Main Article Content


In this paper we give a further study on fully prime submodules. For any fully prime submodules we define a product called $\am$-product. The further investigation of fully prime submodules in this work, i.e. the fully m-system and fully prime radicals, is related to this product. We show that the fully prime radical of any submodules can be characterize by the fully m-system. As a special case, the fully prime radical of a module $M$ is the intersection of all minimal fully prime submodules of $M$.


fully invariant submodules fully prime submodules fully m-system fully prime radicals

Article Details

How to Cite
Wijayanti, I. E., & Yuwaningsih, D. A. (2017). On Fully Prime Radicals. Journal of the Indonesian Mathematical Society, 23(2), 33–45.


  1. Azizi,A.: Radical formula and prime submodules, {it Journal of Algebra}, {bf 307} (2007), 454 - 460.
  2. Dauns,J.: Prime Modules, {it Journal f"ur die reine und angewandte Mathematik}, {bf 298} (1978), 156 - 181.
  3. Haghany,A., Vedadi,M.R.: Endoprime Modules, {it Acta Mathematica Hungaria}, {bf 106} (1-2) (2005), 89-99.
  4. Lam,T.Y.: A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991.
  5. Sanh,N.V., Nguyen,A.V., Ahmed,K.F.U., Asawasamrit,S., Thao,L.P.: Primeness in Module Category, {it Asian-European Journal of Mathematics}, {bf 3}(1) (2010), 145-154.
  6. Sanh,N.V., Thao, L.P., Al-Mayahi,N.F.A., Shum,K.P.: Zariski Topology of Prime Spectrum of a Module, {it Proceedings of the International Conference on Algebra 2010} ed. Wanida Hemakul et. al. (World Scientific), (2012), 461-477.
  7. Raggi,F., R'{i}os,J., Rinc'{o}n,H., Fern'{a}ndez-Alonso,R., Signoret,C.: Prime and Irreducible Preradicals, {it J. Algebra Appl.}, {bf 4}(4) (2005), 451 - 466.
  8. Wijayanti,I.E., Wisbauer,R.: Coprime Modules and Comodules, {it Communications in Algebra}, {bf 37}
  9. (4) (2009), 1308 - 1333.
  10. Wijayanti,I.E.: On Left Residuals of Submodules in Fully Multiplication Modules, {it JP Journal of Algebra, Number Theory and Applications}, {bf 36} (1) (2015), 17 - 28.
  11. Wisbauer,R.: Foundations of Module and Ring Theory A handbook for Study and Research, Gordon and Breach Science Publishers, Philadelphia, 1991.
  12. Wisbauer,R.: Modules and algebras : bimodule structure and group actions on algebras, Addison Wesley Longman Ltd., Essex, 1996.