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COMPLETE CONVERGENCES
AND STRONG LAWS OF LARGE NUMBERS

FOR WEIGHTED SUMS PAIRWISE

NQD RANDOM VARIABLES SEQUENCE

Guang-hui Cai

Abstract. Let {Xn, n ≥ 1} be a sequence of pairwise NQD random variables. Some

complete convergences and strong laws of large numbers for a weighted sums sequence

of pairwise NQD random variables are obtained. The results obtainted generalize the

results of Cabrera and Volodin (see [3]).

1. INTRODUCTION

Let {X,Xn, n ≥ 1} be a sequence of independent identically distributed
(i.i.d) random variables. The Marcinkiewicz-Zygmund strong laws of large numbers
(SLLN) provides that

1
n1/α

n∑

i=1

(Xi − EXi) → 0a.s.for1 ≤ α < 2

and
1

n1/α

n∑

i=1

Xi → 0a.s.for0 < α < 1

if and only if E|X|α < ∞. The case α = 1 is due to Kolmogorov.
As for negatively associated (NA) random variables, Joag and Proschan [8]

gave the following definition.
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Definition 1.1. [8] A finite family of random variables {Xi, 1 ≤ i ≤ n} is said
to be negatively associated (NA) if for every pair of disjoint subsets T1 and T2 of
{1, 2, ..., n}, we have

Cov(f1(Xi, i ∈ T1), f2(Xj , j ∈ T2)) ≤ 0,

whenever f1 and f2 are coordinatewise increasing and the covariance exists. An
infinite family is negatively associated if every finite subfamily is negatively associ-
ated.

Let {X, Xn, n ≥ 1} be an identically distributed NA sequence, Matula [10]
proved the Kolmogorov strong laws of large numbers. Two random variables X
and Y are negative quadrant dependent (NQD), if for all x, y ∈ R, we have

P (X > x, Y > y) ≤ P (X > x)P (Y > y).

A random variables sequence {Xk, k ∈ N} is said to be pairwise NQD, if for all
i 6= j, Xi and Xj are NQD.

The concept of NQD was given by Lehmann [9]. We known that NQD is more
general than NA. So NQD is very general. As for pairwise NQD random variables
sequences, Wu [13] Proved Kolmogorov strong law of large numbers and complete
convergence for pairwise NQD random sequences. Cabrera and Volodin [3] obtained
mean convergence theorems and weak laws of large numbers for weighted sums of
random variables under a condition of weighted integrability. The result of Cabrera
and Volodin [3] sees the following Theorem.

Theorem A Let {Xnk, un ≤ k ≤ vn, n ≥ 1} be an array of rowwise pairwise
NQD random variables and{ank, un ≤ k ≤ vn, n ≥ 1} be an array of constants
with

∑vn

k=un
|ank| ≤ C for all n ∈ N and some constant C > 0. Let moreover

{h(n), n ≥ 1} be an increasing sequence of positive constants with hn ↑ ∞ as
n ↑ ∞. Suppose that
(a) {Xnk, un ≤ k ≤ vn, n ≥ 1} is h- integrable concerning the array of constants
{ank},
(b) h2(n)

∑vn

k=un
a2

nk → 0 as n →∞.

Let Tn =
∑vn

k=un
ankXnk, for all n ≥ 1. Then lim

n→∞
|Tn| = 0 in Probability.

The main purpose of this paper is to establish some complete convergences
and strong laws of large numbers for a weighted sums sequence of pairwise NQD
random variables. The results obtainted generalize the results of Cabrera and
Volodin [3].
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2. MAIN RESULTS

Throughout this paper, C will represent a positive constant though its value
may change from one appearance to the next, and an = O(bn) will mean an ≤ Cbn.
In order to prove our results, we need the concept of the Hsu-Robbins-Erdös law
of large numbers (see [6], [7]) and the following lemma. Let {X, Xn, n ≥ 1} be a
sequence of independent identically distributed (i.i.d) random variables and denote
Sn =

∑n
i=1 Xi. The Hsu-Robbins-Erdös law of large numbers (see [6], [7]) states

that

∀ε > 0,

∞∑
n=1

P (|Sn| > εn) < ∞

is equivalent to EX = 0, EX2 < ∞.

This is a foundamental theorm in probability theory and has been intensively
investigated by many authors in the past decades. One of the most important
results is Baum and Katz [1] law of large numbers, which states that, for p < 2 and
r ≥ p,

∀ε > 0,

∞∑
n=1

n
r
p−2P (|Sn| > εn

1
p ) < ∞

if and only if E|X|r < ∞, r ≥ 1, and EX = 0. There have been many extensions in
various directions. Two of them are Chow and Lai ([4], [5]) proposed a two sided
estimate and Petrov [11].

Lemma 2.1. [9] Let X and Y are NQD, then
(i) EXY ≤ EXEY ;
(ii) P (X > x, Y > y) ≤ P (X > x)P (Y > y), for all x, y ∈ R;
(iii) if f(x), g(x) are non-decreasing (or non-increasing) functions, then f(X), g(X)
are also NQD.

Lemma 2.2. Let {Yi, i ≥ 1} be a sequence of centered pairwise NQD random
variables and E|Yi|2 < ∞ for every i ≥ 1. Then there exists C, such that

E|
n∑

i=1

Yi|2 ≤
n∑

i=1

E|Yi|2

E max
1≤k≤n

|
k∑

i=1

Yi|2 ≤ C log2 n

n∑

i=1

E|Yi|2

.

Proof. By Lemma 2.1 and EYi = 0, then

E|
n∑

i=1

Yi|2 ≤
n∑

i=1

E|Yi|2 + 2
∑

1≤i<j≤n

EYiEYj ≤
n∑

i=1

E|Yi|2.
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By E|∑n
i=1 Yi|2 ≤

∑n
i=1 E|Yi|2 and Theorem 2.4.1 in Stout [12], we have

E max
1≤k≤n

|
k∑

i=1

Yi|2 ≤ C(
log(2n)
log 2

)2
n∑

i=1

E|Yi|2 ≤ C log2 n

n∑

i=1

E|Yi|2.

Now we give the concept of {Xnk, un ≤ k ≤ vn, n ≥ 1} is h- integrable
concerning the array of constants {ank, un ≤ k ≤ vn, n ≥ 1}.

Definition 2.3. [3] Let {Xnk, un ≤ k ≤ vn, n ≥ 1} be an array of random vari-
ables and {ank, un ≤ k ≤ vn, n ≥ 1} an array of constants with

∑vn

k=un
|ank| ≤

C for all n ∈ N and some constant C > 0. Let moreover {h(n), n ≥ 1} be
an increasing sequence of positive constants with hn ↑ ∞ as n ↑ ∞. The array
{Xnk, un ≤ k ≤ vn, n ≥ 1} is said to be h- integrable concerning the array of con-
stants {ank, un ≤ k ≤ vn, n ≥ 1} if the following two conditions hold:

lim
n→∞

sup
n≥1

vn∑

k=un

|ank|E|Xnk| < ∞

and

lim
n→∞

vn∑

k=un

|ank|E|Xnk|I(|Xnk| > h(n)) = 0.

We inspired by the concept of {Xnk, un ≤ k ≤ vn, n ≥ 1} is h- integrable
concerning the array of constants {ank, un ≤ k ≤ vn, n ≥ 1} that we get the
following Theorem.

Theorem 2.4 Let {Xnk, un ≤ k ≤ vn, n ≥ 1} be an array of rowwise pairwise
NQD random variables and {ank, un ≤ k ≤ vn, n ≥ 1} be an array of constants
with

∑vn

k=un
|ank| ≤ C for all n ∈ N and some constant C > 0. Let moreover

{h(n), n ≥ 1} be an increasing sequence of positive constants with hn ↑ ∞ as
n ↑ ∞. Suppose that
(a) {Xnk, un ≤ k ≤ vn, n ≥ 1} is h- integrable concerning the array of constants
{ank},
(b) h2(n)

∑vn

k=un
a2

nk → 0 as n →∞,

(c) h(n) ≥ C(log n)1+δ for some δ > 0.
Let Tn =

∑vn

k=un
ankXnk, for all n ≥ 1 and EXnk = 0, for all n ≥ 1, un ≤ k ≤ vn.

Then

∀ε > 0,

∞∑
n=1

n−1P ( max
1≤j≤n

|Tj | > ε) < ∞. (2.1)

Proof. ∀i ≥ 1, define X
(n)
i = XniI(|aniXni| ≤ h(n)) + h(n)I(|aniXni| > h(n)) −

h(n)I(|aniXi| < −h(n)), T
(n)
j =

j∑
i=1

(X(n)
i − EX

(n)
i ),
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then ∀ε > 0,

P ( max
1≤j≤n

|Tj | > ε) ≤ P ( max
1≤j≤n

|anjXnj | > h(n)) + P ( max
1≤j≤n

|T (n)
j | > ε− max

1≤j≤n
|

j∑
i=1

EX
(n)
i |). (2.2)

First we show that

max
1≤j≤n

|
j∑

i=1

EX
(n)
i | → 0, asn →∞. (2.3)

In fact, by (a) and (b), then

max
1≤j≤n

|
j∑

i=1

EX
(n)
i |

= max
1≤j≤n

|
j∑

i=1

E[XniI(|aniXni| ≤ h(n)) + h(n)I(|aniXni| > h(n))− h(n)I(|aniXni| < −h(n))]|

≤ max
1≤j≤n

|
j∑

i=1

EXniI(|Xni| > h(n))|+ h(n)

n∑
j=1

P (|Xnj | > h(n)) → 0, asn →∞. (2.4)

From (2.4), hence (2.3) is true. From (2.2) and (2.3), it follows that for n large
enough

P ( max
1≤j≤n

|Tj | > ε) ≤ P ( max
1≤j≤n

|anjXnj | > h(n)) + P ( max
1≤j≤n

|T (n)
j | > ε

2
).

Hence we need only to prove that

I =:
∞∑

n=1

n−1
n∑

j=1

P (|anjXnj | > h(n)) < ∞,

II =:
∞∑

n=1

n−1P ( max
1≤j≤n

|T (n)
j | > ε

2
) < ∞. (2.5)

By Markov inequality, (a), (b) and (c), it follows easily that

I =
∞∑

n=1

n−1
n∑

j=1

P (|anjXnj | > h(n))

≤
∞∑

n=1

n−1
vn∑

j=un

P (|anjXnj | > h(n))

≤
∞∑

n=1

n−1
vn∑

j=un

E|anjXnj |
h(n)

≤ C

∞∑
n=1

n−1(log n)−1−δ < ∞. (2.6)
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By Markov inequality, Lemma 2.2, (a), (b) and (c), then

II =
∞∑

n=1

n−1P ( max
1≤j≤n

|T (n)
j | > ε

2
)

≤
∞∑

n=1

n−1(ε/2)−2E max
1≤j≤n

|T (n)
j |2

≤ C

∞∑
n=1

n−1(log n)2
n∑

j=1

E|X(n)
j |2

≤ C

∞∑
n=1

n−1(log n)2
n∑

i=1

E|XniI(|aniXni| ≤ h(n)) + h(n)I(|aniXni| > h(n))|2

< ∞. (2.7)

Now we complete the proof of Theorem 2.4.

Corollary 2.5. Under the conditions of Theorem 2.1, then

lim
n→∞

|Tn| = 0 a.s.

Proof. By (2.1), we have

∞ >

∞∑
n=1

n−1P ( max
1≤j≤n

|Tj | > ε)

=
∞∑

i=0

2i+1−1∑

n=2i

n−1P ( max
1≤j≤n

|Tj | > ε)

≥ 1
2

∞∑

i=1

P ( max
1≤j≤2i

|Tj | > ε).

By Borel-Cantelli Lemma, we have

P ( max
1≤j≤2i

|Tj | > εi.o.) = 0.

Hence
lim

i→∞
max

1≤j≤2i
|Tj | = 0 a.s.

and using
max

2i−1≤n<2i
|Tn| ≤ max

1≤j≤2i
|Tj |,

We have
lim

n→∞
|Tn| = 0 a.s.
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Now we complete the proof of Corollary 2.5.

Remark Corollary 2.5. generalizes the results of Cabrera and Volodin [3].

3. CONCLUDING REMARKS

In this paper, some complete convergences and strong laws of large numbers
for a weighted sums sequence of pairwise NQD random variables are obtained.
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