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CALCULATIONS ON THE SUPREMUM OF
FUZZY NUMBERS VIA Lp METRICS

D. Wen and T. Fan

Abstract. In this paper, it is proved that the supremum of a family of fuzzy numbers

can be finitely approximated via Lp metrics and the concrete approaches are given. As

a byproduct, it is proved that the L1 metric d1 defined via cut-set is equivalent to a

metric which can be calculated directly via membership functions. Since the Lp metrics

are analytic in nature, the results in this paper may have interesting applications in

fuzzy analysis. For example, it may provide a method for the computation of various

fuzzy-number-valued integrals.

1. INTRODUCTION AND PRELIMINARIES

Since the concept of fuzzy number was first introduced in the 1970’s, it has
been studied extensively from many different viewpoints. Fuzzy numbers has been
used as a basic tool in different parts of fuzzy theory. In [4], it is shown that
the endograph metric is approximative with respect to orders on E1 and it is
computable. From [3], we know that for uniformly supported bounded set of fuzzy
numbers the Lp metrics and the endograph metric are equivalent. Thus, we can
conclude that Lp metrics are also approximative. In [2], a method for calculating
supremum and infimum of fuzzy sets via endograph metric is given which resembles
the Riemann sum in calculus. In this paper, we will give out the concrete methods
to approximate the supremum via Lp metrics.

First of all, we recall the basics of fuzzy numbers. Let R and I be the set of
all real numbers and the unit interval respectively.

Received 28 June 2006, revised 1 November 2006, accepted 13 November 2007.
2000 Mathematics Subject Classification: 54E35, 06F30
Key words and Phrases: Fuzzy numbers, Lp metrics, approximation, supremum

197



198 D. Wen and T. Fan

Denote E1 = {u|u : R → I, u has the following properties (i)− (iv)}.
(i) u is normal, i.e., u(x0) = 1 for some x0 ∈ R;
(ii) u is quasiconvex(fuzzy convex), i.e., u(rx + (1− r)y) ≥ min{u(x), u(y)} for all
x, y ∈ R and r ∈ I;
(iii) u is upper semicontinuous(u. s. c. for short);
(iv) The topological support u0 of u is compact, where u0 = cl{x|x ∈ R, u(x) > 0}.

Elements in E1 are called fuzzy numbers. For α ∈ I, let uα = {x ∈ R|u(x) ≥
α} denote the α− cut of u, then all cuts of u are none-empty closed intervals. For
each α ∈ I, let uα = [u−α , u+

α ]. For any u, vıE1, define:

dp(u, v) = (
∫ 1

0

(max{|u−α − v−α |, |u+
α − v+

α |})pdα)
1
p ,

where p ≥ 1 is an arbitrary real number. Then dp is a separable but not complete
metric on E1, called Lp metrics. By the definition of Lp metrics, we have the
following inequalities.

dp(u, v) ≤ (
∫ 1

0

(|u−α − v−α |+ |u+
α − v+

α |)pdα)
1
p ≤ ‖u− − v−‖p + ‖u+ − v+‖p,

where‖ · ‖p = (
∫ 1

0
| · |pdα)

1
p .

We note that in the literature, fuzzy numbers can also be equivalently defined
as follows: u = (lu, ru), where lu and ru are functions defined on certain closed
intervals [au, cu] and [cu, bu] with codomain I respectively, such that lu(au) = 0,
lu(cu) = 1, ru(cu) = 1, ru(bu) = 0; they are increasing and decreasing respectively,
and both are upper u. s. c.. For our need we require that the domains of definition
for lu and ru are the whole real line R, so that they can be extended uniquely
to keep their monotonicity. That is, outside their domains, their values should be
either 0 or 1 according to the monotonicity requirement.

For u, v ∈ E1, define u ≤ v if only if u−α ≤ v−α , u+
α ≤ v+

α for all α ∈ I, or
equivalently, lu ≥ lv and ru ≤ rv. Then ≤ is a partial order on E1.

For other undefined notions, we refer to [1].
Remark 1 By the definition of order relation on E1 and the definition of Lp

metrics, it is obvious that for u, v, w ∈ E1, if u ≤ v ≤ w, then dp(u, v) ≤ dp(u,w),
i.e., Lp metrics preserve the order on fuzzy numbers.

2. CALCULATIONS VIA L1 METRIC

In this section, we give some concrete calculation methods to approximate
the supremum of fuzzy numbers via L1 metric. Moreover, we prove that the L1

metric defined via cut-set can be directly studied by a metric on E1 which is defined
via membership functions and give out the calculation approach on the supremum
directly via membership function method.

Proposition 1[8] Let {ut|t ∈ T} be a family of fuzzy numbers with α − cut rep-
resentations {(ut)α|α ∈ [0, 1]}, t ∈ T . If the family is bounded above, and v is the
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supremum of the family, then the cut-set functions of v have the following repre-
sentation:

v−α =
∨

t∈T (ut)−α ,

v+
α =

{
limα′→α−

∨
t∈T (ut)+α′ α ∈ Disc(v+),∨

t∈T (ut)+α otherwise,

for α ∈ (0, 1], where Disc(v+) is the set of all discontinuous points of v+, which is
at most countable; while

v−0 =
∧

λ>0

∨

t∈T

(ut)−λ , v+
0 =

∨

t∈T

(ut)+0 .

We define a nested closed intervals w = {[w−α , w+
α ]|α ∈ I}, where w− and w+

are functions defined on I, w−α =
∨

t∈T (ut)−α , w+
α =

∨
t∈T (ut)+α for α ∈ I. It can be

seen that w−α is increasing, w+
α is decreasing on I, v−α = w−α for all α ∈ (0, 1] and

v+
α is the smallest u. s. c. function greater than w+

α and they may differ only at the
discontinuous points of v+

α , i.e., w+
α = v+

α a.e. on I. It follows that dp(w, v) = 0,
where dp(w, v) is defined by the following formula as if w is a fuzzy number:

dp(w, v) = (
∫ 1

0

(max{|w−α − v−α |, |w+
α − v+

α |})pdα)
1
p .

The above representation of supremum is based on the cut-set functions.
There is also a representation of supremum based on the membership functions as
follows:

Proposition 2[4] Let {ut|t ∈ T} be a family of fuzzy numbers. If the family is
bounded above, v the supremum of the set, then the membership function of v is
given by the following formula:

v(x) =
{ ∧

t∈T lut(x), x < v−1 ;
cl(

∨
rut(x)), otherwise.

=





∧
t∈T lut(x), x < v−1 ;

1, x = v−1 ;
limx′→x−

∨
t∈T ut(x′), x ∈ Disc+(v);∨

t∈T ut(x), otherwise.

Where Disc+(v) is the set of all discontinuous points of v greater than v−1 , which
is at most countable since v is quasiconvex as a real function. The closure is taken
in the induced fuzzy topological space (IR, ω(τ)), where τ is the usual topology on
R. (For related concepts on fuzzy topology, we refer to [6] and [7].)

Now, we consider the fuzzy set w′ whose membership function is defined as
follows:

w′(x) =
{ ∧

t∈T lut(x) x ≤ v−1 ;∨
t∈T rut(x) otherwise.
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Note that w′(v−1 ) = 1 and v is the smallest u. s. c. function greater than
w′. w′ is u. s. c. if only if w′ ∈ E1, i.e., w′ = v. w′ can also be equivalently
defined as follows: w′ = (lw′ , rw′), the definitions of lw′ and rw′ are similar to the
case of fuzzy numbers, that is lw′(x) =

∧
t∈T lut

(x), rw′(x) =
∨

t∈T rut
(x). By the

definition of v, we have lw′ = lv and rw′(x) 6= rv(x) only if x ∈ Disc+(v). Thus rw′

and rv differ at most on a countable set.
Now, we proceed to consider the relation between w and w′. In fact, w does

not necessarily correspond to the cut-set function of a fuzzy number, since w+ may
not be left continuous. In general, w may not even be a cut-set function of a fuzzy
set. But we can define a fuzzy set w∗ on R according to w as follows:

w∗(x) = sup{α ∈ I : x ∈ [w−α , w+
α ]}.

It is obvious that w∗(x) = v(x) for x ∈ R. In fact, v(x) = sup{α ∈ I : x ∈ [v−α , v+
α ]}

and [w−α , w+
α ] ⊆ [v−α , v+

α ] ⊆ [w−α−ε, w
+
α−ε] for α ∈ I and arbitrary ε > 0 such that

α− ε ≥ 0. So w−α = (w∗)−α for all α ∈ (0, 1] and w+
α 6= (w∗)+α only if α ∈ Disc(v+).

Since v(x) 6= w′(x) if only x ∈ Disc+(v). So w∗(x) 6= w′(x) only if x ∈ Disc+(v).
The following example shows that w+ 6= v+ and w′ 6= v in general.

Example 1 Let v = χ[0,1] + 1
2χ[1,2] + 1

3χ[2,3], where χA denotes the characteristic
function of a set A ⊆ R. For n = 3, 4, · · ·, let

un(x) =





1 x ∈ [0, 1− 1
n ],

1
2 x ∈ (1− 1

n , 2],
1
3 − 1

n x ∈ (2, 3],
0 otherwise,

then, clearly, v =
∨+∞

n=3 un,

w+
α =

+∨
n=3

(un)+α =





3 α ∈ [0, 1
3 ),

2 α ∈ [ 13 , 1
2 ],

1 α ∈ ( 1
2 , 1],

v+
α =





α ∈ [0, 1
3 ],

2 α ∈ ( 1
3 , 1

2 ],
1 α ∈ ( 1

2 , 1],

and

w′(x) =





1 x ∈ [0, 1),
1
2 x ∈ [1, 2],
1
3 x ∈ (2, 3],
0 otherwise.

It follows that w+
1
3
6= v+

1
3
, 1

3 ∈ Disc(v+) and w′(1) 6= v(1), 1 ∈ Disc+(v).

Lemma 1 Assume that {un} and v are given as in Proposition 1, w is defined
as above, and u ∈ E1, u ≤ v. Suppose that support(v) ⊆ [a, b] and a ≤ w−0 =
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∨
t∈T (ut)−0 . If there exists n such that b−a

n < ε
2 ,

w−i
n

< u−i
n

+
ε

2
, i = 0, 1, . . . , n− 1; (1)

and
w+

i
n

< u+
i
n

+
ε

2
, i = 1, . . . , n, (2)

then d1(u, v) < 2ε.
Proof Since d1(w, v) = 0, so we only need to show that d1(u, w) < 2ε. First, we show
that ‖u− − w−‖1 < ε. Define two simple functions h1 and h′1 on [0, 1] as follows:
h1(α) = w−i

n

, h′1(α) = u−i
n

, for α ∈ [ i
n , i+1

n ), i = 0, 1, . . . , n− 1; h1(1) = w−1 , h′1(1) =

u−1 . Clearly, by (1) and the monotonicity of w−α and u−α , we have h1(α) ≤ w−α ,
h′1(α) ≤ u−α and 0 ≤ h1(α)−h′1(α) < ε

2 for all α ∈ [0, 1]. Then
∫ 1

0
(w−α −h1(α))dα =

∑n−1
i=0

∫ i+1
n

i
n

(w−α − h1(α))dα ≤ ∑n−1
i=0 (w−i+1

n

−w−i
n

) 1
n = 1

n (w−1 −w−0 ) < 1
n (b− a) < ε

2 .
Thus, we have

‖w− − u−‖1 =
∫ 1

0
(w−α − h1(α))dα +

∫ 1

0
(h1(α)− u−α )dα

≤ ∫ 1

0
(w−α − h1(α))dα +

∫ 1

0
(h1(α)− h′1(α))dα

< ε
2 + ε

2 = ε.

Second, we show that ‖w+ − u+‖1 < ε. Similar to the above case, we also
define two simple functions h2 and h′2 on [0, 1] as follows: h2(0) = w+

0 , h′2(0) = u+
0 ;

h2(α) = w+
i
n

, h′2(α) = w+
i
n

, for α ∈ ( i−1
n , i

n ], i = 1, 2 . . . , n. By a similar argument as

above, we have
∫ 1

0
(w+

α − h2(α))dα < ε
2 and ‖u+ − w+‖1 < ε. Thus, d1(u,w) < 2ε.

So the proof is completed.
Based on the above discussion, we have the following algorithm of computing

the supremum of fuzzy numbers via the L1 metric d1.

Theorem 1 Under the hypothesis of Proposition 1.
(i) Choose a, b such that a ≤ w−0 and b > v+

0 =
∨

t∈T (ut)+0 ;
(ii) Pick nature number n such that b−a

n < ε
2 .

For i = 0, 1, · · ·n− 1, choose ti ∈ T such that

w−i
n

< (uti)
−
i
n

+
ε

2
.

For j = 1, 2, · · · , n, choose tn+j−1 ∈ T such that

w+
j
n

< (utn+j−1)
+
j
n

+
ε

2
.

Let u =
∨2n−1

i=0 uti , then d1(u, v) < 2ε.
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In the following, we consider the case when the family of fuzzy numbers
is given by their membership functions. It can be seen that the calculations of
approximation with respect to supremum via L1 metric can be carried out in a
similar way as in the cut-set case. By the geometric meaning of integration and
the integration variable transformation, we have the following lemma.

Lemma 2 For u, v ∈ E1, we have

‖u− − v−‖1 =
∫ max{u−1 , v−1 }

min{u−0 , v−0 }
|lu(x)− lv(x)|dx (3)

and

‖u+ − v+‖1 =
∫ max{u+

0 , v+
0 }

min{u+
1 , v+

1 }
|ru(x)− rv(x)|dx. (4)

Proof Here, we only prove (3). The proof for (4) is similar. In order to prove this
lemma, we resort to the Lebesgue measure of real two-dimensional space R2. Let

A1 = {(x, α) ∈ R2|min{u−α , v−α } ≤ x ≤ max{u−α , v−α } and 0 ≤ α ≤ 1},

A2 = {(x, α) ∈ R2|u−α ≤ x < limα′→α+u−α′ and α ∈ Disc(u−)},
A3 = {(x, α) ∈ R2|v−α ≤ x < limα′→α+v−α′ and α ∈ Disc(v−)},

A = A1

⋃
A2

⋃
A3

and

B = {(x, α) ∈ R2| min{lu(x), lv(x)} ≤ α ≤ max{lu(x), lv(x)} and
min{u−0 , v−0 } ≤ x ≤ max{u−1 , v−1 }}

.

Here Disc(u−) and Disc(v−) are the sets of all discontinuous points of u−

and v− respectively. Clearly, Ai(i = 1, 2, 3) and B are measurable. The Lebesgue
measure of Ai(i = 1, 2, 3), A and B are denoted by m(Ai)(i = 1, 2, 3), m(A) and
m(B), respectively. By the meaning of integration and Lebesgue measure of R2,

we have m(A1) = ‖u− − v−‖1 and m(B) =
∫ max{u−1 , v−1 }

min{u−0 , v−0 }
|lu(x)− lv(x)|dx.

Now, we show that A = B. First, for each (x, α) ∈ A, there are three cases:
Case 1. (x, α) ∈ A1, then min{u−α , v−α } ≤ x ≤ max{u−α , v−α }, so min{u−0 , v−0 } ≤
x ≤ max{u−1 , v−1 }. Without loss of generality, we can suppose that u−α ≤ v−α ,
then u−α ≤ x ≤ v−α , thus u−α ≤ x < u−1 or x ≥ u−1 and lv(x) = v(x) ≤ α. So
lu(x) = u(x) ≥ α when u−α ≤ x ≤ u−1 and lu(x) = 1 when x ≥ u−1 . Thus,
lv(x) ≤ α ≤ lu(x), i.e., min{lu(x), lv(x)} ≤ α ≤ max{lu(x), lv(x)}. So (x, α) ∈ B.
Case 2. (x, α) ∈ A2. Since u−α ≤ x < limα′→α+u−α′ and u−α is increasing, so
u−0 ≤ x ≤ u−1 . As lu(x) is upper semicontinuous on R, lu(x) = α. Thus, (x, α) ∈ B.
Case 3. (x, α) ∈ A3. Similarly to the case 2, we can show that (x, α) ∈ B.

Thus, by the above discussion we have A ⊆ B.
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Conversely, for each (x, α) ∈ B, we will show that if (x, α) 6∈ A2

⋃
A3,

then (x, α) ∈ A1. Since (x, α) ∈ B, min{lu(x), lv(x)} ≤ α ≤ max{lu(x), lv(x)}.
Since 0 ≤ α ≤ 1, we have min{u−α , v−α } ≤ x ≤ max{u−α , v−α }. In fact, if x <
min{u−α , v−α }, then lu(x) = u(x) < α and lv(x) = v(x) < α which contradict
α ≤ max{lu(x), lv(x)}; if x > max{u−α , v−α }, since x ≤ max{u−1 , v−1 }, so 0 ≤ α < 1.
As (x, α) /∈ A2

⋃
A3, i.e., α /∈ Disc(u−)

⋃
Disc(v−), so lu(x) > α and lv(x) > α

which contradict α > min{lu(x), lv(x)}. Hence, for each (x, α) ∈ B, (x, α) ∈ A,
i.e., B ⊆ A.

Thus, A = B. Since Disc(u−)
⋃

Disc(v−) is at most countable, hence
m(A2

⋃
A3) = 0, thus m(A1) = m(B). The proof of (3) is thus completed.

Remark 2 From Lemma 2, it can be seen that the integral defined via cut-set
can be represented by the integral defined via corresponding membership functions
which is more direct in certain cases. By the properties of lu, lv and ru, rv, we can
arbitrarily extend the integration interval of the formulas on the right hand side of
(3) and (4), but their integration values remain the same:

∫ +∞

−∞
|lu(x)− lv(x)|dx =

∫ max{u−1 ,v−1 }

min{u−0 ,v−0 }
|lu(x)− lv(x)|dx

and ∫ +∞

−∞
|ru(x)− rv(x)|dx =

∫ max{u+
0 ,v+

0 }

min{u+
1 ,v+

1 }
|ru(x)− rv(x)|dx.

Now, we define another metric on E1, which is based on the membership
functions of fuzzy numbers. For any u, v ∈ E1, define

d∗1(u, v) =
∫ +∞

−∞
(|lu(x)− lv(x)|+ |ru(x)− rv(x)|)dx.

Clearly, d∗1 is a metric on E1.
By the definition of d1, we have

1
2

∫ 1

0

(|u−α − v−α |+ |u+
α − v+

α |)dα ≤ d1(u, v) ≤
∫ 1

0

(|u−α − v−α |+ |u+
α − v+

α |)dα.

So by Lemma 2, Remark 2 and the definition of d∗1, we have the following theorem.

Theorem 2 Let u, v ∈ E1, then

1
2
d∗1(u, v) ≤ d1(u, v) ≤ d∗1(u, v).
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Remark 3 The metric d∗1 on E1 is based on the membership functions of fuzzy
numbers. It is more direct than the L1 metric d1 in certain cases since d1 is based
on the cut-set functions. From Theorem 2, we can see that the metrics d1 and d∗1
are uniformly equivalent. So they have the same topological properties. Hence, the
metric d∗1 is also approximate to the supremum and it is computable.

Lemma 3 Assume that {un} and v are given as in Proposition 1, w is defined as
above, and u ∈ E1, u ≤ v. Let a = u−0 and b = v+

0 . Suppose that there exists
natural number n such that b−a

n < ε
2 ,

lu(xi) < lw′(xi) +
ε

2(b− a)
, i = 1, 2, · · · , n, (5)

and
rw′(xi) < ru(xi) +

ε

2(b− a)
, i = 1, 2, · · · , n, (6)

where xi = a + i(b−a)
n . Then d1(u, v) < 2ε.

Proof By Lemma 2 and Remark 2, we have

d1(u, v) ≤
∫ b

a

(lu(x)− lv(x))dx +
∫ b

a

(rv(x)− ru(x))dx.

Since lv = lw′ on [a, b] and rv = rw′ a.e. on [a, b], so

d1(u, v) ≤
∫ b

a

(lu(x)− lw′(x))dx +
∫ b

a

(rw′(x)− ru(x))dx.

First, we show that
∫ b

a
(lu(x) − lw′(x))dx < ε. Define two simple functions

h1, h
′
1 on [a, b] as follows: h1(x0) = lw′(x0), h2(x0) = lu(x0); h1(x) = lw′(xi), h′1(x) =

lu(xi), for x ∈ (xi−1, xi], i = 1, 2, · · · , n. By (5), h′1(x)−h1(x) < ε
2(b−a) for x ∈ [a, b].

And
∫ b

a
(h1(x) − lw′(x))dx =

∑n
i=1

∫ xi

xi−1
(h1(x) − lw′(x))dx ≤ ∑n

i=1

∫ xi

xi−1
(lw′(xi) −

lw′(xi−1))dx = (l′w(xn)− lw′(x0)) b−a
n < ε

2 . So

∫ b

a
(lu(x)− lw′(x))dx ≤ ∫ b

a
(h′1(x)− lw′(x))dx

=
∫ b

a
(h′1(x)− h1(x))dx +

∫ b

a
(h1(x)− lw′(x)dx

< ε
2 + ε

2 = ε.

Similarly,
∫ b

a
(rw′(x)− ru(x))dx < ε. The proof is thus completed.

By the discussion of Lemma 2, we have the following algorithm on the supre-
mum of fuzzy numbers based on membership functions.

Theorem 3 Assume that {ut|t ∈ T} and v are given as in Proposition 1, w is
defined as above.
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(i) Choose b > v+
0 =

∨
t∈T (ut)+0 , pick t′ ∈ T and let (ut′)−0 = a;

(ii) Choose a natural number n such that b−a
n < ε

2 .
For i = 1, 2, · · · , n, choose ti ∈ T such that

rw′(a +
i(b− a)

n
) < ruti

(a +
i(b− a)

n
) +

ε

2(b− a)
.

For j = 1, 2, · · · , n, choose tn+j ∈ T such that

lutn+j
(a +

j(b− a)
n

) < lw′(a +
j(b− a)

n
) +

ε

2(b− a)
.

Let ut′ = ut0 , u = ∨2n
i=0uti

, then d1(u, v) < 2ε.

Remark 4 Note that in the proof of Lemma 3, we only used the values of u at the
isolated points:

xi = a +
i(b− a)

n
, i = 1, 2, · · · , n.

Thus, if we define u′ = (lu′ , ru′) such that lu′(xi) = lu(xi), ru′(xi) = ru(xi),
i = 1, 2, · · · , n, and let u′ be linear between xi and xi+1, i = 1, 2, · · · , n−1, then we
also have d1(u′, v) < 2ε. Note that lu′(xi) = luti

(xi), ru′(xi) = luti+n
(xi) for some

ti, ti+n ∈ T , i = 1, 2, · · · , n, and u′ is piecewise linear and hence continuous, thus
we have the following:

Theorem 4 Under the hypothesis of Proposition 2, for every ε > 0 there is a
piecewise linear fuzzy number u′ which is determined by a finite number of values
of a finite number of fuzzy numbers of {ut|t ∈ T} such that d1(u′, v) < 2ε.

3. CALCULATIONS VIA Lp(p ≥ 1) METRICS

In this section, we discuss the finite approximate algorithm for supremum
with respect to the general Lp metrics. The situation will be much more compli-
cated than the case when p = 1.

Definition 1 Let f be a monotone left continuous function from [0,1] to R. Suppose
that a ≤ f(x) ≤ b for all x ∈ [0, 1]. For each ε > 0, pick natural number n such
that b−a

n < ε
2 . Let Ei = {x ∈ [0, 1]|a + i

n (b − a) ≤ f(x) ≤ a + i+1
n (b − a)},

i = 0, 1, · · · , n − 1;E′
j = {x ∈ [0, 1]|f(x) = a + j

n (b − a)}, j = 0, 1, · · · , n. Now we
define the partition points xj as follows:

Case 1. E′
j is an interval (the interval is right closed since f is left continuous),

take xj = supE′
j .

Case 2. E′
j is an empty set. If f is increasing, take xj = sup{⋃i≤j Ei}; if f

is decreasing, take xj = inf{⋃i≤j Ei}.
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Clearly, if f is increasing, then 0 = x0 ≤ x1 ≤ · · · ≤ xn = 1; if f is decreasing,
then 1 = x0 ≥ x1 ≥ · · · ≥ xn = 0. So they form a set of partitioning points for
[0, 1]. It may happen that {xi|i = 0, 1, · · ·n} have repeated points. For our need
we can rename these partition points and make them have no repeated points. So
0 = x0 < x1 < · · · < xn = 1 when f is increasing and 1 = x0 > x1 > · · · > xn = 0
when f is decreasing.

Remark 5 Based on the above partition and by the monotonicity of the function
f , we have 0 ≤ f(xi+1) − f(x) < ε

2 for x ∈ (xi, xi+1) when f is increasing and
0 ≤ f(x)− f(xi) < ε

2 for x ∈ (xi+1, xi) when f is decreasing.

Lemma 4 Assume that w and and v are given as in Proposition 1, u is a fuzzy
number such that u ≤ v. Let u−0 = a, w−1 < b. For the two functions w+ and w−,
pick partitioning points 1 = x0 > x1 > · · · > xn = 0 and 0 = y0 < y1 < · · · <
ym = 1 of [0, 1] respectively defined in Definition 1. If the following conditions are
satisfied, then dp(u, v) < (1 + 2

1
p )ε.

(i) w+
xi

< u+
xi

+ ε
2 , i = 0, 1, · · · , n− 1.

(ii) For every yj , j = 0, 1, · · · ,m−1, there exists y′j ∈ (yj , yj+1), y′j−yj < 1
m ( ε

b−a )p

and w−y′
j

< u−y′
j
+ ε

2 .

Proof First, we prove that ‖v+ − w+‖p < ε. For each x ∈ [0, 1] \ {xi|i = 1, · · · , n},
there exists a partitioning interval (xi+1, xi) such that x ∈ (xi+1, xi). Since w+

is decreasing on [0, 1], so limx→x+
i+1

w+
x exists, and it is denoted by w+

x+
i+1

. So

w+
x ≤ w+

x+
i+1

. By the left continuity of w+, we have 0 ≤ w+

x+
i+1
−w+

xi
< ε

2 . Hence, by

(i), w+
x − u+

x ≤ (w+

x+
i+1

− w+
xi

) + (w+
xi
− u+

xi
) < ε

2 + ε
2 = ε. Thus for each x ∈ [0, 1],

0 ≤ w+
x − u+

x < ε. Since w+
x 6= v+

x only if x ∈ disc(v+) which is at most countable.
So we have 0 ≤ v+

x − u+
x < ε a.e. on [0, 1]. Thus ‖v+ − u+‖p < ε.

Second, we prove that ‖u− − w−‖p < 2
1
p ε. For each y ∈ [y′j , yj+1], by left

continuity of w−, we have 0 ≤ w−yj+1
− w−y′

j
< ε

2 . So w−y − u−y ≤ (w−yj+1
− w−y′

j
) +

(w−y′
j
− u−y′

j
) < ε

2 + ε
2 = ε. And for each y ∈ [yj , y

′
j ], w−y − u−y ≤ w−1 − u−0 < b − a.

So we have

‖u− − w−‖p = (
∑m−1

j=0

∫ y′j
yj

(w−y − u−y )pdy +
∑m−1

j=0

∫ yj

y′
j
(w−y − u−y )pdy)

1
p

< (m(b− a)p · 1
m ( ε

b−a )p + εp)
1
p

= 2
1
p ε.

So ‖u− − v−‖p = ‖u− − w−‖p < 2
1
p ε. Thus dp(u, v) < (1 + 2

1
p )ε. The proof is

completed.

Based on the above discussion, we have the following algorithm on the supre-
mum of fuzzy numbers.
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Theorem 5 Assume that {ut|t ∈ T} and v are given as in Proposition 1, w is
defined as above.
(i) Choose b > v−1 , pick t′ ∈ T , let (ut′)−0 = a.
(ii) For w+, pick its partition points 1 = x0 > x1 > · · · > xn = 0 defined as
Definition 1. For i = 0, 1, · · · , n− 1, choose ti ∈ T such that

w+
xi

< (uti
)+xi

+
ε

2
.

(iii) For w−, pick its partition points 0 = y0 < y1 < · · · < ym = 1 defined
as Definition 1. Let y′j = yj + 1

m ( ε
b−a )p

∧∧{yj+1 − yj |j = 0, 1, · · · ,m − 1}, j =
0, 1, · · · ,m− 1. For each j = 0, 1, · · · ,m− 1, choose tn+j ∈ T such that

w−y′
j

< (utn+j
)−y′

j
+

ε

2
.

Let tn+m = t′ and u =
∨n+m

i=0 uti
, then dp(u, v) < (1 + 2

1
p )ε.

Remark 6 Similar to Theorem 4, we can find a fuzzy number u′ ∈ E1 whose cut-
set functions are both linear and determined by a finite number of cut-set values
of a finite number of fuzzy numbers of {ut|t ∈ T}.

Remark 7 All results in this paper are dually true for infimum.

In this paper, we have shown that the supremum of a family of fuzzy numbers
can be finitely approximated via Lp metrics and give out the concrete approach to
approximate the supremum. As our computation method is finite, it might be exe-
cuted by computers. As a byproduct, it is proved that the L1 metric d1 defined via
cut-set is equivalent to a metric which can be calculated directly via membership
functions. The results in this paper also show that Lp metrics are useful metrics on
fuzzy number spaces. Because the approximation to the supremum via Lp metrics
are feasible and computable, moreover, the Lp metrics are analytic in nature, so
our result may have applications in fuzzy analysis. For example, it could provide a
method for the computation of various fuzzy-number-valued integrals.
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