HEMI-SLANT SUBMANIFOLD OF \((LCS)_{n}\)-MANIFOLD

PAYEL KARMARKAR\(^1\) AND ARINDAM BHATTACHARYYA\(^2\)

\(^1\)Department of Mathematics, Jadavpur University, Kolkata-700032, India
payelkarmakar632@gmail.com

\(^2\)Department of Mathematics, Jadavpur University, Kolkata-700032, India
bhattachar1968@yahoo.co.in

Abstract. In this paper, we analyse briefly some properties of hemi-slant submanifold of \((LCS)_{n}\)-manifold. Here we discuss about some necessary and sufficient conditions for distributions to be integrable and obtain some results in this direction. We also study the geometry of leaves of hemi-slant submanifold of \((LCS)_{n}\)-manifold. At last, we give an example of a hemi-slant submanifold of an \((LCS)_{n}\)-manifold.

Key words and Phrases: \((LCS)_{n}\)-manifold, hemi-slant submanifold, integrability, leaves of distribution.

1. INTRODUCTION

An n-dimensional Lorentzian manifold \(\tilde{M}\) is a smooth connected paracompact Hausdorff manifold with a Lorentzian metric \(\tilde{g}\), that is \(\tilde{M}\) admits a smooth symmetric tensor field \(\tilde{g}\) of type \((0,2)\) such that for each point \(\tilde{g}_{p} : T_{p}\tilde{M} \times T_{p}\tilde{M} \rightarrow \mathbb{R}\) is a non-degenerate inner-product of signature \((-,+,...,+\)) on \(T_{p}\tilde{M}\) denotes the tangent vector space of \(\tilde{M}\) at \(p\) and \(\mathbb{R}\) is the real no. space. A non-zero vector \(X_{p} \in T_{p}\tilde{M}\) is known to be spacelike, null or lightlike, or timelike according as \(\tilde{g}_{p}(X_{p},X_{p}) > 0\), \(0\), or \(< 0\) respectively.

If \(\tilde{M}\) is a differentiable manifold of dimension \(n\), and there exists a \((\phi, \xi, \eta)\) structure satisfying
\[
\phi^{2} = I + \eta \otimes \xi, \quad \eta(\xi) = -1, \quad \phi(\xi) = 0, \quad \eta \circ \phi = 0,
\]
then \(\tilde{M}\) is called an almost paracontact manifold.

In an almost paracontact structure \((\phi, \xi, \eta, \tilde{g})\),
\[
\tilde{g}(X, \phi Y) = \tilde{g}(\phi X, Y),
\]
2020 Mathematics Subject Classification: 53C05, 53C15, 53C40, 53C50.
Received: 12-03-2021, accepted: 17-01-2022.
\[2g(\phi X, Y) = (\nabla_X \eta)Y + (\nabla_Y \eta)X,\]
\[\phi^2 X = X + \eta(X)\xi, \eta \circ \phi = 0, \phi(\xi) = 0, \eta(\xi) = -1, \quad (1.1)\]

where \(\phi\) is a tensor of type (1,1), \(\xi\) is a vector field, \(\eta\) is a 1-form and \(\tilde{g}\) is Lorentzian metric satisfying
\[\tilde{g}(\phi X, \phi Y) = \tilde{g}(X, Y) + \eta(X)\eta(Y), \tilde{g}(X, \xi) = \eta(X), \quad (1.2)\]

for all vector fields \(X, Y\) on \(\tilde{M}\).

In a Lorentzian manifold \((\tilde{M}, \tilde{g})\), a vector field \(P\) defined by \(\tilde{g}(X, P) = A(X)\) for any \(X \in \Gamma(T\tilde{M})\), is called concircular if
\[\bar{\nabla}_X A = X\alpha + \omega X, \alpha \neq 0, \quad (\bar{\nabla}_X \alpha = X\alpha = d\alpha(X) = \rho\eta(X), \quad (1.7)\]

for all vector fields \(X, Y\) on \(\tilde{M}\) and \(\alpha\) is a non-zero scalar function related to \(\rho\), by \(\rho = -(\xi\alpha)\).

Let \(\tilde{M}\) admits a unit timelike concircular vector field \(\xi\), called the structure vector field of the manifold, then \(\tilde{g}(\xi, \xi) = -1\), since \(\xi\) is a unit concircular vector field, it follows that \(\exists\) a non-zero 1-form \(\eta\) such that \(\tilde{g}(X, \xi) = \eta(X)\). The following equations hold
\[\bar{\nabla}(\nabla_X \eta)Y = \alpha [\tilde{g}(X, Y) + \omega(X)A(Y)], \quad \alpha \neq 0, \quad (\bar{\nabla}_X \alpha = X\alpha = d\alpha(X) = \rho\eta(X), \quad (1.7)\]

for all vector fields \(X, Y\) on \(\tilde{M}\) and \(\alpha\) is a non-zero scalar function related to \(\rho\), by \(\rho = -(\xi\alpha)\).

Let \(\phi X = \frac{1}{\alpha} \nabla X \xi\), from which it follows that \(\phi\) is a symmetric (1,1) tensor and call it the structure tensor on the manifold. Thus the Lorentzian manifold \(\tilde{M}\) together with unit timelike concircular vector field \(\xi\), its associated 1-form \(\eta\) and a (1,1) tensor field \(\phi\) is called a Lorentzian Concircular Structure manifold \(\text{(LCS)}_{\alpha}\)-manifold. Specially, if \(\alpha = 1\), then we obtain LP-Sasakian structure of Matsumoto [15]. In an \((\text{LCS})_{\alpha}\)-manifold \((n > 2)\), the following relations hold
\[\phi^2 = I + \eta \otimes \xi, \eta(\xi) = -1, \quad \phi = \frac{1}{\alpha} \nabla X \xi, \quad (\nabla X \eta)(Y) = \eta(X)Y - \eta(Y)X - \eta(X)Y, \quad (1.7)\]

\[\forall X, Y \in T\tilde{M}.\]

Also \((\text{LCS})_{\alpha}\)-manifold satisfies–
\[\bar{\nabla}_X \phi = \alpha \tilde{g}(X, Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X, \quad (1.6)\]
\[\bar{\nabla}_X \xi = \alpha \phi X. \quad (1.7)\]
Let $M$ be a submanifold of $\tilde{M}$ with $(LCS)_n$-structure $(\phi, \xi, \eta, \tilde{g})$ with induced metric $g$ and let $\nabla$ is the induced connection on the tangent bundle $TM$ and $\nabla^\perp$ is the induced connection on the normal bundle $T^\perp M$ of $M$.

The Gauss and Weingarten formulae are characterized by—

\[ \tilde{\nabla}_XY = \nabla_XY + h(X,Y), \quad (1.8) \]

\[ \tilde{\nabla}_XN = -A_NX + \nabla^\perp_XN, \quad (1.9) \]

\[ \forall \ X,Y \in TM, \ N \in T^\perp M, \ h \text{ is the 2nd fundamental form and } A_N \text{ is the Weingarten mapping associated with } N \text{ via} \]

\[ g(A_NX,Y) = g(h(X,Y),N). \quad (1.10) \]

The mean curvature $H$ is given by

\[ H = \frac{1}{k} \sum_{i=1}^{k} h(e_i,e_i), \quad (1.11) \]

where $k$ is the dimension of $M$ and \{e_i\}_{i=1}^k is the local orthonormal frame on $M$.

For any $X \in \Gamma(TM)$,

\[ \phi X = TX + FX, \quad (1.12) \]

where $TX$ is the tangential component and $FX$ is the normal component of $\phi X$.

Similarly, for any $V \in \Gamma(T^\perp M)$,

\[ \phi V = tV + fV, \quad (1.13) \]

where $tV, fV$ are the tangential component and the normal component of $\phi V$ respectively.

The covariant derivatives of the tensor fields $T,F,t,f$ are defined as—

\[ (\nabla_XT)Y = \nabla_XTY - T\nabla_XY, \quad (1.14) \]

\[ (\nabla_XF)Y = \nabla_XFY - F\nabla_XY, \quad (1.15) \]

\[ (\nabla_Xt)V = \nabla_XtV - t\nabla_X^\perp V, \quad (1.16) \]

\[ (\nabla_Xf)V = \nabla_X^\perp fV - f\nabla_X^\perp V \quad (1.17) \]

\[ \forall \ X,Y \in TM, V \in T^\perp M. \]

A submanifold is called—

i) invariant if $\forall \ X \in \Gamma(TM), \phi X \in \Gamma(TM)$,

ii) anti-invariant if $\forall \ X \in \Gamma(TM), \phi X \in \Gamma(T^\perp M)$,

iii) totally umbilical if $h(X,Y) = g(X,Y)H$ \quad (1.18)

\[ \forall \ X,Y \in \Gamma(TM), \ H \text{ is the mean curvature}, \]

iv) totally geodesic if $h(X,Y) = 0 \ \forall \ X,Y \in \Gamma(TM)$,

v) minimal if $H = 0$ on $M$. 

Let $M$ be a Riemannian manifold isometrically immersed in an almost contact metric manifold $(\tilde{M}, \phi, \xi, \eta, g)$ and $\xi$ be tangent to $M$. Then the tangent bundle $TM$ decomposes as $TM = D \oplus <\xi>$, where $D$ is the orthogonal distribution to $\xi$. Now for each non-zero vector $X$ tangent to $M$ at $x$, such that $X$ is not proportional to $\xi_x$, we denote the angle between $\phi X$ and $D_x$ by $\theta(X)$. $M$ is called slant submanifold if the angle $\theta(X)$ is constant, which is independent of the choice of $x \in M$ and $X \in T_x M - <\xi_x>$. The constant angle $\theta \in [0, \frac{\pi}{2}]$ is then called the slant angle of $M$ in $\tilde{M}$. If $\theta = 0$, then the submanifold is invariant; if $\theta = \frac{\pi}{2}$, then the submanifold is anti-invariant and if $\theta \neq 0, \frac{\pi}{2}$, then the submanifold is proper slant.

According to A. Lotta [9], when $M$ is a proper slant submanifold of $\tilde{M}$ with slant angle $\theta$, then $\forall X \in \Gamma(TM)$,
\[ T^2(X) = -\cos^2 \theta (X - \eta(X)\xi). \] (1.19)

A. Carriazo [3] introduced hemi-slant submanifolds as a special case of bislant submanifolds and he called them pseudo-slant submanifolds.

A submanifold $M$ of an $(LCS)_n$-manifold is called hemi-slant if there exist two orthogonal distributions $D^\theta$ and $D^\perp$ satisfying $[5]$—

i) $TM = D^\theta \oplus D^\perp \oplus <\xi>$,

ii) $D^\theta$ is a slant distribution with slant angle $\theta \neq \frac{\pi}{2}$,

iii) $D^\perp$ is totally real i.e., $\phi D^\perp \subseteq T^\perp M$.

A hemi-slant submanifold is called proper if $\theta \neq 0, \frac{\pi}{2}$.

CR-submanifolds and slant submanifolds are hemi-slant submanifolds with slant angle $\theta = \frac{\pi}{2}$ and $D^\theta = 0$ respectively.

In the rest of this paper, we use $M$ as a hemi-slant submanifold of an $(LCS)_n$-manifold $\tilde{M}$. If we denote the dimensions of the distributions $D^\perp$ and $D^\theta$ by $m_1, m_2$ respectively, then we have—

i) if $m_2 = 0$, then $M$ is anti-invariant,

ii) if $m_1 = 0, \theta = 0$, then $M$ is invariant,

iii) if $m_1 = 0, \theta \neq 0$, then $M$ is proper-slant with slant angle $\theta$,

iv) if $m_1 m_2 \neq 0, \theta \in (0, \frac{\pi}{2})$, then $M$ is proper hemi-slant.

Let $M$ be hemi-slant submanifold of an $(LCS)_n$-manifold $\tilde{M}$, then for any $X \in TM$,
\[ X = P_1 X + P_2 X + \eta(X)\xi, \] (1.20)

where $P_1, P_2$ are projection maps on the distributions $D^\perp, D^\theta$ respectively. Now operating $\phi$ on (1.20), we get
\[ \phi X = \phi P_1 X + \phi P_2 X + \eta(X)\phi \xi. \]
Using (1.1) and (1.12), we obtain
\[ TX + FX = FP_1X + TP_2X + FP_2X. \]

On comparing, we get
\[ TX = TP_2X, \]
\[ FX = FP_1X + FP_2X. \]

If we denote the orthogonal complement of \( \phi(TM) \) in \( T^\bot M \) by \( \mu \), then the normal bundle \( T^\bot M \) can be decomposed as
\[ T^\bot M = F(D^\bot) \oplus F(D^\theta) < \mu >. \]  

(1.21)

Since \( F(D^\bot) \) and \( F(D^\theta) \) are orthogonal distributions, \( g(X,Y) = 0 \) for each \( X \in D^\bot \) and \( Y \in D^\theta \). Hence by (1.5) and (1.12), we have
\[ \forall \ Z \in D^\bot, W \in D^\theta, \ g(FZ, FW) = g(\phi Z, \phi W) = g(Z, W) = 0, \]
which shows that \( F(D^\bot), F(D^\theta) \) are mutually perpendicular. So, (1.21) is an orthogonal direct decomposition.

There are various types of works done on hemi-slant submanifolds. H. I. Abutuqayqah worked on geometry of hemi-slant submanifolds of almost contact manifolds [1]. M. A. Khan et al. discussed about totally umbilical hemi-slant submanifolds of Kahler manifolds [2] and of cosymplectic manifolds [4], and they also discussed about a classification on totally umbilical proper slant and hemi-slant submanifolds of a nearly trans-Sasakian manifold [6]. B. Laha et al. studied totally umbilical hemi-slant submanifolds of LP-Sasakian manifold [7] and hemi-slant submanifold of Kenmotsu manifold [10]. H. M. Tastan et al. discussed about hemi-slant submanifolds of a locally product Riemannian manifold [12] and of a locally conformal Kahler manifold [13]. Another important works on hemi-slant submanifolds were done by A. Lotta in 1996 [9], by M. A. Lone et al. in 2016 [8] and by M. S. Siddesha et al. in 2018 [11]. Motivated from these works, in this paper, we analyse some properties regarding distributions and leaves of hemi-slant submanifold of \((LCS)_n\)-manifold.

2. MAIN RESULTS

In this section, we discuss about some necessary and sufficient conditions for distributions to be integrable and obtain some results in this direction. We also study the geometry of leaves of hemi-slant submanifold of \((LCS)_n\)-manifold.

**Theorem 2.1.** Let \( M \) be a hemi-slant submanifold of an \((LCS)_n\)-manifold \( \tilde{M} \), then \( \forall \ Z, W \in D^\bot, \ A_{\phi W}Z = A_{\phi Z}W - \alpha \eta(W)Z - \alpha \eta(Z)W - 2\alpha \eta(Z)\eta(W)\xi. \)

**Proof.** On using (1.10), we have
\[ g(A_{\phi W}Z, X) = g(h(Z, X), \phi W) = g(\phi h(Z, X), W) = g(\phi \nabla_X Z, W) - g(\phi \nabla_X Z, W). \]
Theorem 2.3. Let $\mathcal{D}$ be a hemi-slant submanifold of an $(LCS)_n$-manifold $M$. Then the distribution $\mathcal{D}^0 \oplus \mathcal{D}^\perp$ is integrable if and only if $g([X,Y], \xi) = 0$ for all $X, Y \in \mathcal{D}^0 \oplus \mathcal{D}^\perp$.

**Proof.** For $X, Y \in \mathcal{D}^0 \oplus \mathcal{D}^\perp$, \begin{align*}
g([X,Y], \xi) &= g(\nabla_X Y, \xi) - g(\nabla_Y X, \xi) \\
&= -g(\nabla_X \xi, Y) + g(\nabla_Y \xi, X) \\
&= -g(\alpha \phi X, Y) + g(\alpha \phi Y, X) \\
&= 0. \text{ (by (1.4))}
\end{align*}

Since $TM = \mathcal{D}^0 \oplus \mathcal{D}^\perp < \xi >$, therefore $[X,Y] \in \mathcal{D}^0 \oplus \mathcal{D}^\perp$. So, $\mathcal{D}^0 \oplus \mathcal{D}^\perp$ is integrable.

Conversely, let $\mathcal{D}^0 \oplus \mathcal{D}^\perp$ be integrable. Then $\forall X, Y \in \mathcal{D}^0 \oplus \mathcal{D}^\perp$, $[X,Y] \in \mathcal{D}^0 \oplus \mathcal{D}^\perp$. As $TM = \mathcal{D}^0 \oplus \mathcal{D}^\perp < \xi >$, therefore $g([X,Y], \xi) = 0$.

Theorem 2.3. Let $\mathcal{M}$ be a hemi-slant submanifold of an $(LCS)_n$-manifold $M$. Then the anti-invariant distribution $\mathcal{D}^\perp$ is integrable if and only if $\forall W \in \mathcal{D}^\perp, W$ is a scalar multiple of $\xi$.

**Proof.** For $Z, W \in \mathcal{D}^\perp$, from (1.6), we have
\begin{align*}
(\nabla_Z \phi)W &= \alpha [g(Z,W)\xi + 2\eta(Z)\eta(W)\xi + \eta(W)Z]. \tag{2.1}
\end{align*}

After some calculations and using (1.12), (1.13), we get
\begin{align*}
-A_{FW}Z + \nabla_Z FZ - T\nabla_Z W - F\nabla_Z W - th(Z,W) - fh(Z,W) &= \alpha [g(Z,W)\xi + 2\eta(Z)\eta(W)\xi + \eta(W)Z]. \tag{2.2}
\end{align*}

Comparing tangential components, we have
\begin{align*}
-A_{FW}Z - T\nabla_Z W - th(Z,W) &= \alpha [g(Z,W)\xi + 2\eta(Z)\eta(W)\xi + \eta(W)Z]. \tag{2.3}
\end{align*}

Interchanging $Z, W$, we obtain
\begin{align*}
-A_{FW}W - T\nabla_Z W - th(W,Z) &= \alpha [g(W,Z)\xi + 2\eta(W)\eta(Z)\xi + \eta(Z)W]. \tag{2.4}
\end{align*}

Subtracting (2.3) from (2.4) and using the fact that $h$ is symmetric, we have
\begin{align*}
-A_{FW}Z - A_{FZ}W + T(\nabla_Z W - \nabla_W Z) &= \alpha [\eta(Z)W - \eta(W)Z]. \tag{2.5}
\end{align*}
From (2.5), we have
\[ A_{FW}Z - A_{FZ}W + T([Z,W]) = \alpha[\eta(Z)W - \eta(W)Z]. \] (2.6)

Now \( D^\perp \) is integrable if and only if \([Z,W] \in D^\perp \) and as \( D^\perp \) is anti-invariant, \( \phi D^\perp \subseteq T^\perp M \) and so, \( T[Z,W] = 0 \).

Hence from (2.6), \( D^\perp \) is integrable if and only if \( A_{FW}Z - A_{FZ}W = \alpha[\eta(Z)W - \eta(W)Z] \).

From Theorem 2.1, we have as \( TW = 0 = TZ \),
\[ A_{GW}Z - A_{GZ}W = -\alpha\eta(W)Z - \alpha\eta(Z)W - 2\alpha \eta(Z)\eta(W)\xi \]
\[ \Rightarrow \alpha[\eta(Z)W - \eta(W)Z] = -\alpha\eta(W)Z - \alpha\eta(Z)W - 2\alpha \eta(Z)\eta(W)\xi \]
\[ \Rightarrow 2\alpha \eta(Z)W + 2\alpha \eta(Z)\eta(W)\xi = 0 \]
\[ \Rightarrow \eta(Z)W + \eta(Z)\eta(W)\xi = 0 \]
\[ \Rightarrow W + \eta(W)\xi = 0. \] Hence the result is proved.

**Theorem 2.4.** Let \( M \) be a hemi-slant submanifold of an \((LCS)_n\)-manifold \( \tilde{M} \). Then the slant distribution \( D^\theta \) is integrable if and only if \( \forall \ X,Y \in D^\theta \),
\[ P_1(\nabla_X Y - \nabla_Y X) = \alpha[\eta(Y)P_1X - \eta(X)P_1Y]. \] (2.7)

**Proof.** We denote by \( P_1, P_2 \) the projections on \( D^\perp, D^\theta \) respectively. \( \forall \ X,Y \in D^\theta \), we have from (1.6),
\[ \tilde{\nabla}_X \phi = \alpha[\tilde{g}(X,Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X]. \] (2.8)

On applying (1.8), (1.9), (1.12), (1.13), we have
\[ (\tilde{\nabla}_X \phi)Y = \nabla_X Y + h(X,TY) - A_{FY}X + \nabla_X FY - (T\nabla_X Y + F\nabla_X Y - (th(X,Y) + fh(X,Y))) = \alpha[g(X,Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X]. \] (2.9)

Comparing tangential components, we get
\[ \nabla_X TY - A_{FY}X - T\nabla_X Y - th(X,Y) = \alpha[g(X,Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X]. \] (2.10)

Interchanging \( X,Y \) in (2.10) and subtracting the resultant from (2.10), we obtain
\[ \nabla_X TY - \nabla_Y TX - A_{FY}X + A_{FX}Y - T\nabla_X Y + T\nabla_Y X = \alpha[\eta(Y)X - \eta(X)Y]. \] (2.11)

Since \( X,Y \in D^\theta, FY = 0 = FY \), applying \( P_1 \) to both sides of (2.11), we have
\[ P_1(\nabla_X TY - \nabla_Y TX) = \alpha[\eta(Y)P_1X - \eta(X)P_1Y]. \]

**Theorem 2.5.** Let \( M \) be a hemi-slant submanifold of an \((LCS)_n\)-manifold \( \tilde{M} \). If the leaves of \( D^\perp \) are totally geodesic in \( M \), then \( \forall \ X \in D^\theta \) and \( Z,W \in D^\perp \),
\[ g(h(Z,X),FW) + g(th(Z,W),X) = 0. \] (2.12)
Proof. From (1.6), (1.8), (1.9), we have
\[ \nabla_Z \phi W + h(Z, \phi W) - A_F W + \nabla_Z W - \phi h(Z, W) = \alpha g(Z, W) \xi + 2g(W) \eta(Z) \xi + \eta(W) \xi. \]

Comparing tangential components and taking inner product with \( X \in D^\theta \), we obtain
\[ -g(A_F W, X) - g(th(Z, W), X) - g(T\nabla_Z W, X) = 0. \]

The leaves of \( D^\perp \) are totally geodesic in \( M \) if for \( Z, W \in D^\perp \),
\[ \nabla_Z W \in D^\perp. \]
So, \( T\nabla_Z W = 0 \).
Thus \( g(A_F W, X) + g(th(Z, W), X) = 0. \)

Example. Now we give an example of a hemi-slant submanifold of an \((LCS)_n\)-manifold.

Let \( \tilde{M}(\mathbb{R}^9, \phi, \xi, \eta, g) \) denote the manifold \( \mathbb{R}^9 \) with the \((LCS)\)-structure given by
\[ \xi = 3\frac{\partial}{\partial z}, \eta = \frac{1}{3}(-dz + \sum_{i=1}^{4} b^i da^i), \]
\[ g = \frac{1}{9} \sum_{i=1}^{4} (da^i \otimes da^i \oplus db^i \otimes db^i) - \eta \otimes \eta, \]
\[ \phi(\frac{\partial}{\partial a^i}) = 0, \phi(\frac{\partial}{\partial b^i}) = \frac{\partial}{\partial a^i}, i = 1, 2, 3, 4, \]
\[ \text{and} \phi(\frac{\partial}{\partial z}) = \frac{\partial}{\partial b^i}, i = 1, 2 \text{ and } \phi(\frac{\partial}{\partial z}) = -\frac{\partial}{\partial b^i} \text{ for } i = 3, 4, \]
where \( (a^1, a^2, a^3, a^4, b^1, b^2, b^3, b^4, z) \in \mathbb{R}^9 \).

Let us consider a 5-dimensional submanifold \( M \) of \( \tilde{M} \) defined by
\[ (a^1, a^2, a^3, a^4, b^1, b^2, b^3, b^4, z) \mapsto (\cos\alpha a^1 + \sin\alpha a^2, \cos\beta b^1 + \sin\beta b^2, \frac{a^3 - b^3}{\sqrt{3}}, \frac{a^4 - b^4}{\sqrt{3}}, 3z). \]

Then it can be easily proved that \( M \) is a hemi-slant submanifold of \( \tilde{M} \) by choosing the slant distribution \( D_\theta = \langle e_1, e_2 \rangle \) with slant angle \( |\alpha - \beta| \) and the totally real distribution \( D^\perp = \langle e_3, e_4 \rangle \), where \( e_1 = \cos\alpha \frac{\partial}{\partial z} - \sin\alpha \frac{\partial}{\partial z}, e_2 = \sin\beta \frac{\partial}{\partial z} - \cos\beta \frac{\partial}{\partial z}, e_3 = \frac{\partial}{\partial x_1} + \frac{\partial}{\partial y_1}, e_4 = \frac{\partial}{\partial x_2} + \frac{\partial}{\partial y_2} \) such that \( \{e_1, e_2, e_3, e_4, \xi\} \) forms an orthogonal frame on \( TM \) so that \( TM = D_\theta \oplus D^\perp \oplus e_5 \).

Acknowledgement. The first author is the corresponding author and has been sponsored by University Grants Commission (UGC) Junior Research Fellowship, India. UGC-Ref. No.: 1139/(CSIR-UGC NET JUNE 2018). The authors would like to thank the referee for the valuable suggestions to improve the paper.
REFERENCES