Main Article Content


In this paper we have proved some results on conharmonically flat, quasi conharmonically flat and φ-conharmonically flat LP-Sasakian manifolds with respect to Zamkovoy connection. Also, we study generalized conharmonic φ-recurrent LP-Sasakian manifolds with respect to Zamkovoy connection. Moreover, we study LP-Sasakian manifolds satisfying K*(ξ,U)∘R*=0, where K* denotes conharmonic curvature tensor and R* denotes Riemannian curvature tensor with respect to Zamkovoy connection.


LP-Sasakian Manifold Conharmonic Curvature Tensor Zamkovoy Connection

Article Details

Author Biographies




How to Cite
Mandal, A., & Das, A. (2021). LP-Sasakian Manifolds Equipped with Zamkovoy Connection and Conharmonic Curvature Tensor. Journal of the Indonesian Mathematical Society, 27(2), 137–149.


  1. Matsumoto, K., On Lorentzian paracontact manifolds, Bull. of Yamagata Univ., Nat. Sci. 12 (1989), 151-156.
  2. Mihai, I. and Rosca, R., On Lorentzian P-Sasakian manifolds, Classical Analysis,World Scientific Publi. (1992) 155-169.
  3. Dubey, R. S., Generalized recurrent spaces, Indian j. pure Appl. Math., 10(12) (1979) 1508-1513.
  4. De, U. C. and Guha, N., On generalized recurrent manifolds, J.Nat. Acad. Math., India 9(1991) 85-92.
  5. Shaikh, A. A, Prakasha, D. G. and Ahmad, H., On generalized φ-recurrent LP-Sasakian manifolds, J. of the Egyptian Mathematical Society, 23(2015), 161-166.
  6. Taleshian, A. Prakasha, D. G. and Vikas, K. and Asghari, N., On The Conharmonic Curvature Tensor of LP-Sasakian Manifolds, Palestine J. of Math, 5(1) (2016) 177-184.
  7. De, U. C., Matsumoto, K. and Shaikh, A. A., On Lorentzian para-Sasakian manifolds, Rendiconti del Seminario Matematico di Messina, Serie II, Supplemento al n. 3(1999), 149-158.
  8. Ozgur, C., φ-Conformally flat Lorentzian para Saskian manifolds, Radovi Mathemeticki, Vol(12), (2003)p-99-106
  9. Ishii, Y., "On conharmonic transformations," Tensor, NS, vol. 11, (1957) 73-80,
  10. Blair, D. E., Contact manifolds in Riemannian Geometry. Lect. Notes Math. Springer-Verlag, Berlin 509,(1976)
  11. Zamkovoy, S., Canonical connections on paracontact manifolds. Ann. Global Anal. Geom. 36(1)(2008), 37-60.
  12. Blaga, A. M., Canonical connection on Para Kenmotso manifold, Novi Sad .J. Math, Vol 45, No.2 (2015), 131-142
  13. Biswas, A. and Baishya, K. K., study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection,Bulletin of the Transilvania University of Brasov, 12(2) (2020) 233-246.
  14. Biswas, A. and Baishya, K. K., A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds, Scientific Studies and Research
  15. Series Mathematics and Informatics, 29(1) (2019), 59-72.
  16. Mandal, A. and Das, A., On M-Projective Curvature Tensor of Sasakian Manifolds admitting Zamkovoy Connection", Adv. Math. Sci. J., 9(10) (2020), 8929-8940.
  17. Mandal, A. and Das, A., Projective Curvature Tensor with respect to Zamkovoy connection in Lorentzian para Sasakian manifolds", J. Indones. Math. Soc., 26(3) (2020), 369-379.
  18. Mandal, A. and Das, A., Pseudo projective curvature tensor on Sasakian manifolds admitting Zamkovoy connection", Bull. Cal. Math. Soc., 112(5) (2020), 431-450.
  19. Das, A. and Mandal, A., Study of Ricci solitons on concircularly flat Sasakian manifolds admitting Zamkovoy connection", The Aligarh Bull. of Math., 39(2) (2020), 47-61.