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Abstract. The degree sum exponent distance matrix Mχdist(G) of a graph G is

a square matrix whose (i, j)th entry is (di + dj)dij whenever i 6= j, otherwise it is

zero,where di is the degree of ith vertex of G and dij = d(vi, vj) is distance between

vi and vj . In this paper, we define degree sum exponent distance energy Eχdist(G)

as sum of absolute eigenvalues of Mχdist(G). Also, we obtain some bounds on the

degree sum exponent distance energy of some graphs and deduce direct expressions

for some graphs.
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1. INTRODUCTION

The concept of graph energy was introduced by I.Gutman in 1978[1] having
direct correlation with the total π-electron energy of a molecule in the quantum
chemistry as calculated with the Huckel molecular orbital method. Here adjacency
matrix of a graph is considered. Later Laplacian energy [2, 4], signless Lapla-
cian energy [3], were introduced. Recently several results on energy related with
degree of a vertex and distance in a graph were studied such as distance energy
[5],degree sum energy of some graphs [6], degree square sum polynomial of some
graphs [8], degree sum energy [9],a survey on energy of graphs [7], complemen-
tary distance energy[10], degree sum distance energy [11], degree product distance
energy[12],degree exponent energy[13] and degree exponent sum energy[16].

For every pair of vertices in a connected graph there are, degree associated
each one of them and in addition there is distance between them (length of the
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shortest path). In continuation with this, in order to upgrade, we now introduce
concept of degree sum exponent distance energy of connected graph which is slight
generalization of degree sum energy since if exponent is made one, it coincides
with degree sum energy. The purpose of this paper is to compute the character-
istic polynomial, eigenvalues and energy of the new matrix associated with graph,
called degree sum exponent distance matrix, and compute bounds for degree sum
exponent distance energy and obtain expressions for some standard graphs.

2. Degree Sum Exponent Distance Energy

Let G be a connected graph of order n with vertex set V (G) = (v1, v2, ..., vn).
We denote d(vi) as the degree of a vertex vi which is the number of edges incident
on it and dij as the distance between two vertices vi and vj , the length of the
shortest path joining them. We define degree sum exponent distance matrix of G
as,
Mχdist(G) = [χij ] where,

χij = (d(vi) + d(vj))
dij if i 6= j (1)

= 0 if i = j

Example: For graph G given below,

Fig 2.1

DSED(G) =
0 5 5 4
5 0 4 9
5 4 0 9
4 9 9 0


Eigenvalues are, −11.1616,
−4,−3.2007, 18.3623, and en-
ergy is Eχdist(G) = 36.7246.

We note that,

(1) Mχdist(G) is real symmetric, so that the eigenvalues of Mχdist(G) are
real. If α1, α2, . . . , αn are the eigenvalues of Mχdist(G) then, they can be
arranged in a non-increasing order as α1 ≥ α2 ≥ . . . ≥ αn.

(2)
∑n

1 αi = 0, since trace[Mχdist(G)]=0.
(3) The highest exponent term corresponds to diam(G).
(4) For any r-regular graph all the entries in the matrix are in powers of 2r.
(5) Two non-isomorphic graphs having same order, regularity as well as diam-

eter have same largest eigenvalue α1.

We define the degree sum exponent distance energy of a graph G as,

Eχdist(G) =

n∑
i=1

|αi|.
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3. Bounds on Degree Sum Exponent Distance Energy and Eigenvalues

In this section, we obtain some bounds on degree sum exponent distance
energy and largest eigenvalue.

Lemma 3.1. Let G be a graph of order n, then we have,
n∑

i=1

αi = 0 and

n∑
i=1

α2
i = 2M, here we define, M =

n∑
i=1,i<j

((di + dj)
dij )2

Lemma 3.2. [15] Let a1, a2, .., an be non negative numbers.Then ,

n

[
1

n

n∑
i=1

ai − (

n∏
i=1

ai)
1/n

]
≤ n

n∑
i=1

ai−(

n∑
i=1

√
ai)

2 ≤ n(n−1)

[
1

n

n∑
i=1

ai − (

n∏
i=1

ai)
1/n

]
Lemma 3.3. The CauchySchwartz inequality: Let ai and bi , 1 ≤ i ≤ n be any
real numbers, then (

n∑
i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

Lemma 3.4. [17] Let A, B,I(identity matrix) and J(matrix of all 1′s are square
matrices of same order n then block determinant of order n,

|AIn +B(Jn − In)| = |A−B|n−1|A+ (n− 1)B|
.

Theorem 3.5. If α1 is the index (largest degree sum exponent distance eigenvalue)
of a connected graph G of order n, then

α1 ≤
√

2M(n− 1)

n

where M is defined above, with dij = d(vi, vj) the distance between vi and vj.

Proof. The trace of Mχdist(G) being zero we have
n∑

i=1

αi = 0 i.e,

n∑
i=2

αi = −α1

Further
∑n

i=1 α
2
i =traceMχdist(G)

2
= 2M , where M is as defined above. Using

Lemma 3.3, with ai = 1 and bi = αi i = 2, 3 . . . , n substituting we get,

(

n∑
i=2

αi)
2 ≤ (n− 1)

n∑
i=2

α2
i ≤ (n− 1)(2M − α2

1)

Therefore, (−α1)2 ≤ (n−1)(2M−α2
1). Simplifying further,the bound for the index

α1 follows. �

For graph G in Fig 2.1, α1 = −11.1616, n = 4 and M = 244. We have,√
2M(n−1)

n = 19.1312
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Theorem 3.6. If G is connected graph of order n and M is defined above,then
√

2M ≤ Eχdist(G) ≤
√

2Mn

Proof. With ai = 1 and bi = |αi| and using Lemma 3.3 that is,
(
∑n

i=1 |αi|)2 ≤ n
∑n

i=1(αi)
2. That is, Eχdist(G)2 ≤ 2nM .

Hence, Eχdist(G) ≤
√

2Mn.
Now for the other part,

Eχdist(G)2 = (

n∑
i=1

|αi|)2 ≥
n∑

i=1

|αi|2 = 2M

so that Eχdist(G) ≥
√

2M . Combining these two,inequality follows. �

For graphG in Fig 2.1, we have
√

2M = 22.09072203 and
√

2Mn = 44.18144407.

Theorem 3.7. If G is any graph of order n and ∆ is the absolute value of the
determinant of χdist(G) then,√

2M + n(n− 1)∆
2
n ≤ Eχdist(G) ≤

√
2Mn

where M is defined as above.

Proof. For lower bound consider,

[Eχdist(G)]2 = (

n∑
i=1

|αi|)2 =

n∑
i=1

(αi)
2 + 2

∑
i<j

|αi||αj |

Since Arithmetic Mean (AM) ≥ Geometric Mean (GM) we have,

1

n(n− 1)

∑
i6=j

|αi||αj | ≥ (
∏
i 6=j

|αi||αj |)
1

n(n−1) =

n∏
i=1

(|αi|2n−2)
1

n(n−1) = (

n∏
i=1

|αi|
2
n ) = ∆

2
n

using Lemma 3.2 .
therefore we have,

∏
i 6=j |αi||αj | ≥ n(n− 1)∆

2
n .

Combining we get, [Eχdist(G)]2 ≥ 2M + n(n− 1)∆
2
n

ie, Eχdist(G) ≥
√

2M + n(n− 1)∆
2
n (1)

For upper bound define,

X =

n∑
i=1

n∑
j=1

(|αi|+ |αj |)2 =

n∑
i=1

n∑
j=1

(|αi|2 + |αj |2) + 2(

n∑
i,j=1,i6=j

|αi||αj |)

= n

n∑
i=1

(αi)
2 + n

n∑
i=1

(αj)
2 − 2(

n∑
i,j=1,i6=j

|αi||αj |)

= 2nM + 2nM − 2[Eχdist(G)]2 = 4nM − 2[Eχdist(G)]2

SinceX ≥ 0 we get Eχdist(G) ≤
√

2Mn (2)
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Combining lower bound and upper bound, we arrive at the desired result. �

For the graphG in Fig 2.1, ∆ = 2624 and
√

2M + n(n− 1)∆
2
n = 26.20495997.

Theorem 3.8. Let G be a connected n vertex graph and ∆ is the absolute value of
the determinant of degree sum exponent distance matrix χdist(G), then√

2M + n(n− 1)∆2/n ≤ Eχdist(G) ≤
√

2(n− 1)M + n∆2/n

where M is defined as above.

Proof. Let ai = α2
i , i = 1, 2, ..., n.. Then from Lemma 3.1 and Lemma 3.2 we

obtain

n[
1

n

n∑
i=1

α2
i − (

n∏
i=1

α2
i )1/n] ≤ n

n∑
i=1

α2
i − (

n∑
i=1

αi)
2 ≤ n(n− 1)[

1

n

n∑
i=1

α2
i − (

n∏
i=1

α2
i )1/n]

i.e,

2M − n∆2/n ≤ 2nM − [Eχdist(G)]2 ≤ 2(n− 1)M − n(n− 1)∆2/n

Thus,

2M + n(n− 1)∆2/n ≤ [Eχdist(G)]2 ≤ 2(n− 1)M + n∆2/n

We get the desired result. �

For the graph G in Fig 2.1,
√

2(n− 1)M + n∆2/n = 40.85217223.

4. Degree Sum Exponent Distance Energy of some graphs

Theorem 4.1. The degree sum exponent distance energy of Kn is,
Eχdist(Kn)=4(n− 1)2.

Proof. The complete graph Kn is of diameter 1 and hence every pair of vertices are
at distance 1 so the degree sum exponent distance matrix of Kn is a matrix with
zero diagonal and all non diagonal entries 2(n − 1) i.e,the degree sum exponent
distance matrix of Kn is 2(n − 1) times the adjacency matrix of Kn. Since the
adjacency energy of Kn is 2(n − 1), the degree sum exponent distance energy of
Kn will be 4(n− 1)2. �

Theorem 4.2. The degree sum exponent distance energy of CP (n) is,
Eχdist(CP (n)) = 32n(n− 1)2.

Proof. The cocktail party graph CP (n) denotes the (2n)-vertex regular graph of
degree (2n−2) (obtained by deleting n independent edges from the complete graph
K2n). Using Lemma 3.4, where A = (2n − 2)2A(K2), B = (2n − 2)J2×2, J is
matrix of all 1’s and A is the adjacency matrix. The degree sum exponent distance
polynomial of CP (n) is then given by,
|αI −Mχdist(CP (n))| = [α+ 16(n− 1)2]n[α− 8(n− 1)(2n− 3)]n−1[α− 24(n− 1)2]
which gives, Eχdist(CP (n)) = 32n(n− 1)2. �
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For example, in case of CP (4), eigenvalues are −64(3times), 48(2times) and
96 giving energy, Eχdist(CP (3)) = 384.

Theorem 4.3. The degree sum exponent distance energy of crown graph S0
n is,

Eχdist(S
0
n) = 16n(n− 1)3.

Proof. The crown graph is the graph obtained by removing a matching from the
complete equi-bipartite graph Kn,n. So the structure of the degree product distance
matrix of S0

n is,

Mχdist(S
0
n) =

(
A B
B A

)
where A is a matrix of order n with zero diagonal and

all non-diagonal entries as 4(n− 1)2 and B is the matrix of order n with diagonal
entry 8(n− 1)3 and off diagonal entry 2(n− 1).The eigenvalues of this matrix are
given by eigenvalues of A+B and eigenvalues of A−B see[18].
Separately evaluating characteristic polynomials of A + B and A − B and then
multiplying we get,degree sum exponent distance polynomial of crown graph,
|αI −Mχdist(S

0
n)| =

[α+ 2(n− 1)2(6n− 5)][α− 2(n− 1)2(2n− 1)][α+ 2(n− 1)(4n2 − 6n+ 1)]n−1[α−
2(n− 1)(4n2 − 10n+ 5)]n−1.
Adding all the absolute eigenvalues, we get the theorem.

�

Lemma 4.4. [14] If a,b,c and d are real numbers, then the determinant of the form,∣∣∣∣ (α+ a)In1 − aJn1 −cJn1×n2

−dJn2×n1
(α+ b)In2

− bJn2

∣∣∣∣
of order n1 + n2 can be expressed in the simplified form as,

(α+ a)n1−1(α+ b)n2−1([α− (n1 − 1)a][α− (n2 − 1)b]− n1n2cd)

Theorem 4.5. The degree sum exponent distance energy of the complete bipartite
graph Km,n is, Eχdist(Km,n) =8n2(m− 1) + 8m2(n− 1).

Proof. In Km,n, m vertices have degree n and n vertices have degree m.The dia-
meter being 2, the structure of the degree sum exponent distance matrix is,

Mχdist(Km,n) =

[
4n2A(Km) (m+ n)Jm×n

(m+ n)Jn×m 4m2A(Kn)

]
where J is matrix of all 1’s and A is the adjacency matrix. The degree sum expo-
nent distance polynomial is then given by,

|αI −Mχdist(Km,n)| =
∣∣∣∣ αIm − 4n2A(Km) −(m+ n)Jm×n
−(m+ n)Jn×m αIn − 4m2A(Kn)

∣∣∣∣.
Using Lemma 4.4 we get the degree sum exponent distance polynomial,
|αI −Mχdist(Km,n)| =
[α+ 4n2]m−1[α+ 4m2]n−1[α2 − 4(n2(m− 1) +m2(n− 1))α+ 16m2n2(n− 1)(m−
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1)− (m+ n)2mn].
The quadratic equation above has [4(n2(m− 1) +m2(n− 1)]2 > 4× [16m2n2(n−
1)(m− 1)− (m+ n)2mn] hence sum of absolute roots is 4(n2(m− 1) +m2(n− 1))
and on adding all absolute eigenvalues the theorem follows. �

For example, in case ofK3,4, eigenvalues are−64(2times), 36(3times), 91.7702
and 144.2298 giving the energy , Eχdist(K3,4) = 472.

Corollary 4.6. The degree sum exponent distance energy of the star graph K1,n

is,
Eχdist(K1,n) = 8(n− 1).

Proof. Put m = 1 in Theorem 4.5. �

Corollary 4.7. The degree sum exponent distance energy of the equi-bipartite graph
Kn,n is,
Eχdist(Kn,n) = 16n2(n− 1) .

Proof. Put m = n in Theorem 4.5. �

Theorem 4.8. If Bn (n ≥ 3) is a book graph of order (n+2) with triangular pages
and size (2n+ 1), then Eχdist of Bn is, Eχdist(Bn)=36n− 28

Proof. The book graph Bn with triangular pages has two sets of vertices, a set with
n vertices of degree 2 and the remaining 2 vertices of degree (n+ 1). The structure
of the degree sum exponent distance matrix is,

Mχdist(Bn) =

[
2(n+ 1)A(K2) (n+ 3)J2×n

(n+ 3)Jn×2 16A(Kn)

]
where J is matrix of all 1’s and A is the adjacency matrix. The degree sum expo-
nent distance polynomial is then given by,

|αI −Mχdist(Bn)| =
∣∣∣∣ αI2 − 2(n+ 1)A(K2) −(n+ 3)J2×n

−(n+ 3)Jn×2 αIn − 16A(Kn)

∣∣∣∣.
Using Lemma 4.4 we get the degree sum exponent distance polynomial,
|αI −Mχdist(Bn)| = [α+ 16]n−1[α+ 2(n+ 1)][α2 − 2(9n− 7)α+ 2(16(n− 1)(n+
1)− n(n+ 3)2)].
The quadratic equation above has [2(9n−7)]2 > 4×2(16(n−1)(n+1)−n(n+3)2)
hence sum of absolute roots is 2(9n − 7) and the theorem follows on adding all
absolute eigenvalues. �

Let Kn − e and Kn + e denote the graph obtained from complete graph Kn

by deleting an edge, adding an edge respectively.
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Theorem 4.9.

Eχdist(Kn − e) = 44.3606 if n = 4 (2)

= 4[(n− 1)(n− 3) + 2(n− 2)2] if n > 4

Proof. The graph Kn − e is of diameter 2 and has two vertices with distance two
and remaining at distance one.
For n = 4, using Matlab we have Eχdist(K4 − e) = 44.3606
The degree sum exponent distance matrix of Kn − e has the form,

Mχdist(Kn − e) =

 0 4(n− 2)2 (2n− 3)J1×n−2
4(n− 2)2 0 (2n− 3)J1×n−2

(2n− 3)Jn−2×1 (2n− 3)Jn−2×1 2(n− 1)A(Kn−2)

 .

So that the degree sum exponent distance polynomial of Kn − e is given by,
|αI −Mχdist(Kn − e)|

=

∣∣∣∣∣∣
α −4(n− 2)2 −(2n− 3)J1×n−2

−4(n− 2)2 α −(2n− 3)J1×n−2
−(2n− 3)Jn−2×1 −(2n− 3)Jn−2×1 αIn−2 − 2(n− 1)A(Kn−2)

∣∣∣∣∣∣
Using Lemma 4.4 we get the degree sum exponent distance polynomial,
|αI −Mχdist(Kn − e)|= [α+ 4(n− 2)2][α+ 2(n− 1)]n−3[α2 − 2((n− 1)(n− 3) +
2(n − 2)2)α + 2(n − 2)(4(n − 1)(n − 3)(n − 2) − (2n − 3)2)] for n > 4. Since
(2((n− 1)(n− 3) + 2(n− 2)2)2 > 4× 2(n− 2)(4(n− 1)(n− 3)(n− 2)− (2n− 3)2),
the sum of absolute roots of the quadratic is (2((n− 1)(n− 3) + 2(n− 2)2).
Hence the theorem. �

Theorem 4.10. Eχdist(Kn + e)=2(n− 1)(n− 2) + |α1|+ |α2|+ |α3|,
where α1, α2 and α3 are roots of the equation,
[α3− 2(n− 1)(n− 2)α2− ((2n− 1)2(n− 1) +n4(n− 1) + (n+ 1)2)α+ 2(n+ 1)(n−
1)((n+ 1)(n− 2)− n2(2n− 1))] = 0.

Proof. In Kn + e there is one vertex with degree n, one vertex with degree 1 and
remaining n− 1 have degree n− 1. Thus we get the degree sum exponent distance
matrix with suitable labeling as,

Mχdist(Kn + e) =

 0 (n+ 1) (2n− 1)J1×n−1
(n+ 1) 0 n2J1×n−1

(2n− 1)Jn−1×1 n2Jn−1×1 2(n− 1)A(Kn−1)

 .

So that the degree sum exponent distance polynomial of Kn + e is given by,
|αI −Mχdist(Kn + e)|

=

∣∣∣∣∣∣
α −(n+ 1) −(2n− 1)J1×n−1

−(n+ 1) α −n2J1×n−1
−(2n− 1)Jn−1×1 −n2Jn−1×1 αIn−1 − 2(n− 1)A(Kn−1)

∣∣∣∣∣∣
Using Lemma 4.4 we get the degree sum exponent distance polynomial,
|αI −Mχdist(Kn + e)| =[α+ 2(n− 1)]n−2[α3− 2(n− 1)(n− 2)α2− ((2n− 1)2(n−
1) + n4(n− 1) + (n+ 1)2)α+ 2(n+ 1)(n− 1)((n+ 1)(n− 2)− n2(2n− 1))].
On extracting eigenvalues and taking the absolute sum, we get the theorem. �

For example, in case ofK5+e, eigenvalues are−40.5244,−8(3times), −3.5991,
68.1235 giving the energy as, Eχdist(K5 + e) = 136.247 .
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Definition 4.11 (Vertex Coalescence). If G1 and G2 are any two graphs then the
graph obtained by gluing G1 and G2 at a point is v called vertex coalescence denoted
by G1OvG2.

Definition 4.12 (Edge Coalescence). If G1 and G2 are any two graphs then the
graph obtained by merging G1 and G2 on an edge e is called edge coalescence denoted
by G1OeG2.

Now we consider the degree sum exponent distance energy of vertex coales-
cence and edge coalescence of complete graphs of same order. Let Kn be a complete
graph of order n then the vertex coalescence of Kn with Kn will be denoted by
KnOvKn and the edge coalescence by KnOeKn.

KnOvKn has 2n − 1 vertices and 2 × ( nC2) edges whereas KnOeKn has
2n− 2 vertices and 2× ( nC2 − 1) edges.

Lemma 4.13. [19] Let a and b be two arbitrary constants, I is the identity matrix
and J is n×n matrix whose all entries 1′s.If A = (a−b)I+bJ then the characteristic
polynomial of A is, |λI −A| = [λ− a+ b]n−1[λ− a− (n− 1)b].

Theorem 4.14. The degree sum exponent distance energy of the vertex coalescence
of two complete graphs Kn for n ≥ 3 is given by,
Eχdist(KnOvKn) = 2(n−1)(2n2−5n+8)+2(n−1)

√
(2n2 − 5n+ 8)2 + 18(n− 1).

Proof. The graph KnOvKn has two sets of vertices one at a distance 2 from each
other and other at 1, being of diameter 2. With suitable labeling the degree sum
exponent distance matrix of KnOvKn takes the form,

Mχdist(KnOvKn)=

 0 3(n− 1)J1×n−1 3(n− 1)J1×n−1
3(n− 1)Jn−1×1 2(n− 1)A(Kn−1) 4(n− 1)2Jn−1×n−1
3(n− 1)Jn−1×1 4(n− 1)2Jn−1×n−1 2(n− 1)A(Kn−1)


So that the degree sum exponent distance polynomial of KnOvKn

|αI −Mχdist(KnOvKn)| =∣∣∣∣∣∣
α −3(n− 1)J1×n−1 −3(n− 1)J1×n−1

−3(n− 1)Jn−1×1 αIn−1 − 2(n− 1)A(Kn−1) −4(n− 1)2Jn−1×n−1
−3(n− 1)Jn−1×1 −4(n− 1)2Jn−1×n−1 αIn−1 − 2(n− 1)A(Kn−1)

∣∣∣∣∣∣
Using Lemma 4.11 we get the degree sum exponent distance polynomial,
|αI −Mχdist(KnOvKn)| =
[α+ 2(n− 1)(2(n− 1)2 − n+ 2)][α+ 2(n− 1)]2n−4[α2 − 2(n− 1)(2n2 − 5n+ 8)α−
18(n− 1)3].
On extracting eigenvalues and taking the absolute sum, we get the theorem. �

For example, in case of K5OvK5, eigenvalues are −232,−8(6times),−4.0555,
284.0555 giving the energy as, Eχdist(K5OvK5) = 568.111.

Theorem 4.15. The degree sum exponent distance energy of the edge coalescence
of two complete graphs Kn for n ≥ 3 is given by, Eχdist(KnOeKn)=4(2n − 3) +
4(n− 1)(2n2 − 7n+ 7) + 8(n− 1)(n− 3).
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Proof. The graph KnOeKn has two sets of vertices one at a distance 2 from each
other and other at 1, being of diameter 2.There are two vertices of degree (2n− 3)
and remaining (2n − 4) of degree (n − 1). With suitable labeling the degree sum
exponent distance matrix of KnOeKn takes the form,

Mχdist(KnOeKn)=

2(2n− 3)A(K2) (3n− 4)J2×n−2 (3n− 4)J2×n−2
(3n− 4)Jn−2×2 2(n− 1)A(Kn−2) 4(n− 1)2Jn−2×n−2
(3n− 4)Jn−2×2 4(n− 1)2Jn−2×n−2 2(n− 1)A(Kn−2)


So that the degree sum exponent distance polynomial of KnOeKn is given by,
|αI −Mχdist(KnOeKn)|=∣∣∣∣∣∣
αI2 − 2(2n− 3)A(K2) −(3n− 4)J2×n−2 −(3n− 4)J2×n−2
−(3n− 4)Jn−2×2 αIn−2 − 2(n− 1)A(Kn−2) −4(n− 1)2Jn−2×n−2
−(3n− 4)Jn−2×2 −4(n− 1)2Jn−2×n−2 αIn−2 − 2(n− 1)A(Kn−2)

∣∣∣∣∣∣
So that the degree sum exponent distance polynomial of KnOeKn is given by,
|αI −Mχdist(KnOeKn)|= [α + 2(2n − 3)][α + 2(n − 1)(2n2 − 7n + 7)][α + 2(n −
1)]2n−6[α2− 2(2n3− 7n2 + 8n− 4)α+ 4(2n− 3)(n− 1)((2n− 1)(n− 3) + 2n− 2)−
4(3n− 4)2(n− 2)].
On extracting eigenvalues and taking the absolute sum, we get the following theo-
rem. �

For example, in case of K5OeK5, eigenvalues are −176,−14,−8(4times),
−6.7839, 215.2161 giving the energy as, Eχdist(K5OeK5) = 444.003.

From Theorem 4.2 and Theorem 4.3 we see that both S0
3 and CP (3) have

same Eχdist = 384, although CP (3) has 12 edges and S0
3 has 6 edges. We call such

graphs as degree sum exponent distance equi-energeic.

Definition 4.16. Two non isomorphic graphs on same number of vertices are
said to be degree sum exponent distance equi-energeic if they have same degree sum
exponent distance energy.

5. Conclusion

We discussed the degree sum exponent distance energy of graphs. Also, we
discussed bounds on the energy of degree sum exponent distance energy. There
is scope to investigate degree sum exponent distance energy of graphs with higher
diameter,trees,unicyclic graphs etc and also to construct degree sum exponent dis-
tance equi-energetic graphs.
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