N1(ei|ΩQ4n
)|.|N2(ei|ΩQ4n

)|

= (4n− 1).(4n− 2).

�

4. Conclusion

In this study, we have found the shape of coprime graph of generalized quater-
nion group and determined its six connectivity indices.

Acknowledgement. The authors would like to thank to the referees for their
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