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Abstract. Let R be a semiprime ring, I a nonzero ideal of R and α be an au-

tomorphism of R. A map F : R −→ R is said to be a multiplicative (gener-

alized) (α, 1)-derivation associated with a map d : R −→ R such that F (xy) =

F (x)α(y) + xd(y), for all x, y ∈ R. In the present paper, we shall prove that R

contains a nonzero central ideal if any one of the following holds: (i)F [x, y] ±
α [x, y] = 0, (ii)F (x ◦ y) ± α (x ◦ y) = 0, (iii)F [x, y] = [F (x), y]α,1 , (iv)F [x, y] =

(F (x) ◦ y)α,1 , (v)F (x ◦ y) = [F (x), y]α,1 and (vi)F (x ◦ y) = (F (x) ◦ y)α,1, for all

x, y ∈ I.
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1. INTRODUCTION

Let R be an associative ring with center Z. For any x, y ∈ R, the symbol
[x, y] stands for the commutator xy − yx and symbol x ◦ y denotes for the anti-
commutator xy + yx. Recall, a ring R is prime ring if xRy = 0 implies x = 0
or y = 0 and R is semiprime ring if xRx = 0 implies x = 0. Let α and β be
automorphisms of R. For any x, y ∈ R, [x, y]α,β = xα(y)− β(y)x and (x ◦ y)α,β =

xα(y) + β(y)x. By considering β = 1, where 1 is an identity mapping on R, we
have [x, y]α,1 = xα(y) − yx and (x ◦ y)α,1 = xα(y) + yx. An additive mapping

d : R −→ R is called a derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R.
The concept of a derivation was extended to generalized derivation by Bresar [2].
An additive mapping F : R −→ R is said to be a generalized derivation if there
exists a derivation d : R −→ R such that F (xy) = F (x)y + xd(y) for all x, y ∈ R.
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Inspired by the work of Martindale III [11], Daif [5] introduced the concept of
multiplicative derivations. Accordingly, a map d : R −→ R is called a multiplicative
derivation of R if d(xy) = d(x)y+xd(y) holds for all x, y ∈ R. Of course, these maps
are not necessarily additive. Then the complete description of these maps was given
by Goldman and Semrl [9]. Further, Daif and Tammam-El-Sayiad [7] extended
the notion of multiplicative derivation to multiplicative generalized derivation of
R if F (xy) = F (x)y + xd(y) holds for all x, y ∈ R, where d is derivation on
R. Recently, the definition of multiplicative generalized derivation was extended
to multiplicative (generalized)-derivation by Dhara and Ali [8] as follows: a map
F : R −→ R (not necessarily additive) is said to be a multiplicative (generalized)-
derivation if F (xy) = F (x)y + xd(y) holds for all x, y ∈ R, where d can be any
map(not necessarily additive nor a derivation).

Chang [4] introduced the notion of a generalized(α, β)-derivation of a ring
R and investigated some properties of such derivations. let α, β be mappings of
R into itself. An additive mapping F : R −→ R is called a generalized (α, β)-
derivation of R such that F (xy) = F (x)α(y) + β(x)d(y) for all x, y ∈ R where
α and β are automorphisms on R. A mapping F : R −→ R is said to be a
multiplicative (generalized) (α, β)-derivation if there exists a map d on R such
that F (xy) = F (x)α(y) + β(x)d(y) for all x, y ∈ R. Obviously every generalized
(α, β)-derivation is a multiplicative (generalized) (α, β)-derivation. In 1992, Daif
[6], proved a result that if R is a semiprime ring, I be a non-zero ideal of R and d
is a derivation of R such that d ([x, y]) = ± [x, y] for all x, y ∈ I, then I ⊆ Z(R).
Quadri [12] extended the result of Daif by replacing derivation d with a gener-
alized derivation in a prime ring. Recently, shauliang [10] studied the identities
related to generalized (α, β) derivation on prime rings. Asma Ali et al.[1] studied
the identities related to multiplicative (generalized) (α, β)-derivations in semiprime
rings. In this line of investigation, in the present paper we shall prove that R
contains a non-zero central ideal if any one of the following holds: (i)F [x, y] ±
α [x, y] = 0, (ii)F (x ◦ y) ± α (x ◦ y) = 0, (iii)F [x, y] = [F (x), y]α,1 , (iv)F [x, y] =

(F (x) ◦ y)α,1 , (v)F (x ◦ y) = [F (x), y]α,1 , (vi)F (x ◦ y) = (F (x) ◦ y)α,1, for all x, y ∈
I.

Throughout the present paper, we shall make use of the following basic iden-
tities without any specific mention:

(i) [x, yz] = y [x, z] + [x, y] z,
(ii) [xy, z] = [x, z] y + x [y, z] ,

(iii) x ◦ yz = (x ◦ y) z − y [x, z] = y (x ◦ z) + [x, y] z,
(iv) xy ◦ z = x (y ◦ z)− [x, z] y = (x ◦ z) y + x [y, z] ,
(v) [xy, z]α,1 = x [y, z]α,1 + [x, z] y = x [y, α(z)] + [x, z]α,1 y,

(vi) [x, yz]α,1 = y [x, z]α,1 + [x, y]α,1 α(z),

(vii) (x ◦ (yz))α,1 = (x ◦ y)α,1 α(z)− y [x, z]α,1 = y (x ◦ z)α,1 + [x, y]α,1 α(z),

(viii) ((xy) ◦ z)α,1 = x (y ◦ z)α,1 − [x, z] y = (x ◦ z)α,1 y + x [y, α(z)] .
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2. MAIN RESULTS

In order to prove our main theorems, we shall need the following lemma.

Lemma 2.1. ([13, Lemma 2.1]) Let R be a semiprime ring and I is a nonzero two
sided ideal of R and a ∈ R such that axa = 0 for all x ∈ I, then a = 0.

Theorem 2.2. Let R be a semiprime ring, I a nonzero ideal of R and α is an
automorphism of R. Suppose that F is multiplicative (generalized) (α, 1)-derivation
on R associated with the map d on R. If F [x, y]±α [x, y] = 0 holds for all x, y ∈ I,
then d is commuting on I.

Proof. By the hypothesis, we have

F [x, y]± α [x, y] = 0 for all x, y ∈ I. (2.1)

Replacing y by yx in (2.1), we obtain that

F ([x, y]x)± α ([x, y]x) = 0 for all x, y ∈ I,

and so

F ([x, y])α (x) + [x, y] d (x)± α ([x, y])α (x) = 0 for all x, y ∈ I.

Using the hypothesis, we obtain

[x, y] d (x) = 0 for all x, y ∈ I. (2.2)

Replacing y by ry in (2.2), we get

r [x, y] d (x) + [x, r] yd (x) = 0 for all x, y ∈ I, r ∈ R.

Using (2.2), we obtain

[x, r] yd (x) = 0 for all x, y ∈ I, r ∈ R. (2.3)

Replacing y by yx in (2.3), we get

[x, r] yxd (x) = 0 for all x, y ∈ I, r ∈ R. (2.4)

Right multiplying (2.3) by x, we have

[x, r] yd (x)x = 0 for all x, y ∈ I, r ∈ R. (2.5)

Subtracting (2.4) from (2.5), we get

[x, r] y [x, d (x)] = 0 for all x, y ∈ I, r ∈ R.

Replacing r by d (x) in the last equation, we have

[x, d (x)] y [x, d (x)] = 0 for all x, y ∈ I.

That is

[x, d (x)] I [x, d (x)] = 0 for all x ∈ I.
By lemma 2.1, we conclude that [x, d (x)] = 0 for all x ∈ I. Therefore d is commut-
ing on I.
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Theorem 2.3. Let R be a semiprime ring, I a nonzero ideal of R and α is an
automorphism of R. Suppose that F is multiplicative (generalized) (α, 1)-derivation
on R associated with the map d. If F (x ◦ y) ± α (x ◦ y) = 0 holds for all x, y ∈ I,
then d is commuting on I.

Proof. By the hypothesis, we have

F (x ◦ y)± α (x ◦ y) = 0 for all x, y ∈ I. (2.6)

Replacing y by yx in (2.6), we obtain that

F ((x ◦ y)x)± α ((x ◦ y)x) = 0 for all x, y ∈ I,
and so

F ((x ◦ y))α (x) + (x ◦ y) d (x)± α ((x ◦ y))α (x) = 0 for all x, y ∈ I.
Using the hypothesis, we obtain

(x ◦ y) d (x) = 0 for all x, y ∈ I. (2.7)

Replacing y by ry in (2.7), we find that

r (x ◦ y) d (x) + [x, r] yd (x) = 0 for all x, y ∈ I, r ∈ R.
Using (2.7), we obtain

[x, r] yd (x) = 0 for all x, y ∈ I, r ∈ R. (2.8)

Using the same arguments as used in the proof of Theorem 2.2, we get the required
result.

Theorem 2.4. Let R be a semiprime ring, I a nonzero ideal of R and α is an
automorphism of R. Suppose that F is multiplicative (generalized) (α, 1)-derivation
on R associated with the map d. If F [x, y] = [F (x), y]α,1 holds for all x, y ∈ I,
then d is commuting on I.

Proof. By the hypothesis, we have

F [x, y] = [F (x), y]α,1 for all x, y ∈ I. (2.9)

Replacing y by yx in (2.9), we obtain that

F ([x, y]x) = y [F (x), x]α,1 + [F (x), y]α,1 α (x) for all x, y ∈ I,
and so

F ([x, y])α (x) + [x, y] d (x) = y [F (x), x]α,1 + [F (x), y]α,1 α (x) for all x, y ∈ I.
Using the hypothesis, we obtain

[x, y] d (x) = y [F (x), x]α,1 for all x, y ∈ I. (2.10)

Replacing y by ry in (2.10), we find that

r [x, y] d (x) + [x, r] yd (x) = ry [F (x), x]α,1 for all x, y ∈ I, r ∈ R.

Using (2.10), we get

[x, r] yd (x) = 0 for all x, y ∈ I, r ∈ R. (2.11)
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Using similar argument as used in the proof of Theorem 2.2, we get the required
result.

Theorem 2.5. Let R be a semiprime ring, I a nonzero ideal of R and α is an
automorphism of R. Suppose that F is multiplicative (generalized) (α, 1)-derivation
on R associated with the map d. If F [x, y] = (F (x) ◦ y)α,1 holds for all x, y ∈ I,
then d is commuting on I.

Proof. By the hypothesis, we have

F [x, y] = (F (x) ◦ y)α,1 for all x, y ∈ I. (2.12)

Replacing y by yx in (2.12), we obtain that

F ([x, y]x) = (F (x) ◦ y)α,1 α (x)− y [F (x), x]α,1 for all x, y ∈ I

and so,

F ([x, y])α (x) + [x, y] d (x) = (F (x) ◦ y)α,1 α (x)− y [F (x), x]α,1 for all x, y ∈ I.

Using the hypothesis, we obtain

[x, y] d (x) = −y [F (x), x]α,1 for all x, y ∈ I. (2.13)

Replacing y by ry in (2.13), we get

r [x, y] d (x) + [x, r] yd (x) = −ry [F (x), x]α,1 for all x, y ∈ I, r ∈ R.

Using (2.13), we get

[x, r] yd (x) = 0 for all x, y ∈ I, r ∈ R. (2.14)

Arguing in the similar manner as in Theorem 2.2, we get the result.

Theorem 2.6. Let R be a semiprime ring, I a nonzero ideal of R and α is an
automorphism of R. Suppose that F is multiplicative (generalized) (α, 1)-derivation
on R associated with the map d. If F (x ◦ y) = [F (x), y]α,1 holds for all x, y ∈ I,
then d is commuting on I.

Proof. By the hypothesis, we have

F (x ◦ y) = [F (x), y]α,1 for all x, y ∈ I. (2.15)

Replacing y by yx in (2.15), we obtain that

F ((x ◦ y)x) = y [F (x), x]α,1 + [F (x), y]α,1 α (x) for all x, y ∈ I,

and so

F ((x ◦ y))α (x) + (x ◦ y) d (x) = y [F (x), x]α,1 + [F (x), y]α,1 α (x) for all x, y ∈ I.

Using the hypothesis, we obtain

(x ◦ y) d (x) = y [F (x), x]α,1 for all x, y ∈ I. (2.16)

Replacing y by ry in (2.16), we get

r (x ◦ y) d (x) + [x, r] yd (x) = ry [F (x), x]α,1 for all x, y ∈ I, r ∈ R.
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Using (2.16), we have

[x, r] yd (x) = 0 for all x, y ∈ I, r ∈ R. (2.17)

Arguing in the similar manner as in Theorem 2.2, we get the result.

Theorem 2.7. Let R be a semiprime ring, I a nonzero ideal of R and α is an
automorphism of R. Suppose that F is multiplicative (generalized) (α, 1)-derivation
on R associated with the map d. If F (x ◦ y) = (F (x) ◦ y)α,1 holds for all x, y ∈ I,
then d is commuting on I.

Proof. By the hypothesis, we have

F (x ◦ y) = (F (x) ◦ y)α,1 for all x, y ∈ I. (2.18)

Replacing y by yx in (2.18), we obtain that

F ((x ◦ y)x) = (F (x) ◦ y)α,1 α (x)− y [F (x), x]α,1 for all x, y ∈ I,

and so

F ((x ◦ y))α (x) + (x ◦ y) d (x) = (F (x) ◦ y)α,1 α (x)− y [F (x), x]α,1 for all x, y ∈ I.

Using the hypothesis, we obtain

(x ◦ y) d (x) = −y [F (x), x]α,1 for all x, y ∈ I. (2.19)

Replacing y by ry in (2.19), we find that

r (x ◦ y) d (x) + [x, r] yd (x) = −ry [F (x), x]α,1 for all x, y ∈ I, r ∈ R.

Using (2.19), we have

[x, r] yd (x) = 0 for all x, y ∈ I, r ∈ R. (2.20)

Arguing in the similar manner as in Theorem 2.2, we get the result.

Corollary 2.8. Let R be a semiprime ring. Suppose that F, d is a multiplicative
(generalized) (α, 1)-derivation of R. If any one of the following holds:

(i) F [x, y]± α [x, y] = 0
(ii) F (x ◦ y)± α (x ◦ y) = 0

(iii) (iii)F [x, y] = [F (x), y]α,1
(iv) F [x, y] = (F (x) ◦ y)α,1
(v) F (x ◦ y) = [F (x), y]α,1
(vi) F (x ◦ y) = (F (x) ◦ y)α,1 ∀x, y ∈ R

then d is commuting on R.
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3. Example

In this, we construct an example to the condition (i) of corollary 2.8 so that
the semiprimeness condition of the ring is essential.

Example 1. Let Z be the set of integers and R =

{(
a b
0 c

)
| a, b, c ∈ Z

}
, I

=

{(
a b
0 c

)
| a, b, c ∈ Z

}
. Let us define F, d, α : R −→ R by F

(
a b
0 c

)
=(

0 −b
0 c

)
, d

(
a b
0 c

)
=

(
0 −b
0 0

)
, α

(
a b
0 c

)
=

(
a −b
0 c

)
. It is easy to

verify that I is an ideal on R, F is multiplicative (generalized) (α, 1)-derivation

associated with the map d, α is an automorphism on R. We see that

(
0 1
0 0

)
R(

0 1
0 0

)
=

(
0 0
0 0

)
, but

(
0 1
0 0

)
is nonzero element of R. It implies that R

is not semiprime.
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