SUPER EDGE CONNECTIVITY NUMBER OF AN ARITHMETICS GRAPH

SUJITHA, S.¹, MARY JENITHA, L.²

¹Department of Mathematics, Holy Cross College (Autonomous), Nagercoil, India. sujitha.s@holycrossngl.edu.in ²Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamilnadu, India. jeni.mathematics@gmail.com

Abstract. An edge subset F of a connected graph G is a super edge cut if G-F is disconnected and every component of G-F has atleast two vertices. The minimum cardinality of super edge cut is called super edge connectivity number and it is denoted by $\lambda'(G)$. Every arithmetic graph $G = V_n$, $n \neq p_1 \times p_2$ has super edge cut. In this paper, the authors study super edge connectivity number of an arithmetic graphs $G = V_n$, $n = p_1^{a_1} \times p_2^{a_2}$, $a_1 > 1$, $a_2 \ge 1$ and $G = V_n$, $n = p_1^{a_1} \times p_2^{a_2} \times \cdots \times p_r^{a_r}$, r > 2, $a_i \ge 1$, $1 \le i \le r$.

 $K\!ey$ words and Phrases: arithmetic graph, super edge cut, super edge connectivity number.

1. INTRODUCTION

Theorem 1.1. [5] For an arithmetic graph $G=V_n$, $n = p_1^{a_1} \times p_2^{a_2}$ where p_1 and p_2 are distinct primes, $a_1, a_2 \ge 1$ then $\epsilon = 4a_1a_2 - a_1 - a_2$, where ϵ is the size of the graph G.

Theorem 1.2. [5] For an arithmetic graph $G=V_n$, $n=p_1^{a_1} \times p_2^{a_2}$ where p_1 and p_2 are distinct primes, $a_1, a_2 \ge 1$ then G is a bipartite graph.

Theorem 1.3. [5] Let $G = V_n$ an arithmetic graph $n = p_1^{a_1} \times p_2^{a_2} \times \cdots \times p_r^{a_r}$, for any vertex $u = \prod \lim_{i \in B} p_i^{\alpha_i}$ where $B \subseteq 1, 2, 3, \ldots, r, 1 \leq \alpha_i \leq a_i \forall i \in B$.

(1) If $u = p_j$ where $j \in \{1, 2, 3, ..., r\}$, then

$$deg(u) = \left[a_j \prod \lim_{i=1, i \neq j}^r (a_i + 1) - 1\right] - |a_j - 1|.$$

69

²⁰²⁰ Mathematics Subject Classification: 05C40. Received: 27-07-2021, accepted: 16-03-2022.

(2) If
$$u = p_i^{\alpha_i} \ 1 < \alpha_i \le a_i \forall i \in B$$
, then $deg(u) = [\prod \lim_{i=1, i \notin B} (a_i + 1)] - 1$

(3) If
$$u = \prod \lim_{i \in B} p_i^{\alpha_i}, |B| \ge 2, 1 < \alpha_i \le a_i, \forall i \in B$$
 then

$$deg(u) = |B| \prod \lim_{i=1, i \notin B}^{r} (a_i + 1).$$

(4) If $u = \prod \lim_{i \in B} p_i^{\alpha_i}$, $\alpha_i = 1$ for some $i \in B' \subseteq B$, then $\deg(u) = |B - B'| + \sum \lim_{i \in B'} a_i \prod \lim_{i=1, i \notin B} (a_i + 1)$ where B is the number of distinct prime factors in a chosen vertex u, B' is the number of prime factors having power 1 in chosen vertex u.

2. Super edge Connectivity number of an Arithmetic Graph $G = V_n$

In this section, the super edge connectivity number $\lambda'(G)$ of an arithmetic graph $G = V_n$, where $n = p_1^{a_1} \times p_2^{a_2} \times \cdots \times p_r^{a_r}$ is determined.

Theorem 2.1. For an arithmetic graph $G = V_n$, $n = p_1^{a_1} \times p_2^{a_2}$ where $a_1 = a_2 = 1$ has no super edge cut.

Proof. Consider an arithmetic graph $G = V_n$, where *n* is the product of two distinct primes. The vertex set of V_n contains three vertices namely $p_1, p_2, p_1 \times p_2$. By the definition of an arithmetic graph *G* is a path with 3 vertices. The removal of any one of the edge results the graph disconnected containing an isolated vertex and an edge. Hence proved.

Theorem 2.2. For an arithmetic graph $G = V_n$, $n = p_1^{a_1} \times p_2^{a_2}$ where $a_1 > 1$, $a_2 = 1$ then $\lambda'(G) = 2$.

Proof. Given arithmetic graph $G = V_n$ has the vertex set $V(G) = \{p_1, p_1^2, \ldots, p_1^{a_1}, p_2, p_1 \times p_2, p_1^2 \times p_2, p_1^3 \times p_2, \ldots, p_1^{a_1} \times p_2\}$. By Theorem 1.2, G is a bipartite graph with partitions $A = \{p_1, p_1^2, \ldots, p_1^{a_1}, p_2\}$ and $B = \{p_1 \times p_2, p_1^2 \times p_2, p_1^3 \times p_2, \ldots, p_1^{a_1} \times p_2\}$. Also, the graph G has $a_1 - 1$ pendant vertices say $p_1^2, p_1^3, \ldots, p_1^{a_1}$ and all these pendant vertices have a common neighbour $p_1 \times p_2$. The removal of two edge say $p_1 \times p_2 p_1$ and $p_1 \times p_2 p_2$, the graph G gets disconnected. Since $d(p_1 \times p_2) = a_1 + 1$, the resultant graph has exactly two components G_1 and G_2 where $G_1 = k_{1,a_1-1}$ and G_2 is a connected graph. Hence $F = \{p_1 \times p_2 p_1, p_1 \times p_2 p_2\}$ is a super edge cut. Since G is not a tree and it does not have bridges, F is a minimum cardinality set. Thus $\lambda'(G) = 2$.

Theorem 2.3. For an arithmetic graph $G = V_n$, $n = p_1^{a_1} \times p_2^{a_2}$ where $a_1 \ge a_2 > 1$ then $\lambda'(G) = a_1 + a_2 - 1$.

Proof. By Theorem 1.2, G is a bipartite graph. Since $a_1 \ge a_2 > 1$ we have $d(p_1^m) \le d(p_2^n)$ for $1 < m \le a_1$, $1 \le n \le a_2$. Choose a vertex of the form p_1^m ; $1 < m \le a_1$, from the first partition. Let it be $p_1^{a_1}$ the vertices which are adjacent to $p_1^{a_1}$ are $\{p_1 \times p_2, p_1 \times p_2^n; 1 < n \le a_2\}$. Since the vertices $\{p_1 \times p_2^n; 1 < n \le a_2\}$ have less degree compared to $p_1 \times p_2$, choose any one of the vertex of the form

70

 $p_1 \times p_2^n$; $1 < n \le a_2$, let it be $p_1 \times p_2^{a_2}$. Now, remove all the edges incident on $p_1^{a_1}$ and $p_1 \times p_2^{a_2}$ other than the edge $p_1^{a_1} p_1 \times p_2^{a_2}$. The resultant graph is disconnected having two components, in which one of the component is an edge $p_1^{a_1} p_1 \times p_2^{a_2}$ and the other is a connected graph. Since the degree of these two vertices say $p_1^{a_1}$ and $p_1 \times p_2^{a_2}$ is minimum we have $|F| = d(p_1^{a_1}) + d(p_1 \times p_2^{a_2}) - 2$. Hence by the proof of Theorem1.1, $\lambda'(G) = a_1 + a_2 - 1$.

Theorem 2.4. For an arithmetic graph $G = V_n, n = p_1^{a_1} \times p_2^{a_2} \times \cdots \times p_r^{a_r}, r > 2$ and $a_i \ge 1, i \in \{1, 2, ..., r\}$. Then $\lambda'(G) = 2^{r-1} + r - 3$.

Proof. Consider an arithmetic graph $G = V_n$, $n = p_1^{a_1} \times p_2^{a_2} \times \cdots \times p_r^{a_r}$, r > 2 and $a_i \ge 1, i \in \{1, 2, \ldots, r\}$. Following steps are used to find the super edge connectivity number of an arithmetic graph.

(i) Arrange all $a'_i s$ in such a way that $a_1 \ge a_2 \ge \cdots \ge a_r$.

(ii)Choose an edge e = uv such that $d(u) + d(v) = min\{d(v_i) + d(v_j)/v_iv_j \in E(G); i \neq j \text{ and for all } i, j \in \{1, 2, \dots r\}\}.$

(iii) Remove all the edges incident on u and v other than the edge e = uv.(i.e) we remove d(u) + d(v) - 2 edges. Now, the resultant graph is disconnected and it has exactly two components one of the component is an edge e = uv and the other one is a connected graph. Since d(e = uv) is minimum, |d(u) + d(v) - 2| is the super edge connectivity number.

case(i) If $a_i = 1$ for all *i* then choose the edge e = uv where *u* can be any one of $p_i; i \in \{1, 2, ..., r\}$, let it be p_1 and $v = p_1 \times p_2 \times \cdots \times p_r$. Since the removal of the edges incident on *u* and *v* other than the edge *uv* results the graph disconnected. Also, d(u) + d(v) is minimum, $\lambda'(G) = |F| = d(p_1) + d(p_1 \times p_2 \times \cdots \times p_r) - 2$. By Theorem1.3, we have $\lambda'(G) = 2^{r-1} + r - 3$.

case(ii) If $a_i > 1$ for exactly one *i*, then choose the edge e = uv where $u = p_1^{a_1}$ and $v = p_1 \times p_2 \times \cdots \times p_r$. Now similar as previous case we have $\lambda'(G) = d(p_1^{a_1}) + d(p_1 \times p_2 \times \cdots \times p_r) - 2$.

By Theorem 1.3, we have $\lambda'(G) = [\prod \lim_{i=1, i \notin B}^{r} (a_i+1)] - 1 + r - 2 = 2^{r-1} + r - 3.$

Example 2.5. Consider an arithmetic graph $G = V_{210}, 210 = 2 \times 3 \times 5 \times 7$ here the super edge cut $F = \{2 \ 2 \times 3, 2 \ 2 \times 5, 2 \ 2 \times 7, 2 \ 2 \times 3 \times 5, 2 \ 2 \times 3 \times 7, 2 \ 2 \times 5 \times 7, 2 \ 2 \times 3 \times 5 \times 7 \ 3, 2 \times 3 \times 5 \times 7 \ 5, 2 \times 3 \times 5 \times 7 \ 7\}$. Hence $\lambda'(G) = 9$.By Theoreom2.4, $\lambda'(G) = 2^3 + 4 - 3 = 9$

Theorem 2.6. For an arithmetic graph $G = V_n$, $n = p_1^{a_1} \times p_2^{a_2} \times \cdots \times p_r^{a_r}$, r > 2and $a_i > 1$, for at least two a_i , $i \in \{1, 2, \ldots, r\}$. Then $\lambda'(G) = \prod \lim_{i=2}^{m} (a_i + 1)2^{r-m} + a_1 + r - 4$.

Proof. case(i) If $a_i > 1$ for exactly two *i*, without loss of generality let $a_1 \ge a_2 > 1$, then choose the edge e = uv where $u = p_1^{a_1}$ and $v = p_1 \times p_2^{a_2} \times p_3 \cdots \times p_r$. Similar as above we have $\lambda'(G) = d(p_1^{a_1}) + d(p_1 \times p_2^{a_2} \times p_3 \times \cdots \times p_r) - 2$. By Theorem1.3, we have $\lambda'(G) = [\prod \lim_{i=1, i \notin B} (a_i + 1)] - 1 + [|1| + (a_1 + r - 2)] - 2 = (a_2 + 1)2^{r-2} + a_1 + r - 4$.

case(ii) If $a_1 \ge a_2 \ge \ldots a_m > 1$, then choose the edge e = uv where $u = p_1^{a_1}$ and

FIGURE 1. Arithmetic Graph $G = V_{210}$

 $v = p_1 \times p_2^{a_2} \times p_3^{a_3} \times \dots p_m^{a_m} \times p_{m+1} \dots \times p_r$. Similar as above we have $\lambda'(G) = d(p_1^{a_1}) + d(p_1 \times p_2^{a_2} \times p_3^{a_3} \times \dots p_m^{a_m} \times p_{m+1} \dots \times p_r) - 2$. By Theorem 1.3, we have $\lambda'(G) = [\prod \lim_{i=1, i \notin B} (a_i + 1)] - 1 + [m - 1 + a_1 + r - m] - 2 = [(a_2 + 1)(a_3 + 1) \dots (a_m + 1)2^{r-m}] + a_1 + r - 4$. **case(iii)** If $a_i > 1$ for all *i*, then choose the edge e = uv where $u = p_1^{a_1}$ and $a_i > 1$ for all *i*, then choose the edge e = uv where $u = p_1^{a_1}$ and $a_i > 1$ for all *i*.

case(iii) If $a_i > 1$ for all *i*, then choose the edge e = uv where $u = p_1^{a_1}$ and $v = p_1 \times p_2^{a_2} \times p_3^{a_3} \times \cdots \times p_r^{a_r}$. Similar as above we have $\lambda'(G) = d(p_1^{a_1}) + d(p_1 \times p_2^{a_2} \times p_3^{a_3} \times \cdots \times p_r^{a_r}) - 2$ we have $\lambda'(G) = [\prod \lim_{i=1, i \notin B} (a_i + 1)] - 1 + [r - 1 + a_1] - 2 = (a_2 + 1)(a_3 + 1) \dots (a_r + 1) + a_1 + r - 4$.

3. Super λ' optimality of an Arithmetic Graph $G = V_n$

Let G = (V, E) be a graph for $e = uv \in E(G)$, let $\xi_G(e) = d_G(u) + d_G(v) - 2$ and $\xi_G(e) = min\{\xi_G(e) : e \in E(G)\}$. The parameter $\xi(G)$ is called minimum edge degree of G. If $\lambda'(G) = \xi(G)$ then G is called optimal; otherwise G is non-optimal. For two disjoint non empty subsets X and Y of V, let $(X, Y) = \{e = uv \in E; u \in E\}$ $X, v \in Y$. If $Y = \overline{X} = V - X$ then we write $\partial(X)$ for (X, \overline{X}) and d(X) for $|\partial(X)|$. A super edge cut F of G is called λ' -cut if $|F| = \lambda'(G)$. It is clear that for any λ' -cut F that G - F has two connected components.

Let X be a proper subset of V. If $\partial(X)$ is a λ' -cut of G, then X is called a fragment of G. It is clear that if X is a fragment of G, then so is \overline{X} . Let $r(G) = \min\{|X|; X \text{ is a fragment of } G\}$. Obviously $2 \le r(G) \le \frac{|V|}{2}$. A fragment X is called an atom if |X| = r(G).

Theorem 3.1. For an arithmetic graph $G = V_n, n = p_1^{a_1} \times p_2^{a_2}$ where $a_1, a_2 \ge 1$ then the minimum edge degree $\xi(G) = \begin{cases} 1 & \text{if } a_1 = a_2 = 1 \\ a_1 & \text{if } a_1 > 1, a_2 = 1 \\ a_1 + a_2 - 1 & \text{if } a_1 \ge a_2 > 1 \end{cases}$

Proof. The proof is obivious from the proof of Theorem 2.3.

Theorem 3.2. For an arithmetic graph $G = V_n$, $n = p_1^{a_1} \times p_2^{a_2} \times \cdots \times p_r^{a_r}$, r > 2where $a_i \geq 1$ for $i \in \{1, 2, ..., m, ..., r\}$ then the minimum edge degree $\begin{array}{l} (i)\xi(G) = 2^{r-1} + r - 3 \ if \ a_1 \ge 1 \ and \ a_j = 1 \ for \ j \in \{2, 3, \dots, r\}.\\ (ii)\xi(G) = [\prod \lim_{i=2}^{m} (a_i + 1)2^{r-m}] + (m-1) + a_1 + (r-m) - 3 \ if \ a_i > 1 \ for \ more \end{array}$ than $m \ i's, \ m \ge 2, i \in \{1, 2, \dots, r\}$

Proof. The proof follows from Theorem 2.4 and 2.6.

Theorem 3.3. For every arithmetic graph other than $G = V_n$, $n = p_1^{a_1} \times p_2$, $a_1 > 2$ are optimal and the atom r(G) = 2.

Proof. Let $G = V_n$ be an arithmetic graph,

Case (i) If $n = p_1^{a_1} \times p_2, a_1 > 2$ then by Theorem 2.2 we have the super edge connectivity number $\lambda'(G) = 2$. By Theorem 3.1, the minimum edge degree $\xi(G) =$ a_1 . Clearly $\lambda'(G) \neq \xi(G)$, hence it is non optimal.

Case (ii)Consider $G = V_n$ where $n \neq p_1^{a_1} \times p_2, a_1 > 2$, then by using the theorems in section 2 and by Theorem 3.1 it is clear that $\lambda'(G) = \xi(G)$. Hence $G = V_n$ is optimal. Also since G - F contains exactly two component such as k_2 and a connected component containing more than 2 vertices. Clearly, by the definition of fragment $X = K_2$ and the atom of G is r(G) = |X| = 2. \square

Conclusion

From the above theorems, it is identified that all arithmetic graph other than $G = V_n, n = p_1 \times p_2$ has super edge cut. In addition to that, for every arithmetic graphs $G = V_n, n \neq p_1^{a_1} \times p_2, a_1 > 2$ are optimal and the atom r(G) is 2.

REFERENCES

- [1] Bondy and Murty, Graph theory with applications, Macmillan, 1976.
- [2] Esfahanian, A.-H., and Hakimi, S.L., "On computing a conditional edge-connectivity of a graph", *Information processing letters*, 27:4 (1988), 195-199.
- [3] Jun-Ming Xu, and Ke-Li Xu, "Note on restricted edge-connectivity of graphs", Discrete Mathematics, 243 (2002) 291-298.
- [4] Mary Jenitha, L., and Sujitha, S., "The connectivity number of an arithmetic graph", International journal of Mathemaical combinatorics, 1 (2018), 132-136.
- [5] Mary Jenitha, L., Sujitha, S., and Uma Devi, B., "The average connectivity of an arithmetic graph", Journal of Computational Information Systems, 15:1 (2019), 204-207
- [6] Mary Jenitha, L., and Sujitha, S., "Super connected and hyper connected arithmetic graphs", Malaya Journal of Matematik, S:1 (2020), 243-247.
- [7] Mary Jenitha, L., and Sujitha, S., "The connectivity number of complement of an arithmetic graph $G = V_n$ ", Proceedings of the national conference on scientific approaches to multidisciplinary research, (2020), 226-230
- [8] Vasumathi, N., and Vangipuram, S., "Existence of a graph with a given domination Parameter", Proceedings of the Fourth Ramanujan Symposium on Algebra and its Applications, University of Madras, Madras, (1995), 187-195.