SUPER EDGE CONNECTIVITY NUMBER OF AN ARITHMETICS GRAPH

Sujitha, S. ${ }^{1}$, Mary Jenitha, L. ${ }^{2}$
${ }^{1}$ Department of Mathematics, Holy Cross College (Autonomous), Nagercoil, India. sujitha.s@holycrossngl.edu.in
${ }^{2}$ Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamilnadu, India.
jeni.mathematics@gmail.com

Abstract

An edge subset F of a connected graph G is a super edge cut if $G-F$ is disconnected and every component of $G-F$ has atleast two vertices. The minimum cardinality of super edge cut is called super edge connectivity number and it is denoted by $\lambda^{\prime}(G)$. Every arithmetic graph $G=V_{n}, n \neq p_{1} \times p_{2}$ has super edge cut. In this paper, the authors study super edge connectivity number of an arithmetic graphs $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}}, a_{1}>1, a_{2} \geq 1$ and $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times$ $p_{r}^{a_{r}}, r>2, a_{i} \geq 1,1 \leq i \leq r$. Key words and Phrases: arithmetic graph, super edge cut, super edge connectivity number.

1. INTRODUCTION

Theorem 1.1. [5]For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}}$ where p_{1} and p_{2} are distinct primes, $a_{1}, a_{2} \geq 1$ then $\epsilon=4 a_{1} a_{2}-a_{1}-a_{2}$, where ϵ is the size of the graph G.
Theorem 1.2. [5]For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}}$ where p_{1} and p_{2} are distinct primes, $a_{1}, a_{2} \geq 1$ then G is a bipartite graph.
Theorem 1.3. [5] Let $G=V_{n}$ an arithmetic graph $n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}$, for any vertex $u=\prod \lim _{i \in B} p_{i}^{\alpha_{i}}$ where $B \subseteq 1,2,3, \ldots r, 1 \leq \alpha_{i} \leq a_{i} \forall i \in B$.
(1) If $u=p_{j}$ where $j \in\{1,2,3, \ldots, r\}$, then

$$
\operatorname{deg}(u)=\left[a_{j} \prod_{i=1, i \neq j} \lim _{i}^{r}\left(a_{i}+1\right)-1\right]-\left|a_{j}-1\right|
$$

[^0]Received: 27-07-2021, accepted: 16-03-2022.
(2) If $u=p_{i}^{\alpha_{i}} 1<\alpha_{i} \leq a_{i} \forall i \in B$, then $\operatorname{deg}(u)=\left[\prod \lim _{i=1, i \notin B}^{r}\left(a_{i}+1\right)\right]-1$
(3) If $u=\prod \lim _{i \in B} p_{i}^{\alpha_{i}},|B| \geq 2,1<\alpha_{i} \leq a_{i}, \forall i \in B$ then

$$
\operatorname{deg}(u)=|B| \prod \lim _{i=1, i \notin B}^{r}\left(a_{i}+1\right)
$$

(4) If $u=\prod \lim _{i \in B} p_{i}^{\alpha_{i}}, \alpha_{i}=1$ for some $i \in B^{\prime} \subseteq B$, then $\operatorname{deg}(u)=\left|B-B^{\prime}\right|+$ $\sum \lim _{i \in B^{\prime}} a_{i} \prod_{\lim }^{i=1, i \notin B}\left(a_{i}+1\right)$ where B is the number of distinct prime factors in a chosen vertex u, B^{\prime} is the number of prime factors having power 1 in chosen vertex u.

2. Super edge Connectivity number of an Arithmetic Graph $G=V_{n}$

In this section, the super edge connectivity number $\lambda^{\prime}(G)$ of an arithmetic graph $G=V_{n}$, where $n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}$ is determined.
Theorem 2.1. For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}}$ where $a_{1}=a_{2}=1$ has no super edge cut.

Proof. Consider an arithmetic graph $G=V_{n}$, where n is the product of two distinct primes. The vertex set of V_{n} contains three vertices namely $p_{1}, p_{2}, p_{1} \times p_{2}$. By the definition of an arithmetic graph G is a path with 3 vertices. The removal of any one of the edge results the graph disconnected containing an isolated vertex and an edge. Hence proved.

Theorem 2.2. For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}}$ where $a_{1}>1, a_{2}=1$ then $\lambda^{\prime}(G)=2$.

Proof. Given arithmetic graph $G=V_{n}$ has the vertex set $V(G)=\left\{p_{1}, p_{1}^{2}, \ldots\right.$, $\left.p_{1}^{a_{1}}, p_{2}, p_{1} \times p_{2}, p_{1}^{2} \times p_{2}, p_{1}^{3} \times p_{2}, \ldots, p_{1}^{a_{1}} \times p_{2}\right\}$. By Theorem 1.2, G is a bipartite graph with partitions $A=\left\{p_{1}, p_{1}^{2}, \ldots, p_{1}^{a_{1}}, p_{2}\right\}$ and $B=\left\{p_{1} \times p_{2}, p_{1}^{2} \times p_{2}, p_{1}^{3} \times p_{2}, \ldots, p_{1}^{a_{1}} \times\right.$ $\left.p_{2}\right\}$. Also, the graph G has $a_{1}-1$ pendant vertices say $p_{1}^{2}, p_{1}^{3}, \ldots, p_{1}^{a_{1}}$ and all these pendant vertices have a common neighbour $p_{1} \times p_{2}$. The removal of two edge say $p_{1} \times p_{2} p_{1}$ and $p_{1} \times p_{2} p_{2}$, the graph G gets disconnected. Since $d\left(p_{1} \times p_{2}\right)=a_{1}+1$, the resultant graph has exactly two components G_{1} and G_{2} where $G_{1}=k_{1, a_{1}-1}$ and G_{2} is a connected graph. Hence $F=\left\{p_{1} \times p_{2} p_{1}, p_{1} \times p_{2} p_{2}\right\}$ is a super edge cut. Since G is not a tree and it does not have bridges, F is a minimum cardinality set. Thus $\lambda^{\prime}(G)=2$.

Theorem 2.3. For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}}$ where $a_{1} \geq a_{2}>1$ then $\lambda^{\prime}(G)=a_{1}+a_{2}-1$.

Proof. By Theorem 1.2, G is a bipartite graph. Since $a_{1} \geq a_{2}>1$ we have $d\left(p_{1}^{m}\right) \leq d\left(p_{2}^{n}\right)$ for $1<m \leq a_{1}, 1 \leq n \leq a_{2}$. Choose a vertex of the form $p_{1}^{m} ; 1<$ $m \leq a_{1}$, from the first partition. Let it be $p_{1}^{a_{1}}$ the vertices which are adjacent to $p_{1}^{a_{1}}$ are $\left\{p_{1} \times p_{2}, p_{1} \times p_{2}^{n} ; 1<n \leq a_{2}\right\}$. Since the vertices $\left\{p_{1} \times p_{2}^{n} ; 1<n \leq a_{2}\right\}$ have less degree compared to $p_{1} \times p_{2}$, choose any one of the vertex of the form
$p_{1} \times p_{2}^{n} ; 1<n \leq a_{2}$, let it be $p_{1} \times p_{2}^{a_{2}}$. Now, remove all the edges incident on $p_{1}^{a_{1}}$ and $p_{1} \times p_{2}^{a_{2}}$ other than the edge $p_{1}^{a_{1}} p_{1} \times p_{2}^{a_{2}}$. The resultant graph is disconnected having two components, in which one of the component is an edge $p_{1}^{a_{1}} p_{1} \times p_{2}^{a_{2}}$ and the other is a connected graph. Since the degree of these two vertices say $p_{1}^{a_{1}}$ and $p_{1} \times p_{2}^{a_{2}}$ is minimum we have $|F|=d\left(p_{1}^{a_{1}}\right)+d\left(p_{1} \times p_{2}^{a_{2}}\right)-2$. Hence by the proof of Theorem1.1, $\lambda^{\prime}(G)=a_{1}+a_{2}-1$.
Theorem 2.4. For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}, r>2$ and $a_{i} \geq 1, i \in\{1,2, \ldots, r\}$. Then $\lambda^{\prime}(G)=2^{r-1}+r-3$.

Proof. Consider an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}, r>2$ and $a_{i} \geq 1, i \in\{1,2, \ldots, r\}$. Following steps are used to find the super edge connectivity number of an arithmetic graph.
(i) Arrange all $a_{i}^{\prime} s$ in such a way that $a_{1} \geq a_{2} \geq \cdots \geq a_{r}$.
(ii)Choose an edge $e=u v$ such that $d(u)+d(v)=\min \left\{d\left(v_{i}\right)+d\left(v_{j}\right) / v_{i} v_{j} \in\right.$ $E(G) ; i \neq j$ and for all $i, j \in\{1,2, \ldots r\}\}$.
(iii) Remove all the edges incident on u and v other than the edge $e=u v$.(i.e) we remove $d(u)+d(v)-2$ edges. Now, the resultant graph is disconnected and it has exactly two components one of the component is an edge $e=u v$ and the other one is a connected graph. Since $d(e=u v)$ is minimum, $|d(u)+d(v)-2|$ is the super edge connectivity number.
case(i) If $a_{i}=1$ for all i then choose the edge $e=u v$ where u can be any one of $p_{i} ; i \in\{1,2, \ldots, r\}$, let it be p_{1} and $v=p_{1} \times p_{2} \times \cdots \times p_{r}$. Since the removal of the edges incident on u and v other than the edge $u v$ results the graph disconnected. Also, $d(u)+d(v)$ is minimum, $\lambda^{\prime}(G)=|F|=d\left(p_{1}\right)+d\left(p_{1} \times p_{2} \times \cdots \times p_{r}\right)-2$. By Theorem1.3, we have $\lambda^{\prime}(G)=2^{r-1}+r-3$.
case(ii) If $a_{i}>1$ for exactly one i, then choose the edge $e=u v$ where $u=p_{1}^{a_{1}}$ and $v=p_{1} \times p_{2} \times \cdots \times p_{r}$. Now similar as previous case we have $\lambda^{\prime}(G)=d\left(p_{1}^{a_{1}}\right)+$ $d\left(p_{1} \times p_{2} \times \cdots \times p_{r}\right)-2$.
By Theorem1.3, we have $\lambda^{\prime}(G)=\left[\prod_{\lim }^{r=1, i \notin B}\left(a_{i}+1\right)\right]-1+r-2=2^{r-1}+r-3$.
Example 2.5. Consider an arithmetic graph $G=V_{210}, 210=2 \times 3 \times 5 \times 7$ here the super edge cut $F=\{22 \times 3,22 \times 5,22 \times 7,22 \times 3 \times 5,22 \times 3 \times 7,22 \times 5 \times$ $7,2 \times 3 \times 5 \times 73,2 \times 3 \times 5 \times 75,2 \times 3 \times 5 \times 77\}$. Hence $\lambda^{\prime}(G)=9$.By Theoreom2.4, $\lambda^{\prime}(G)=2^{3}+4-3=9$

Theorem 2.6. For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}, r>2$ and $a_{i}>1$, for at least two $a_{i}, i \in\{1,2, \ldots, r\}$. Then $\lambda^{\prime}(G)=\prod \lim _{i=2}^{m}\left(a_{i}+\right.$ 1) $2^{r-m}+a_{1}+r-4$.

Proof. case(i) If $a_{i}>1$ for exactly two i, without loss of generality let $a_{1} \geq a_{2}>1$, then choose the edge $e=u v$ where $u=p_{1}^{a_{1}}$ and $v=p_{1} \times p_{2}^{a_{2}} \times p_{3} \cdots \times p_{r}$. Similar as above we have $\lambda^{\prime}(G)=d\left(p_{1}^{a_{1}}\right)+d\left(p_{1} \times p_{2}^{a_{2}} \times p_{3} \times \cdots \times p_{r}\right)-2$. By Theorem1.3, we have $\lambda^{\prime}(G)=\left[\prod \lim _{i=1, i \notin B}^{r}\left(a_{i}+1\right)\right]-1+\left[|1|+\left(a_{1}+r-2\right)\right]-2$ $=\left(a_{2}+1\right) 2^{r-2}+a_{1}+r-4$.
case(ii) If $a_{1} \geq a_{2} \geq \ldots a_{m}>1$, then choose the edge $e=u v$ where $u=p_{1}^{a_{1}}$ and

Figure 1. Arithmetic Graph $G=V_{210}$
$v=p_{1} \times p_{2}^{a_{2}} \times p_{3}^{a_{3}} \times \ldots p_{m}^{a_{m}} \times p_{m+1} \cdots \times p_{r}$. Similar as above we have $\lambda^{\prime}(G)=$ $d\left(p_{1}^{a_{1}}\right)+d\left(p_{1} \times p_{2}^{a_{2}} \times p_{3}^{a_{3}} \times \ldots p_{m}^{a_{m}} \times p_{m+1} \cdots \times p_{r}\right)-2$. By Theorem 1.3, we have $\lambda^{\prime}(G)=\left[\prod \lim _{i=1, i \notin B}^{r}\left(a_{i}+1\right)\right]-1+\left[m-1+a_{1}+r-m\right]-2=\left[\left(a_{2}+1\right)\left(a_{3}+\right.\right.$ 1) $\left.\ldots\left(a_{m}+1\right) 2^{r-m}\right]+a_{1}+r-4$.
case(iii) If $a_{i}>1$ for all i, then choose the edge $e=u v$ where $u=p_{1}^{a_{1}}$ and $v=p_{1} \times p_{2}^{a_{2}} \times p_{3}^{a_{3}} \times \cdots \times p_{r}^{a_{r}}$. Similar as above we have $\lambda^{\prime}(G)=d\left(p_{1}^{a_{1}}\right)+d\left(p_{1} \times\right.$ $\left.p_{2}^{a_{2}} \times p_{3}^{a_{3}} \times \cdots \times p_{r}^{a_{r}}\right)-2$
we have $\lambda^{\prime}(G)=\left[\prod \lim _{i=1, i \notin B}^{r}\left(a_{i}+1\right)\right]-1+\left[r-1+a_{1}\right]-2=\left(a_{2}+1\right)\left(a_{3}+\right.$ 1) $\ldots\left(a_{r}+1\right)+a_{1}+r-4$.

3. Super λ^{\prime} optimality of an Arithmetic Graph $G=V_{n}$

Let $G=(V, E)$ be a graph for $e=u v \in E(G)$, let $\xi_{G}(e)=d_{G}(u)+d_{G}(v)-2$ and $\left.\xi_{(} G\right)=\min \left\{\xi_{G}(e): e \in E(G)\right\}$. The parameter $\xi(G)$ is called minimum edge
degree of G. If $\lambda^{\prime}(G)=\xi(G)$ then G is called optimal; otherwise G is non-optimal. For two disjoint non empty subsets X and Y of V, let $(X, Y)=\{e=u v \in E ; u \in$ $X, v \in Y\}$. If $Y=\bar{X}=V-X$ then we write $\partial(X)$ for (X, \bar{X}) and $d(X)$ for $|\partial(X)|$. A super edge cut F of G is called λ^{\prime}-cut if $|F|=\lambda^{\prime}(G)$. It is clear that for any λ^{\prime}-cut F that $G-F$ has two connected components.

Let X be a proper subset of V. If $\partial(X)$ is a λ^{\prime}-cut of G, then X is called a fragment of G. It is clear that if X is a fragment of G, then so is \bar{X}. Let $r(G)=\min \{|X| ; X$ is a fragment of $G\}$. Obviously $2 \leq r(G) \leq \frac{|V|}{2}$. A fragment X is called an atom if $|X|=r(G)$.

Theorem 3.1. For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}}$ where $a_{1}, a_{2} \geq 1$ then the minimum edge degree $\xi(G)= \begin{cases}1 & \text { if } a_{1}=a_{2}=1 \\ a_{1} & \text { if } a_{1}>1, a_{2}=1 \\ a_{1}+a_{2}-1 & \text { if } a_{1} \geq a_{2}>1\end{cases}$

Proof. The proof is obivious from the proof of Theorem 2.3.
Theorem 3.2. For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}, r>2$ where $a_{i} \geq 1$ for $i \in\{1,2, \ldots, m, \ldots, r\}$ then the minimum edge degree (i) $\xi(G)=2^{r-1}+r-3$ if $a_{1} \geq 1$ and $a_{j}=1$ for $j \in\{2,3, \ldots, r\}$.
(ii) $\xi(G)=\left[\prod \lim _{i=2}^{m}\left(a_{i}+1\right) 2^{r-m}\right]+(m-1)+a_{1}+(r-m)-3$ if $a_{i}>1$ for more than $m i^{\prime} s, m \geq 2, i \in\{1,2, \ldots, r\}$

Proof. The proof follows from Theorem 2.4 and 2.6.
Theorem 3.3. For every arithmetic graph other than $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}, a_{1}>2$ are optimal and the atom $r(G)=2$.

Proof. Let $G=V_{n}$ be an arithmetic graph,
Case (i)If $n=p_{1}^{a_{1}} \times p_{2}, a_{1}>2$ then by Theorem 2.2 we have the super edge connectivity number $\lambda^{\prime}(G)=2$. By Theorem 3.1 , the minimum edge degree $\xi(G)=$ a_{1}. Clearly $\lambda^{\prime}(G) \neq \xi(G)$, hence it is non optimal.
Case (ii)Consider $G=V_{n}$ where $n \neq p_{1}^{a_{1}} \times p_{2}, a_{1}>2$, then by using the theorems in section 2 and by Theorem 3.1 it is clear that $\lambda^{\prime}(G)=\xi(G)$. Hence $G=V_{n}$ is optimal. Also since $G-F$ contains exactly two component such as k_{2} and a connected component containing more than 2 vertices. Clearly, by the definition of fragment $X=K_{2}$ and the atom of G is $r(G)=|X|=2$.

Conclusion

From the above theorems, it is identified that all arithmetic graph other than $G=V_{n}, n=p_{1} \times p_{2}$ has super edge cut. In addition to that, for every arithmetic graphs $G=V_{n}, n \neq p_{1}^{a_{1}} \times p_{2}, a_{1}>2$ are optimal and the atom $r(G)$ is 2.

REFERENCES

[1] Bondy and Murty, Graph theory with applications, Macmillan, 1976.
[2] Esfahanian, A.-H., and Hakimi, S.L., "On computing a conditional edge-connectivity of a graph", Information processing letters, 27:4 (1988), 195-199.
[3] Jun-Ming Xu, and Ke-Li Xu, "Note on restricted edge-connectivity of graphs", Discrete Mathematics, 243 (2002) 291-298.
[4] Mary Jenitha, L., and Sujitha, S., "The connectivity number of an arithmetic graph", International journalof Mathemaical combinatorics, 1 (2018), 132-136.
[5] Mary Jenitha, L., Sujitha, S., and Uma Devi, B., "The average connectivity of an arithmetic graph", Journal of Computational Information Systems, 15:1 (2019), 204-207
[6] Mary Jenitha, L., and Sujitha, S., "Super connected and hyper connected arithmetic graphs", Malaya Journal of Matematik, S:1 (2020), 243-247.
[7] Mary Jenitha, L., and Sujitha, S., "The connectivity number of complement of an arithmetic graph $G=V_{n}$ ", Proceedings of the national conference on scientific approaches to multidisciplinary research, (2020), 226-230
[8] Vasumathi, N., and Vangipuram, S., "Existence of a graph with a given domination Parameter", Proceedings of the Fourth Ramanujan Symposium on Algebra and its Applications, University of Madras, Madras, (1995), 187-195.

[^0]: 2020 Mathematics Subject Classification: 05C40.

