Soft S-Paracompact Space

Vishwanath Kumasi (1) , Baiju Thankachan (2)
(1) Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, India,
(2) Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, India

Abstract

This paper introduces a new topological class called soft S-paracompact spaces. These spaces generalize the concept of soft paracompact spaces. A soft topological space is considered soft S-paracompact if every soft open cover has a locally finite soft semi-open refinement. We explore the key properties of soft S-paracompact spaces and investigate their relationships with other well-established soft topological spaces. We depict an application of soft S-paracompactness in the decision-making problem.

Full text article

Generated from XML file

References

L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338–353, 1965. https://doi.org/10.1016/S0019-9958(65)90241-X.

D. Molodtsov, “Soft set theory—first results,” Computers & mathematics with applications, vol. 37, no. 4-5, pp. 19–31, 1999. https://www.sciencedirect.com/science/article/pii/S0898122199000565.

P. K. Maji, R. Biswas, and A. R. Roy, “Soft set theory,” Computers & mathematics with applications, vol. 45, no. 4-5, pp. 555–562, 2003. https://www.sciencedirect.com/science/article/pii/S0898122103000166.

M. Shabir and M. Naz, “On soft topological spaces,” Computers & Mathematics with Applications, vol. 61, no. 7, pp. 1786–1799, 2011. https://www.sciencedirect.com/science/article/pii/S0898122111000927.

N. C¸ a˘gman, S. Karata¸s, and S. Enginoglu, “Soft topology,” Computers & Mathematics with Applications, vol. 62, no. 1, pp. 351–358, 2011. https://www.sciencedirect.com/science/article/pii/S0898122111004044.

S. Engino˘glu, N. C¸ a˘gman, S. Karata¸s, and T. Aydın, “On soft topology,” El-Cezeri, vol. 2, no. 3, pp. 23–38, 2015. https://dergipark.org.tr/tr/download/article-file/56984.

N. Levine, “Semi-open sets and semi-continuity in topological spaces,” The American mathematical monthly, vol. 70, no. 1, pp. 36–41, 1963. https://www.jstor.org/stable/2312781.

K. Y. Al-Zoubi, “S-paracompact spaces,” Acta Mathematica Hungarica, vol. 110, no. 1-2 pp. 165–174, 2006. Available at: https://doi.org/10.1007/s10474-006-0001-4.

D. Jankovi´c, “A note on mappings of extremally disconnected spaces,” Acta Mathematica Hungarica, vol. 46, no. 1-2, pp. 83–92, 1985. Available at: https://link.springer.com/article/10.1007/BF01961010.

T. Thompson, “s-closed spaces,” Proceedings of the American Mathematical Society, vol. 60, no. 1, pp. 335–338, 1976. Available at: https://www.jstor.org/stable/2041169.

K. Dlaska, N. Ergun, and M. Ganster, “Countably s-closed spaces,” Mathematica Slovaca, vol. 44, no. 3, pp. 337–348, 1994. Available at: https://dml.cz/handle/10338.dmlcz/136612.

N. Ergun, “On nearly paracompact spaces,” Istanbul University Science Faculty the Journal of Mathematics Physics and Astronomy, vol. 45, pp. 65–87, 1980. https://dergipark.org.tr/tr/download/article-file/100388.

T. Baiju and S. J. John, “Mappings and covering properties in l-topological spaces,” Hacettepe journal of Mathematics and Statistics, vol. 39, no. 1, pp. 55–65, 2010. https://www.researchgate.net/profile/Sunil-John-2/publication/264962813.

B. Chen, “Soft semi-open sets and related properties in soft topological spaces,” Applied Mathematics & Information Sciences, vol. 7, no. 1, pp. 287–294, 2013. Available at: https://digitalcommons.aaru.edu.jo/amis/vol07/iss1/36/.

F. Lin, “Soft connected spaces and soft paracompact spaces,” International Journal of Mathematical Science and Engineering, vol. 7, no. 2, pp. 1–7, 2013. https://www.researchgate.net/publication/292087439.

S. Hussain, “Properties of soft semi-open and soft semi-closed sets,” arXiv preprint, vol. arXiv:1409.3459, 2014. Available at: https://arxiv.org/abs/1409.3459.

S. Y¨uksel, N. Tozlu, and Z. G. Erg¨ul, “Soft regular generalized closed sets in soft topological spaces,” International Journal of Mathematical Analysis, vol. 8, no. 17-20, pp. 957-964, 2014. Available at: https://www.m-hikari.com/ijma/ijma-2014/ijma-5-8-2014/guzelergulIJMA5-8-2014.pdf.

B. Debnath, “A note on soft nearly compact and soft nearly paracompactness in soft topological spaces,” Int. J. Innov. Res. Sci. Eng. Technol, vol. 6, no. 8, pp. 15906–15914, 2017. https://www.ijirset.com/upload/2017/august/60_IJIRSET_Finnal_Paper_.pdf.

I. Zorlutuna, M. Akdag, W. Min, and S. Atmaca, “Remarks on soft topological spaces,” Annals of fuzzy Mathematics and Informatics, vol. 3, no. 2, pp. 171–185, 2012. https://www.researchgate.net/publication/296702749.

A. A. Rawshdeh, H. H. Al-Jarrah, and T. M. Al-Shami, “Soft expandable spaces,” Filomat, vol. 37, no. 9, pp. 2845–2858, 2023. https://www.pmf.ni.ac.rs/filomat-content/2023/37-9/37-9-16-18401.pdf.

I. Arockiarani and A. A. Lancy, “Generalized soft gβ-closed sets and soft gsβ-closed sets in soft topological spaces,” International Journal of Mathematical Archive, vol. 4, no. 2, pp. 1–7, 2013. https://scispace.com/papers/generalized-soft-gb-closed-sets-and-soft-gsb-closed-sets-in-3mrc69vwuk.

M. Akdag and A. Ozkan, “Soft α-open sets and soft α-continuous functions,” in Abstract and Applied Analysis, vol. 2014, p. 891341, Wiley Online Library, 2014. https://www.researchgate.net/publication/296774537.

B. A. Asaad, “Results on soft extremally disconnectedness of soft topological spaces,” J. Math. Comput. Sci, vol. 17, no. 4, pp. 448–464, 2017. https://www.researchgate.net/publication/319345341.

N. Demirta¸s and O. Dalkılı¸c, “Decompositions of softalpha-continuity and soft a-continuity,” Journal of New Theory, no. 31, pp. 86–94, 2020. https://dergipark.org.tr/en/pub/jnt/issue/55563/761266.

K. Kannan, “Soft generalized closed sets in soft topological spaces,” Journal of theoretical and applied information technology, vol. 37, no. 1, pp. 17–21, 2012. https://www.jatit.org/volumes/Vol37No1/2Vol37No1.pdf.

T. M. Al-shami, L. D. Koˇcinac, and B. A. Asaad, “Sum of soft topological spaces,” Mathematics, vol. 8, no. 6, p. 990, 2020. https://www.mdpi.com/2227-7390/8/6/990.

M. Milan, “Soft topological space and topology on the cartesian product,” Hacettepe Journal of Mathematics and Statistics, vol. 45, no. 4, pp. 1091–1100, 2016. https://dergipark.org.tr/tr/download/article-file/644879.

S. S. Pai and T. Baiju, “Mappings and products in soft l-topological spaces,” J. Math. Comput. Sci., vol. 11, no. 4, pp. 4943–4959, 2021. https://scik.org/index.php/jmcs/article/viewFile/5506/2948.

J. Mahanta and P. K. Das, “On soft topological space via semiopen and semiclosed soft sets,” arXiv preprint arXiv:1203.4133, 2012. https://www.researchgate.net/publication/221711073.

P. K. Maji, A. R. Roy, and R. Biswas, “An application of soft sets in a decision making problem,” Computers & mathematics with applications, vol. 44, no. 8-9, pp. 1077–1083, 2002. https://www.sciencedirect.com/science/article/pii/S089812210200216X.

R. Mareay, M. Ali, and T. Medhat, “Soft sets and soft topological spaces via its applications,” Kafrelsheikh Journal of Information Sciences, vol. 3, no. 1, pp. 1–7, 2022. https://kjis.journals.ekb.eg/article_246103.html.

M. Atef, S. Nada, and A. Nawar, “Covering soft rough sets and its topological properties with application,” Soft Computing, vol. 27, no. 8, pp. 4451–4461, 2023. https://link.springer.com/article/10.1007/s00500-023-07812-x.

R. Sanjitha and B. THANKACHAN, “Aggregation operators on multiple sets and its application in decision-making problems.,” Global & Stochastic Analysis, vol. 11, no. 1, 2024. https://www.researchgate.net/publication/378713499.

Z. Pawlak, Rough sets: Theoretical aspects of reasoning about data, vol. 9. Springer Science & Business Media, 2012. https://link.springer.com/book/10.1007/978-94-011-3534-4.

T. Y. Lin et al., “Granular computing on binary relations ii: Rough set representations and belief functions,” Rough sets in knowledge discovery, vol. 1, pp. 122–140, 1998. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=35bb5c1b87299a0e01db021bec501a90a01693ab.

Y. Yao, “Relational interpretations of neighborhood operators and rough set approximation operators,” Information sciences, vol. 111, no. 1-4, pp. 239–259, 1998. https://doi.org/10.1016/S0020-0255(98)10006-3.

Authors

Vishwanath Kumasi
Baiju Thankachan
baiju.t@manipal.edu (Primary Contact)
Kumasi, V., & Thankachan, B. (2025). Soft S-Paracompact Space. Journal of the Indonesian Mathematical Society, 31(3), 1869. https://doi.org/10.22342/jims.v31i3.1869

Article Details