Main Article Content


A non-empty subset S together with an associative function f from S × S×S into the family of all non-empty subsets of S is called a ternary semihypergroup. In this paper, we consider a semihypergroup (S, f) besides a binary relation ≤, where ≤ is a partial order relation on S such that satisfies the monotone condition. This structure is called an ordered ternary semihypergroup. We introduce and investigate the notions of bi-hyperideal and quasi-hyperideal in ordered ternary semihyperroups. In particular, we prove that an ordered ternary semihypergroup is left and right simple if and only if it does not contain proper bi-hyperideals


Algebraic hyperstructure ordered ternary semihypergrouip ternary subsemihypergroup (bi- quasi-) hyperideal prime hyperideal quasi-simple.

Article Details

How to Cite
Changphas, T., & Davvaz, B. (2021). Study of Properties of Several Kinds of Hyperideals in Ordered Ternary Semihypergroups. Journal of the Indonesian Mathematical Society, 27(2), 228–239.


  1. Anvariyeh, S.M., Mirvakili, S. and Davvaz, B., Combinatorial aspects of n-ary polygroups and n-ary color schemes, European Journal of Combinatorics, 34 (2013), 207-216.
  2. Bonansinga, P. and Corsini, P., On semihypergroup and hypergroup homomorphisms, Boll. Un. Mat. Ital. B (6) 1(2) (1982), 717-727.
  3. Chvalina, J., Commutative hypergroups in the sense of Marty and ordered sets, General algebra and ordered sets (Horn Lipova, 1994), 19-30.
  4. Davvaz, B., Some results on congruences in semihypergroups, Bull. Malays. Math. Soc. (2), 23 (2000), 53-58.
  5. Davvaz, B., Characterizations of sub-semihypergroups by various triangular norms, Czechoslovak Mathematical Journal, 55(4) (2005), 923-932.
  6. Davvaz, B. and Leoreanu-Fotea, V., Binary relations on ternary semihypergroups, Communications in Algebra, 38(10) (2010) 3621-3636.
  7. Davvaz, B. and Vougiouklis, T., n-Ary hypergroups, Iran. J. Sci. Technol. Trans. A, 30(2) (2006), 165-174.
  8. De Salvo, M., Freni, D. and Lo Faro, G., Fully simple semihypergroups, J. Algebra, 399 (2014), 358-377.
  9. Dornte, W., Untersuchungen ber einen verallgemeinerten Gruppenbegriff, Mathematische Zeitschrift, 29(1) (1929) 1-19.
  10. Dudek, W.A., On divisibility in n-semigroups, Demonstratio Math., 13 (1980), 355-367.
  11. Freni, D., Minimal order semihypergroups of type U on the right, II, J. Algebra, 340 (2011), 77-89.
  12. Heidari, D. and Davvaz, B., On ordered hyperstructures, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 73(2) (2011), 85-96.
  13. Hila, K., Naka, K., Leoreanu-Fotea, V. and Sadiku, S., Algebraic hyperstructures of soft sets associated with ternary semihypergroups, Ital. J. Pure Appl. Math., 30 (2013), 349-372.
  14. Hila, K., Davvaz, B. and Naka, K., On Quasi-hyperideals in semihypergroups, Communications in Algebra, 39 (2011), 4183-4194.
  15. Hila, K., Davvaz, B. and Dine, J., Study on the structure of Γ-semihypergroups, Communications in Algebra, 40(8) (2012), 2932-2948.
  16. Iampan, A., On ordered ideal extensions of ordered ternary semigroups, Lobachevskii J. Math., 31(1) (2010), 13-17.
  17. Marty, F., Sur une generalization de la notion de groupe, 8
  18. iem Congres Math. Scandinaves, Stockholm, (1934) 45-49.
  19. Mirvakili, S. and Davvaz, B., Applications of strongly transitive geometric spaces to n-ary hypergroups, ARS Combinatoria, 109 (2013), 193-227.
  20. Mirvakili, S. and Davvaz, B., On some combinatorial aspects of transposition n-ary hypergroups, Carpathian Journal of
  21. Mathematic, 30(1) (2014), 109-116.
  22. Naka, K. and Hila, K., Some properties of hyperideals in ternary semihypergroups, Math. Slovaca, 63(3) (2013), 449-468.
  23. Lehmer, D.H., A ternary analogue of abelian groups, American Journal of Mathematics, 54 (1932), 329-338.
  24. Leoreanu, V., About the simplifiable cyclic semihypergroups, Ital. J. Pure Appl. Math., 7 (2000), 69-76.
  25. Leoreanu-Fotea, V. and Davvaz, B., n-hypergroups and binary relations, European Journal of Combinatorics, 29 1207-1218.
  26. Los, J., On the extending of models I, Fundamenta Mathematicae, 42 (1955), 38-54.
  27. M.L. Santiago, M.L. and Bala, S.S., Ternary semigroups, Semigroup Forum, 81 (2010) 380-388.
  28. Sioson, F.M., Ideal theory in ternary semigroups, Mathematica Japonica, 10 (1965) 63-84