H_v -FIELD OF FRACTIONS AND H_v -QUOTIENT RINGS

MANSOUR GHADIRI

Department of Mathematics, Yazd University, Yazd, Iran, mghadiri@yazd.ac.ir

Abstract. A larger class of algebraic hyperstructures satisfying the ring (field)-like axioms is the class of H_v -rings (H_v -fields). In this paper, we define the H_v -integral domain and introduce the H_v -field of fractions of an H_v -integral domain. Also, the H_v -quotient ring and some relative theorems are presented. Finally, some interesting results about the H_v -rings of fractions, H_v -quotient rings and the relations between them are proved.

Key words and Phrases: H_v -integral domain, H_v -field of fractions, H_v -normal subgroup, H_v -quotient ring, fundamental relation.

1. INTRODUCTION AND PRELIMINARIES

Let H be a non-empty set and $\mathcal{P}^*(H)$ be the non-empty subsets of H. A hyperoperation on H is a mapping $*: H \times H \longrightarrow \mathcal{P}^*(H)$. The pair (H, *) is called a hypergroupoid. A semi-hypergroup is a hypergroupoid with associative law: (x * y) * z = x * (y * z) for every $x, y, z \in H$; and a hypergroup is a semi-hypergroup with the reproduction axiom: x * H = H * x = H for every $x \in H$. The theory of hyperstructures (hypergroup) was introduced by Marty in 1934 during the 8^{th} Congress of the Scandinavian Mathematics [7]. This theory has been studied in the following decades and nowadays by many mathematicians. There are applications to the following subjects: geomemtry, hypergraphs, binary relations, lattices, fuzzy sets and rough sets. The concept of H_v -structures as a larger class than the well known hyperstructures was introduced by Vougiouklis in 1990 at Fourth Congress of AHA where the associative law was replaced by the non-empty intersections: $(x * y) * z \cap x * (y * z) \neq \emptyset$ for every $x, y, z \in H$. The basic definitions and results of H_v -structures can be found in [12]. We deal with H_v -rings and H_v -fields. H_v rings are the largest class of algebraic systems that satisfy ring-like axioms. In

²⁰²⁰ AMS Mathematics Subject Classification: 20N20 Received: 24-08-2019, accepted: 16-02-2021.

[8], Spartalis studied a wide class of H_v -rings resulting from an arbitrary ring by using the p-hyperoperations. Ghadiri, et al. introduced the concepts of direct limit and direct system of H_v -modules on an H_v -rings in [4], and n-ary $P - H_v$ -rings in [6]. Darafsheh and Davvaz defined the H_v -ring of fractions of a commutative hyperring which is a generalization of the concept of ring of fractions in [1]. In this paper, we define a zero divisor, an H_v -integral domain and an H_v -field of fractions which are generalization of concepts. If $x \in H$ and $A, B \subseteq H$ then $A * B = \bigcup_{a \in A, b \in B} a * b, \ A * x = A * \{x\}, \ x * B = \{x\} * B.$ An H_v -group His called weak-commutative if $(x * y) \cap (y * x) \neq \emptyset$ for every $x, y \in H$. A nonempty subset K of H is called an H_v -subgroup if (K, *) is an H_v -group. A triple $(R, +, \cdot)$ is called an H_v -ring if (R, +) is an H_v -group, (R, \cdot) is a semi- H_v -group and \cdot is weak distributive with respect to +, i.e., $(x \cdot (y+z)) \cap ((x \cdot y) + (x \cdot z)) \neq \emptyset$ and $((x+y) \cdot z) \cap ((x \cdot z) + (y \cdot z)) \neq \emptyset$. A mapping $f: R_1 \longrightarrow R_2$ on H_v -rings $(R_1, +_1, \cdot_1)$ and $(R_2, +_2, \cdot_2)$ is called a weak homomorphism if for every $x, y \in R_1$ we have $(f(x+y) \cap (f(x)) + f(y)) \neq \emptyset$, $f(x \cdot y) \cap (f(x) \cdot f(y)) \neq \emptyset$ and is called strong homomorphism if f(x + y) = f(x) + f(y), $f(x \cdot y) = f(x) \cdot f(y)$. For more definitions, results and applications on H_v -rings and H_v -modules, see [1, 3, 4, 6, 8, 10, 11, 13]. The smallest equivalence relation γ^* such that the quotient R/γ^* is a ring, is called the fundamental relation that is the transitive closure of the relation γ defined as follows [10]: let N be the set of natural numbers and the set of all finite polynomials of elements R over N denoted by $U(U_R)$. Now,

$$x\gamma y \Leftrightarrow \{x, y\} \subseteq u \in U.$$

 $a\gamma^*b$ if and only if there exist x_1, x_2, \dots, x_{m+1} in R such that $x_1 = a, x_{m+1} = b$ and there exist u_1, u_2, \dots, u_m in U such that $\{x_i, x_{i+1}\} \subseteq u_i$ for all $i = 1, 2, \dots, m$. Suppose $\gamma^*(r)$ is the equivalence class containing $r \in R$. On R/γ^* , the operations \oplus and \odot is defined as follows:

$$\begin{array}{ll} \gamma^*(x) \oplus \gamma^*(y) &= \gamma^*(c), \text{ for all } c \in \gamma^*(x) + \gamma^*(y), \\ \gamma^*(x) \odot \gamma^*(y) &= \gamma^*(d), \text{ for all } d \in \gamma^*(x) \cdot \gamma^*(y). \end{array}$$

If $\phi: R \longrightarrow R/\gamma^*$ is the canonical map, then the kernel of ϕ , $\omega_R = \{x \in R | \phi(x) = 0\}$ is called core of R and is denoted by ω_R , where 0 is the identity element of the group $(R/\gamma^*, \oplus)$. We have $\omega_R \oplus \gamma^*(x) = \gamma^*(x) \oplus \omega_R = \gamma^*(x)$ and

$$\gamma^*(x+y) = \gamma^*(x) \oplus \gamma^*(y), \ \gamma^*(x \cdot y) = \gamma^*(x) \odot \gamma^*(y),$$

for all $x, y \in R$ and so the map $\phi: R \longrightarrow R/\gamma^*$ defined by $\phi(x) = \gamma^*(x)$ is a strong homomorphism. An H_v -ring can be commutative with respective either "+" or " \cdot "; if it is in both commutative we call it commutative H_v -ring. The expression $(x \in x \cdot u = u \cdot x)$ defines a unit element. A scalar element u is such that $u \cdot x$ and $x \cdot u$ are single element subsets. Thus the scalar unit u is such that $u \cdot x = x \cdot u = \{x\}$. A non-empty subset I of R is called an H_v -ideal if (I, +) is an H_v -subgroup of (R, +) and $I \cdot R \subseteq I$, $R \cdot I \subseteq I$. A non-empty subset S of R is called a strong multiplicatively closed subset (s.m.c.s) if $1 \in S$ and $S \cdot a = a \cdot S \subseteq S$ for all $a \in S$. An H_v -ring is called H_v -field if it's fundamental ring R/γ^* is a field. The H_v -ring of fractions with relative theorems and results are presented in section 2. Then in section 3, we define the H_v -integral domain and introduce the H_v -field of fraction of an H_v -integral domain. In section 4, it is considered an H_v ideal I of an H_v -ring R and we introduce the H_v -quotient ring R/I, then find out the fundamental relation of R/I. Also, some theorems that present the relation between H_v -field of fractions and H_v -quotient ring are proved.

2. H_v -Ring of Fractions

Throughout this paper we let R be a commutative hyperring with scalar unit 1 and S is a s.m.c.s. of R. It is denoted the operations sum and product of all rings R, $S^{-1}R$ and quotient rings by +, \cdot and we use index for the hyperoperations with the same symbols where is any ambiguity, like \oplus_R , $\oplus_{S^{-1}R}$, $+_R$ and $+_{S^{-1}R}$.

For $A \subseteq R$ and $B \subseteq S$, it is denoted the set $\{(a,b) | a \in A, b \in B\}$ by (A, B). The relation \sim is defined on $\mathcal{P}^*(R) \times \mathcal{P}^*(S)$ as follows:

 $(A, B) \sim (C, D)$ if and only if there exists a subset X of S such that

$$X \cdot (A \cdot D) = X \cdot (B \cdot C).$$

The relation \sim is an equivalence relation on $\mathcal{P}^*(R) \times \mathcal{P}^*(S)$. Also, for $(r, s), (r_1, s_1) \in R \times S$, define $(r, s) \sim (r_1, s_1)$ if and only if there exists $A \subseteq S$ such that $A \cdot (r \cdot s_1) = A \cdot (r_1 \cdot s)$, then the relation \sim is an equivalence relation on $R \times S$. The equivalence class containing (r, s) in $R \times S$ is denoted by [r, s] and the set of all the equivalence classes by $S^{-1}R$. The equivalence class containing (A, B) in $\mathcal{P}^*(R) \times \mathcal{P}^*(S)$ is denoted by [R, S]. It is defined:

$$\ll A, B \gg = \bigcup_{(A_1, B_1) \in ||A, B||} \{ [a_1, b_1] | a_1 \in A_1, b_1 \in B_1 \},\$$

and so $\ll r, s \gg = \ll r.s', s.s' \gg$.

The set $S^{-1}R$ with the following hyperoperation:

$$\begin{split} [r_1, s_1] \oplus [r_2, s_2] &= \bigcup_{(A,B) \in \|r_1 \cdot s_2 + r_2 \cdot s_1, s_1 \cdot s_2\|} \{ [r,s] | \ r \in A, s \in B \} \\ &= \ll r_1 \cdot s_2 + r_2 \cdot s_1, s_1 \cdot s_2 \gg, \\ [r_1, s_1] \otimes [r_2, s_2] &= \bigcup_{(A,B) \in \|r_1 \cdot r_2, s_1 \cdot s_2\|} \{ [r,s] | \ r \in A, s \in B \} \\ &= \ll r_1 \cdot r_2, s_1 \cdot s_2 \gg. \end{split}$$

is an H_v -ring, which is called the H_v -ring of fractions of R [1]. For simplicity, we denote the γ_R^* , $\gamma_{S^{-1}R}^*$ and $U_{S^{-1}R}$ with γ^* , γ_s^* and U_s , respectively.

Lemma 2.1. (i) If $u \in U_R$ then $\ll u, 1 \gg \in U_S$, (ii) For $r_1, r_2 \in R$; $\gamma^*(r_1) = \gamma^*(r_2)$ implies $\gamma^*_s([r_1, 1]) = \gamma^*_s([r_2, 1])$.

Proof. The proofs of (i) follows from definitions. For (ii), let $\gamma^*(r_1) = \gamma^*(r_2)$, so there exist $x_1, \dots, x_{m+1} \in R$ and $u_1, \dots, u_m \in U$ such that $\{x_i, x_{i+1}\} \subseteq u_i$ for $i = 1, \dots, m$. So $\{[x_i, 1], [x_{i+1}, 1]\} \subseteq \ll u_i, 1 \gg \in U_S$ and thus $\gamma^*_s([r_1, 1]) = \gamma^*_s([r_2, 1])$.

M. Ghadiri

This Lemma is used in the proof of the following Theorem. Also we refer to this Lemma in the next sections.

Theorem 2.2. [1] The following diagram is a commutative diagram of H_v -homomorphisms and H_v -rings,

where φ and φ_s are canonical maps, h(r) = [r, 1] and $h_s(\gamma^*(r)) = \gamma^*_s([r, 1])$.

Corollary 2.3. If $r \in \omega_R$ and $s \in S$ then $[r, s] \in \omega_{S^{-1}R}$.

Proof. For $r \in \omega_R$ and h_s in Theorem 2.2, we have $\gamma^*(r) = \omega_R$ and $\gamma^*_s([r, 1]) = h_s(\gamma^*(r)) = h_s(\omega_R) = \omega_{S^{-1}R}$, because h_s is a homomorphism of rings. So for $r \in \omega_R$ and $s \in S$,

 $\gamma_s^*([r,s]) = \gamma_s^*([r,1] \cdot [1,s]) = \gamma_s^*([r,1]) \odot \gamma_s^*([1,s]) = \omega_{S^{-1}R} \odot \gamma_s^*([1,s]) = \omega_{S^{-1}R}.$ Therefore $[r,s] \in \omega_{S^{-1}R}.$

3. H_v -Integral Domain and H_v -Field of Fractions

To introduce the H_v -field of fraction of a hyperring we need to define the concepts: of an H_v -zero divisor, an H_v -integral domain and an invertible element. Also we need an extension of H_v -ideal which is called weak ideal, for completeness of H_v -fields argument.

Lemma 3.1. ω_R is an H_v -ideal of R.

Proof. Let $x, y \in \omega_R$ and $r \in R$, we have:

$$\gamma^*(x+y) = \gamma^*(x) \oplus \gamma^*(y) = \omega_R \oplus \omega_R = \omega_R.$$

So $x+y \subseteq \omega_R$. Also there exits $z \in R$ such that $y \in x+z$. So $\gamma^*(y) = \gamma^*(x) \oplus \gamma^*(z)$, $\omega_R = \omega_R \oplus \gamma^*(z) = \gamma^*(z)$, then $z \in \omega_R$ On the other hand we have:

$$\gamma^*(r \cdot x) = \gamma^*(r) \odot \gamma^*(x) = \gamma^*(r) \odot \omega_R = \omega_R$$

So $R \cdot \omega_R \subseteq \omega_R$ and similarly $\omega_R \cdot R \subseteq \omega_R$.

78

Definition 3.2. Let $a \in R$, a is called a zero-divisor of R if there exists $b \in R - \omega_R$ such that $a \cdot b \subseteq \omega_R$. The set of all zero-divisors of R denoted by Z(R).

Example 3.3. For $x \in \omega_R$ we have

 $\gamma^*(x \cdot a) = \gamma^*(x) \odot \gamma^*(a) = \omega_R \odot \gamma^*(a) = \omega_R$, for every $a \in R$,

so $x \cdot a \subseteq \omega_R$ and $x \in Z(R)$. Therefore $\omega_R \subseteq Z(R)$.

Definition 3.4. A commutative hyper (H_v) ring R where $1_R \notin \omega_R$ or $R \neq \omega_R$ is called a non-trivial hyper (H_v) ring. Also, a non-trivial hyper (H_v) ring is called a hyper (H_v) integral domain if $Z(R) = \omega_R$.

- **Lemma 3.5.** (i) R is an H_v -integral domain if and only if R/γ^* is an integral domain.
 - (ii) Every H_v -field is an H_v -integral domain.
 - (iii) R is an H_v -integral domain if and only if for every $a, b, c \in R \omega_R$, $a \cdot b = a \cdot c \Rightarrow \gamma^*(b) = \gamma^*(c)$.

Proof. (i) Suppose R is an H_v -integral domain, it is clear that $\gamma^*(1)$ is an unit in R/γ^* . Since $1_R \notin \omega_R$, then $\gamma^*(1) \neq \omega_R$ and $R/\gamma^* \neq \{\omega_R\}$. If $\gamma^*(r) \in Z(R/\gamma^*)$ then there exists $\gamma^*(x) \in R/\gamma^*$ such that $\gamma^*(x) \neq \omega_R$ and $\gamma^*(r \cdot x) = \gamma^*(r) \odot \gamma^*(x) = \omega_R$, thus $r \cdot x \subseteq \omega_R$. From $\omega_R \neq \gamma^*(x)$ we have $x \notin \omega_R$ and since R is an H_v -integral domain, $r \in Z(R) = \omega_R$, so $\gamma^*(r) = \omega_R$. Therefore $Z(R/\gamma^*) = \{\omega_R\}$ and R/γ^* is an integral domain. The converse is similarly. By using (i) the proofs of (ii) and (iii) are straightforward and omitted.

Definition 3.6. The element $x \in R$ is called invertible if there exists $y \in R$ such that $1 \in x \cdot y$.

Example 3.7. For every H_v -integral domain R;

(i) Every element of a s.m.c.s. of R is invertible,

(ii) If $t \notin \omega_R$, let us denote $t^0 = 1, t^1 = t, t^2 = t \cdot t, \cdots, t^n = t \cdot t^{n-1}$ and $S_t = \bigcup_{n \in N_0} t^n$, then S_t is a s.m.c.s. of R.

Theorem 3.8. Let R be a non-trivial hyperintegral domain and $S = R - \omega_R$. Then $S^{-1}R$ is an H_v -integral domain.

M. Ghadiri

Proof. First, we prove that $S = R - \omega_R$ is a s.m.c.s of R. For $x, y \in S$, $x, y \notin \omega_R$ then $\gamma^*(x) \neq \omega_R \neq \gamma^*(y)$. By (i) of Lemma 3.5 $x \cdot y \not\subseteq \omega_R$. Then $x \cdot y \cap \omega_R = \emptyset$ and $x \cdot y \subseteq R - \omega_R = S$; because, if $t \in x \cdot y \cap \omega_R$, we have $r^*(t) = r^*(x \cdot y) = \omega_R$ and so $x \cdot y \subseteq \omega_R$, that it is a contradiction by $x \cdot y \not\subseteq \omega_R$. Also by reproduction axiom there exists $z \in R$ such that $x \in y.z$. If $z \in \omega_R$, then $\omega_R = \gamma^*(y) \odot \gamma^*(z) =$ $\gamma^*(y \cdot z) = \gamma^*(x)$, that is a contradiction. So $z \in R - \omega_R = S$, and $y \cdot S = S$. Also $1 \in R - \omega_R = S$.

Now we show that; if $[a, s] \cdot [b, t] \subseteq \omega_{S^{-1}R}$, then [a, s] or [b, t] is in $\omega_{S^{-1}R}$. $[a, s] \cdot [b, t] \subseteq \omega_{S^{-1}R}$ implies $\omega_{S^{-1}R} = \gamma_s^*([c, d])$ for $c \in \gamma^*(a \cdot b)$, $d \in \gamma^*(s \cdot t)$. For $c \in \gamma^*(a \cdot b)$, we consider two cases; $c \in \omega_R$ and $c \notin \omega_R$. The second case is not possible. Because if $c \notin \omega_R$, $c \in R - \omega_R = S$ and $\omega_{S^{-1}R} = \gamma_s^*([c, d]) \odot \gamma_s^*([d, c]) = \gamma_s^*([c, d] \cdot [d, c]) = \gamma_s^*([t, t])$, for $t \in \gamma^*(c \cdot d)$.

For t' as an invertible of t we have

$$\gamma_s^*([1,1]) = \gamma_s^*([t' \cdot t'] \cdot [t,t]) = \gamma_s^*([t' \cdot t']) \odot \gamma_s^*([t,t]) = \omega_{S^{-1}R},$$

that is a contradiction and so $c \in \omega_R$.

If $c \in \omega_R$, then $\gamma^*(a \cdot b) = \gamma^*(c) = \omega_R$ and $a \cdot b \subseteq \omega_R$, so $a \in \omega_R$ or $b \in \omega_R$, since R is hyperintegral domain, therefore by corollary 2.3, $[a, s] \in \omega_{S^{-1}R}$ or $[b, t] \in \omega_{S^{-1}R}$ and $S^{-1}R$ is an H_v -integral domain.

Lemma 3.9. Let R be an H_v -ring, then

- (i) $x \in R$ is invertible if and only if $\gamma^*(x)$ is invertible in R/γ^* ,
- (ii) R is an H_v -field if and only if every element of $R \omega_R$ is invertible,
- (iii) if R is an H_v -integral domain then $a, b \in R \omega_R$ if and only if $a \cdot b \nsubseteq \omega_R$.

Proof. The proof follows from definitions and (i) of Lemma 3.5 immediately. \Box

Theorem 3.10. Let R be a hyper integral domain with scalar unit. If $S = R - \omega_R$ then $(S^{-1}R, \oplus, \otimes)$ is an H_v -field. This H_v -field is called the H_v -field of fractions of R.

Proof. By Lemma 3.9 $S^{-1}R$ is an H_v -integral domain and an H_v -ring of fractions. So by Lemma 3.9 it is enough to prove $S^{-1}R$ has unit element and every element of $S^{-1}R - \omega_{S^{-1}R}$ is invertible. We know that $[a,b] \in \ll a, b \gg = \ll 1 \cdot a, 1 \cdot b \gg = \bigcup_{(A,B) \in ||1\cdot a, 1\cdot b||} \{[x,y]| \ x \in A, y \in B\} = [1,1] \otimes [a,b]$. By corollary 2.3 and (iii) of Lemma 3.9, if $[a,b] \in S^{-1}R - \omega_{S^{-1}R}$ then $a, b \notin \omega_R$ and $a \cdot b \notin \omega_R$. So $[b,a] \in S^{-1}R$. Then $[1,1] \in \ll 1, 1 \gg = \ll a \cdot b, a \cdot b \gg = [a,b] \otimes [b,a]$. Therefore, [a,b] is invertible and $S^{-1}R$ is an H_v -field. **Definition 3.11.** A subset L of H_v -ring R is called weak-ideal (w-ideal) of R if $\gamma^*(L)$ is an ideal of R/γ^* .

Lemma 3.12. Let R be an H_v -ring with fundamental relation γ^* and I be an H_v -ideal of R, then $\gamma^*(I)$ is an ideal of R/γ^* .

Proof. If $\gamma^*(x), \gamma^*(y) \in \gamma^*(I)$ then there exist $i_1, i_2 \in I$ such that

$$\gamma^*(x) = \gamma^*(i_1), \ \gamma^*(y) = \gamma^*(i_2).$$

So, $\gamma^*(x) \oplus \gamma^*(y) = \gamma^*(i_1) \oplus \gamma^*(i_2) = \gamma^*(i)$ for some $i \in i_1 + i_2$. Thus $\gamma^*(x) \oplus \gamma^*(y) \in \gamma^*(I)$.

For associativity law, let $\gamma^*(x), \gamma^*(y), \gamma^*(z) \in \gamma^*(I)$. We have:

$$\begin{split} \gamma^*(x) \oplus (\gamma^*(y) \oplus \gamma^*(z)) &= \gamma^*(x + (y + z)), \\ (\gamma^*(x) \oplus \gamma^*(y)) \oplus \gamma^*(z) &= \gamma^*((x + y) + z). \end{split}$$

Since I is an H_v -group, we have $(x + (y + z)) \cap ((x + y) + z) \neq \emptyset$. On the other hand, the left sides of above equations are single, so we obtain:

$$\gamma^*(x) \oplus (\gamma^*(y) \oplus \gamma^*(z)) = (\gamma^*(x) \oplus \gamma^*(y)) \oplus \gamma^*(z).$$

Suppose $\gamma^*(x) = \gamma^*(i_1) \in \gamma^*(I)$ where $i_1 \in I$. By reproduction axiom of I there exists an $i \in I$ such that $i_1 \in i_1 + i$. Thus $\gamma^*(i_1) = \gamma^*(i_1) \oplus \gamma^*(i)$ and $\omega_R = \gamma^*(i) \in \gamma^*(I)$ and so $\gamma^*(I)$ has zero element. If $\gamma^*(y) = \gamma^*(i_2) \in \gamma^*(I)$ where $i_2 \in I$, there exists $i_3 \in I$ such that $i \in i_2 + i_3$. So $\omega_R = \gamma^*(i) = \gamma^*(i_2) \oplus \gamma^*(i_3)$ and $\gamma^*(i_3)$ is the inverse of $\gamma^*(i_2)$ in $\gamma^*(I)$. So $\gamma^*(I)$ is a subgroup of R/γ^* . Finally, since I is an H_v -ideal of R, for every $r \in R$ we have $\gamma^*(r) \odot \gamma^*(I) = \gamma^*(r \cdot I) \in \gamma^*(I)$. Therefore $\gamma^*(I)$ is an ideal of R/γ^* .

Example 3.13. (i) Every H_v -ideal is w-ideal,(ii) For $a \in R$, $Ra = \bigcup_{r \in R} r \cdot a$ is a w-ideal, that is not H_v -ideal necessary.

Example 3.14. By Theorem 3.2.2 of [12], if (H, +) be an H_v -group, then for every hyperoperation " \cdot " such that $\{x, y\} \subset x \cdot y$ for every $x, y \in H$, the hyperstructure $(H, +, \cdot)$ is an H_v -ring. So $R = \{a, b, c, d\}$ with the following hyperoperations is an H_v -ring:

	+	a	b	c	d			•	a	b	c	d		
	a	a,b	a, b	С	d			a	a	a,b	a, c	a,d		
	b	a,b	a, b	c	d			b	a,b	b	b,c	b,d		
	c	c	c	d	a, b			c	a, c	b,c	c	c,d		
	d	d	d	a, b	c			d	a,d	b,d	c,d	d		
Now $I = \{a$, b, c	} is a	w-id	eal (γ	*(I) =	= R) b	ut it i	s n c	ot an	H_v -id	leal (c	c + c =	= d ∉	έI).

Definition 3.15. The H_v -ring R is called strong H_v -ring $(s-H_v-ring)$ if every w-

Definition 3.15. The H_v -ring R is called strong H_v -ring (s- H_v -ring) if ever ideal of R be an H_v -ideal of R. **Theorem 3.16.** The non-trivial s- H_v -ring R is an H_v -field if and only if R and ω_R are only w-ideals of R.

Proof. Suppose R and ω_R are only w-ideals of R, we show that every element of $R - \omega_R$ is invertible. For $a \in R - \omega_R$ we consider the w-ideal $R \cdot a$. If $R \cdot a = \omega_R$ then $\{a\} = 1 \cdot a \subset R \cdot a = \omega_R$ that is contradiction. So $R \cdot a \neq \omega_R$ and $R \cdot a = R$. Thus $1 \in R \cdot a$ *i.e.* $1 \in x \cdot a$ for some $x \in R$. Therefore, a is invertible and by Lemma 3.9 R is an H_v -field.

Conversely, suppose R is an H_v -field *i.e.* R/γ^* is a field and every element of $R - \omega_R$ is invertible. Let L be a w-ideal of R such that $\omega_R \subseteq L$. Suppose $a \in L - \omega_R$, then $a \in R - \omega_R$ and there exists $b \in R$ such that $1 \in a \cdot b \subseteq R \cdot a \subseteq L$ (since R is a s- H_v -ring, every w-ideal is an H_v -ideal and so $R \cdot a \subseteq L$), so L = R. Therefore, R and ω_R are only w-ideals of R.

Example 3.17. Every H_v -field is a s- H_v -ring. The H_v -ring R in the Example 3.14 is not s- H_v -ring.

4. H_v -Quotient Ring

In this section, we build the quotient H_v -ring by using γ^* , the fundamental relation of ring.

Theorem 4.1. Let $(R, +, \cdot)$ be a commutative H_v -ring and I be an H_v -ideal of R. Define the hyperoperations + and \times on $R/I = \{r + I | r \in R\}$ as the following:

$$\begin{array}{ll} (r+I)+(r^{'}+I) &= \{x+I \mid x \in \gamma^{*}(r+r^{'}+I)\} = \gamma^{*}(r+r^{'}+I)+I, \\ (r+I) \times (r^{'}+I) &= \{x+I \mid x \in \gamma^{*}((r\cdot r^{'})+I)\} = \gamma^{*}(r\cdot r^{'}+I)+I. \end{array}$$

then $(R/I, +, \times)$ is an H_v -ring, this is called H_v -quotient ring R on I.

Proof. We show that "×" is a well defined hyperoperation. First note that

$$\gamma^*(r_1 \cdot r_2) \oplus \gamma^*(I) = \{\gamma^*(r_1 \cdot r_2) \oplus \gamma^*(i) | i \in I\}$$

$$= \{\gamma^*(r_1 \cdot r_2 + i) | i \in I\}$$

$$= \gamma^*(r_1 \cdot r_2 + I).$$

Suppose $r_1 + I = r'_1 + I$ and $r_2 + I = r'_2 + I$ then $\gamma^*(r_i) \oplus \gamma^*(I) = \gamma^*(r'_i) \oplus \gamma^*(I)$ for i = 1, 2 and they are elements of ordinary quotient ring $\frac{R/\gamma^*}{\gamma^*(I)}$. Thus

$$(\gamma^*(r_1) \oplus \gamma^*(I)) \otimes (\gamma^*(r_2) \oplus \gamma^*(I)) = (\gamma^*(r'_1) \oplus \gamma^*(I)) \otimes (\gamma^*(r'_2) \oplus \gamma^*(I)) (\gamma^*(r_1) \otimes \gamma^*(r_2)) \oplus \gamma^*(I)) = (\gamma^*(r'_1) \otimes \gamma^*(r'_2)) \oplus \gamma^*(I)) \gamma^*(r_1 \cdot r_2) \oplus \gamma^*(I) = \gamma^*(r'_1 \cdot r'_2) \oplus \gamma^*(I) \gamma^*(r_1 \cdot r_2 + I) = \gamma^*(r'_1 \cdot r'_2 + I) \gamma^*(r_1 \cdot r_2 + I) + I = \gamma^*(r'_1 \cdot r'_2 + I) + I (r_1 + I) \times (r_2 + I) = (r'_1 + I) \times (r'_2 + I).$$

One can similarly investigate the other axioms in order to R/I is an H_v -ring.

Proposition 4.2. If I and J are H_v -ideals of the H_v -ring R and $\gamma^*(J) \subseteq I$, then $\frac{I}{J}$ is an H_v -ideal of $\frac{R}{J}$.

Proof. If $i_1, i_2 \in I$, then $(i_1 + J) + (i_2 + J) = \{x + I \mid x \in \gamma^*(i_1 + i_2 + J)\} \subseteq \frac{I}{J}$. Let $x + J, y + J \in \frac{I}{J}$ by the reproduction axiom for I, there exists $z \in I$ such that $x \in y + z$, so $x + J \in (y + J) + (z + J)$. Now for every $r + J \in \frac{R}{J}$ and $i + J \in \frac{I}{J}$ we have $(r + J) \times (i + J) = \{x + J \mid x \in \gamma^*((r \cdot i) + J)\} \subseteq \frac{I}{J}$, since I is an H_v -ideal. Similarly $(i + J) \times (r + J) \subseteq \frac{I}{J}$. Therefore $\frac{I}{J}$ is an H_v -ideal of $\frac{R}{J}$.

Definition and Lemma 4.3. [1] An H_v -ideal I is called an H_v -isolated ideal if it satisfies the following axiom:

For all
$$X \subseteq I$$
, $Y \subseteq S$ if $(M, N) \in ||X, Y||$, then $M \subseteq I$.

For H_v -isolated ideal I of R, $S^{-1}I = \{[a, s] | a \in I, s \in S\}$ is an H_v -ideal of $S^{-1}R$.

So, if I is an H_v -isolated ideal of R, then $\frac{S^{-1}R}{S^{-1}I}$ is an H_v -ring. Now by the following Lemma, we build a commutative diagram that relate the H_v -quotient rings and the H_v -ring of fractions.

It is straightforward to see that every element of $U_{R/I}$ is of the form $\gamma^*(u_i + I) + I$ for $u_i \in U$. So every expression of finite hyperoperations applied on finite subsets of R/I is equal to $\gamma^*(u+I) + I$ for some $u \in U$.

Lemma 4.4. If γ^* and γ_I^* are the fundamental relations of H_v -rings R and R/I respectively, then $\gamma_I^*(r_1 + I) = \gamma_I^*(r_2 + I)$ if and only if $\gamma^*(r_1 + I) = \gamma^*(r_2 + I)$.

Proof. For some $r_1, r_2 \in R$, suppose $\gamma_I^*(r_1 + I) = \gamma_I^*(r_2 + I)$ then there exist $u_1, u_2, \cdots, u_m \in U$ and $x_1, x_2, \cdots, x_{m+1} \in R$ such that

$$x_1 + I = r_1 + I, \ x_{m+1} + I = r_2 + I,$$

$$\{x_i + I, x_{i+1} + I\} \subseteq u_i + I \text{ for } i = 1, 2, \cdots, m$$

Thus

$$\gamma^*(x_1) \oplus \gamma^*(I) = \gamma^*(r_1) \oplus \gamma^*(I), \ \gamma^*(x_{m+1}) \oplus \gamma^*(I) = \gamma^*(r_2) \oplus \gamma^*(I),$$

$$\{\gamma^*(x_1) \oplus \gamma^*(I), \gamma^*(x_{i+1}) \oplus \gamma^*(I)\} \subseteq \gamma^*(u_i + I) \oplus \gamma^*(I) \text{ for } u_i \in U.$$

Let for $i = 1, 2, \dots, m$, $u_i \in \sum^{n_i} [r_{i1} \cdots r_{ik_i} \cdot \sum^{j_k} u_{ij}]$ where $u_{ij} \in R$, $j = 1, 2, \dots, j_k$, $k = 1, 2, \dots, n_i$. Note that in this combination for u_i the order of hyperoperation omitted because this order is not important in $\gamma^*(u_i)$. Now by properties of fundamental relation, we have

$$\gamma^*(u_i) = \bigoplus^{n_i} [\gamma^*(r_{i_1}) \odot \cdots \odot \gamma^*(r_{i_k}) \odot (\oplus^{j_k} \gamma^*(u_{i_j}))] = \gamma^*(t_i) \text{ for every } t_i \in u_i.$$

Since $\gamma^*(I)$ is an ideal of $\gamma^*(R)$ then $\gamma^*(x_i) + \gamma^*(I)$, $\gamma^*(u_i) \oplus \gamma^*(I)$ and $\gamma^*(t_i) + \gamma^*(I)$ are cosets of $\gamma^*(I)$ in R/γ^* , thus

$$\gamma^*(x_i) \oplus \gamma^*(I) = \gamma^*(x_{i+1}) \oplus \gamma^*(I) = \gamma^*(t_i) \oplus \gamma^*(I) \text{ for } i = 1, 2, \cdots, m.$$

Therefore $\gamma^*(r_1) \oplus \gamma^*(I) = \gamma^*(r_2) \oplus \gamma^*(I)$.

Conversely, if $\gamma^*(r_1) \oplus \gamma^*(I) = \gamma^*(r_2) \oplus \gamma^*(I)$ then $\gamma^*(r_1+I) = \gamma^*(r_2+I)$. So for every $s_1 \in r_1 + I$ there exists $s_2 \in r_2 + I$ such that $\gamma^*(s_1) = \gamma^*(s_2)$. Thus there exist $x_1, x_2, \cdots, x_{m+1} \in I$, $u_1, u_2, \cdots, u_m \in U$ such that $x_1 = s_1, x_{m+1} = s_2$ and $\{x_i, x_{i+1}\} \subseteq u_i$ for $i = 1, 2, \cdots, m$. Thus $x_1 + I = s_1 + I$, $x_{m+1} + I = s_2 + I$, $\{x_i + I, x_{i+1} + I\} \subseteq u_i + I$ for $i = 1, 2, \cdots, m$. By definition of γ^*_I , we conclude that $\gamma^*_I(s_1 + I) = \gamma^*_I(s_2 + I)$ and so $\gamma^*_I(r_1 + I) = \gamma^*_I(r_2 + I)$.

Theorem 4.5. Let I be an H_v -isolated ideal of R. Then the following diagram of H_v -homomorphisms and H_v -rings are commutative.

Proof. We prove that the left, up and front faces diagrams of cube are commutative diagrams of H_v -homomorphisms and H_v -rings. The left face diagram is the diagram in Theorem 2.2. For front face diagram we define the mappings in the diagram as the following; f by f(r) = r + I, h by h(r) = [r, 1], \bar{h} by $\bar{h}(r + I) = [r, 1] + S^{-1}I$ and f_s by $f_s([r,s]) = [r,s] + S^{-1}I$. By the proof of Theorem 2.2, h is an H_v -homomorphisms. It is easy to see that f and f_s are H_v -homomorphisms. Now we have

$$\bar{h}((r_1+I)+(r_2+I)) = \bar{h}(\{x+I \mid x \in \gamma^*(r_1+r_2+I)\})
= \{[x,1]+S^{-1}I \mid x \in \gamma^*(r_1+r_2+I)\},$$

84

and

$$\begin{split} \bar{h}(r_1+I) + \bar{h}(r_2+I) &= [r_1, 1] + S^{-1}I + [r_2, 1] + S^{-1}I \\ &= \{ [x, s] + S^{-1}I | \ [x, s] \in \gamma_S^*([r_1, 1] + [r_2, 1] + S^{-1}I) \} \\ &= \left\{ [x, s] + S^{-1}I | \ [x, s] \in \gamma_S^*([r, 1] + S^{-1}I), \\ &r \in \gamma_S^*(r_1+r_2) \right\}. \end{split}$$

By setting $x = r \in r_1 + r_2$ and s = 1 we have

$$[r,s] + S^{-1}I \in \bar{h}((r_1+I) + (r_2+I)) \cap (\bar{h}(r_1+I) + \bar{h}(r_2+I)) \neq \emptyset.$$

Similarly we obtain $\bar{h}((r_1 + I) \times (r_2 + I)) \cap (\bar{h}(r_1 + I) \times \bar{h}(r_2 + I)) \neq \emptyset$. Finally, for commutativity, for every $r \in R$ we have:

$$\bar{h}(f(r)) = \bar{h}(r+I) = [r,1] + S^{-1}I,$$

 $f_s(h(r)) = f_s([r,1]) = [r,1] + S^{-1}I.$

In the up face diagram; φ and $\bar{\varphi}$ are the canonical strong homomorphisms of R and R/I related to fundamental ring R/γ^* and $\frac{R}{I}/\gamma^*_I$, respectively. Define \bar{f} by $\bar{f}(\gamma^*(r)) = \gamma^*_I(r+I)$. For $r_1, r_2 \in R$, we have:

$$\begin{split} \gamma^*(r_1) &= \gamma^*(r_2) \quad \Rightarrow \quad \gamma^*(r_1) + \gamma^*(I) = \gamma^*(r_2) + \gamma^*(I) \\ &\Rightarrow \quad \gamma^*(r_1 + I) = \gamma^*(r_2 + I) \\ &\Rightarrow \quad \gamma^*_I(r_1 + I) = \gamma^*_I(r_2 + I), \ by \ Lemma \ 4.4 \end{split}$$

Therefore, \bar{f} is well defined. Also

$$\bar{f}(\gamma^*(r_1) + \gamma^*(r_2)) = \bar{f}(\gamma^*(r_1 + r_2))
= \bar{f}(\gamma^*(t)) = \gamma_I^*(t+I), \text{ for some } t \in r_1 + r_2.$$
(1)

On the other hand

$$\bar{f}(\gamma^*(r_1)) + \bar{f}(\gamma^*(r_2)) = \gamma_I^*(r_1 + I) + \gamma_I^*(r_2 + I) \\
= \gamma_I^*(t + I), \text{ for some } t \in \gamma^*(r_1 + r_2 + I).$$
(2)

Since $r_1 + r_2 \subseteq \gamma^*(r_1 + r_2) \subseteq \gamma^*(r_1 + r_2 + I)$, the statements in (1) and (2) are equal and \bar{f} is a strong homomorphism. Also $\bar{\varphi}(f(r)) = \bar{\varphi}(r+I) = \gamma_I^*(r+I)$ and $\bar{f}(\varphi(r)) = \bar{f}(\gamma^*(r)) = \gamma_I^*(r+I)$.

The diagram in other faces get from discussed diagrams by replacing R/I, $S^{-1}R$, $S^{-1}I$, γ_s^* , γ_{Is}^* instead of $R, R, I, \gamma^*, \gamma_I^*$, respectively and so these diagrams are commutative diagrams of H_v -homomorphisms and H_v -rings.

Theorem 4.6. Let I and J be H_v -ideals of H_v -rings R such that $I \subseteq L \subseteq R$ then

- (i) L/I is a w-ideal of R/I,
- (ii) $\gamma_I^*(\frac{L}{I}) \cong \frac{\gamma^*(L)}{\gamma^*(I)}$.

Proof. (i) We know $\frac{L}{I} = \{l + I | l \in L\}, \ \gamma_I^*(\frac{L}{I}) = \{\gamma_I^*(l + I) | l \in L\}$. Suppose $l_1 + I, l_2 + I \in \frac{L}{I}$ and $r + I \in \frac{R}{I}$, we show that

$$\gamma_I^*(l_1+I) \oplus \gamma_I^*(l_2+I) \in \gamma_I^*(\frac{L}{I}) \text{ and } \gamma_I^*(r+I) \otimes \gamma_I^*(l_1+I) \in \gamma_I^*(\frac{L}{I}).$$

For $t \in \gamma^*(l_1 + l_2 + I)$ we have

$$\gamma^*(t) \in \gamma^*(l_1 + l_2 + I) = \gamma^*(l_1 + l_2) \oplus \gamma^*(I)$$

and

 $\gamma^*(t+I) = \gamma^*(t) \oplus \gamma^*(I) = \gamma^*(l_1+l_2) \oplus \gamma^*(I) = \gamma^*(l) \oplus \gamma^*(I), \text{ where } l \in l_1+l_2.$ Thus for every $t \in \gamma^*(l_1+l_2+I)$ and $l \in l_1+l_2$:

$$\begin{array}{lll} \gamma^*(t+I) &=& \gamma^*(l+I),\\ \gamma^*_I(t+I) &=& \gamma^*_I(l+I), \ by \ Lemma \ 4.4. \end{array}$$

Therefore

$$\begin{split} \gamma_I^*(l_1+I) \oplus \gamma_I^*(l_2+I) &= \gamma_I^*(t+I), \ for \ some \ t \in \gamma^*(l_1+l_2+I) \\ &= \gamma_I^*(l+I), \ for \ some \ l \in l_1+l_2 \\ &\in \quad \gamma_I^*(\frac{L}{I}). \end{split}$$

And by similar argument, we conclude:

$$\gamma_I^*(r+I) \otimes \gamma_I^*(l_1+I) \in \gamma_I^*(\frac{L}{I}).$$

(ii) Define $\theta : \gamma_I^*(\frac{L}{I}) \longrightarrow \frac{\gamma^*(L)}{\gamma^*(I)}$ by $\theta(\gamma_I^*(l+I)) = \gamma^*(l) \oplus \gamma^*(I)$. By Lemma 4.4, θ is an one to one mapping. Let $l_1 + I, l_2 + I \in \frac{L}{I}$, we have

$$\begin{split} \theta(\gamma_{I}^{*}(l_{1}+I)\oplus\gamma_{I}^{*}(l_{2}+I)) &= \theta(\gamma_{I}^{*}[(l_{1}+I)+(l_{2}+I)]) \\ &= \theta(\gamma_{I}^{*}[\gamma^{*}(l_{1}+l_{2}+I)+I]) \\ &= \theta(\gamma_{I}^{*}(x+I)), \ for \ some \ x \in \gamma^{*}(l_{1}+l_{2}+I) \\ &= \gamma^{*}(x)\oplus\gamma^{*}(I), \ for \ some \ x \in \gamma^{*}(l_{1}+l_{2}+I) \\ &= \gamma^{*}(l_{1}+l_{2})\oplus\gamma^{*}(I) \\ &= (\gamma^{*}(l_{1})\oplus\gamma^{*}(l_{2}))\oplus\gamma^{*}(I) \\ &= (\gamma^{*}(l_{1})\oplus\gamma^{*}(I))\oplus(\gamma^{*}(l_{2})\oplus\gamma^{*}(I)) \\ &= \theta(\gamma^{*}(l_{1}+I))\oplus\theta(\gamma^{*}(l_{2}+I)). \end{split}$$

And so

$$\begin{split} \theta(\gamma_I^*(r+I)\otimes\gamma_I^*(l_1+I)) &= \theta(\gamma_I^*((r+I)\times(l_1+I))) \\ &= \theta(\gamma_I^*(\gamma^*(r\cdot l_1+I)+I)) \\ &= \theta(\gamma_I^*(x+I)), \ where \ x \in \gamma^*(r\cdot l_1+I) \\ &= \gamma^*(x)\oplus\gamma^*(I), \ for \ some \ x \in \gamma^*(r\cdot l_1+I) \\ &= \gamma^*(r\cdot l_1)\oplus\gamma^*(I) \\ &= \gamma^*(r)\odot\gamma^*(l_1)\oplus\gamma^*(I) \\ &= (\gamma^*(r)\oplus\gamma^*(I))\otimes(\gamma^*(l_1)\oplus\gamma^*(I)) \\ &= \theta(\gamma_I^*(r+I))\otimes\theta(\gamma_I^*(l_1+I)). \end{split}$$

87

Corollary 4.7. Let I and J are H_v -ideals of an H_v -ring R and $I \subseteq J$, then

 $\begin{array}{ll} (\mathrm{i}) & \frac{R/I}{\gamma_{I}^{*}} \cong \frac{\gamma^{*}(R)}{\gamma^{*}(I)}, \\ (\mathrm{ii}) & \omega_{\frac{R}{I}} = \gamma^{*}(I) + I, \\ (\mathrm{iii}) & \omega_{\frac{R}{\omega \mu}} = \omega_{R}. \end{array}$

Proof. (i) is immediate corollary of Theorem 4.6. (ii) Consider the isomorphism $\theta : \frac{R/I}{\gamma_I^*} \longrightarrow \frac{\gamma^*(R)}{\gamma^*(I)}$ similar to Theorem 4.6 (ii), then by (i)

$$\omega_{R/I} = \{r+I \mid \theta(\gamma_I^*(r+I)) = \gamma^*(I)\} \\ = \{r+I \mid \gamma^*(r) \oplus \gamma^*(I) = \gamma^*(I)\} \\ = \gamma^*(I) + I.$$

(iii) By using the proof of (ii) we have $\omega_{\frac{R}{\omega_R}} = \gamma^*(\omega_R) + \omega_R = \omega_R + \omega_R = \omega_R$. \Box

Proposition 4.8. Let M be a maximal H_v -ideal of an s- H_v -ring R then $\gamma^*(M)$ is a maximal ideal of R/γ^* .

Proof. We prove that $\gamma^*(M) \oplus R/\gamma^* \otimes X = R/\gamma^*$ for every $X \in R/\gamma^* - \gamma^*(M)$. Suppose for some $x \in R$, $\gamma^*(x) = X \in R/\gamma^* - \gamma^*(M)$, so $x \notin M$. But $\gamma^*(M + R \cdot x) = \gamma^*(M) \oplus R/\gamma^* \otimes \gamma^*(x)$ is an ideal of R/γ^* and $M + R \cdot x$ is a w-ideal of R so $M + R \cdot x$ is an H_v -ideal of R. Therefore, $M + R \cdot x = R$ and $\gamma^*(M) + R/\gamma^* \otimes X = \gamma^*(R)$.

Theorem 4.9. (First homomorphism theorem) Let $f : R \longrightarrow S$ be a strong homomorphism of H_v -rings and $I = \ker f$, then $\varphi : R/I \longrightarrow S/\omega_S$ where $\varphi(r+I) = f(r) + \omega_S$ is an H_v -homomorphism of H_v -rings.

Proof. For $r_1 + I$, $r_2 + I \in R/I$;

$$r_1 + I = r_2 + I \quad \Rightarrow \quad f(r_1) + f(I) + \omega_S = f(r_2) + f(I) + \omega_S$$
$$\Rightarrow \quad f(r_1) + \omega_S = f(r_2) + \omega_S, \text{ since } f(I) \subseteq \omega_S.$$

So φ is well defined.

For $t_0 \in r_1 + r_2$ we have:

$$f(t_0) \in f(r_1 + r_2) \subseteq \gamma^*(f(r_1 + r_2)) \oplus \omega_S = \gamma^*(f(r_1 + r_2) + \omega_S),$$
(3)

$$t_0 \in \gamma^*(t_0) \in \gamma^*(t_0) \oplus \gamma^*(I) = \gamma^*(r_1 + r_2) \oplus \gamma^*(I) = \gamma^*(r_1 + r_2 + I).$$
(4)

Also

$$\begin{aligned} \varphi((r_1 + I) + (r_2 + I)) &= \varphi(\gamma^*(r_1 + r_2 + I) + I) \\ &= \{f(t) + \omega_S | t \in \gamma^*(r_1 + r_2 + I)\}, \\ \varphi(r_1 + I) + \varphi(r_2 + I) &= (f(r_1) + \omega_S) + (f(r_2) + \omega_S) \\ &= \gamma^*((f(r_1) + f(r_2) + \omega_S) + \omega_S) \\ &= \gamma^*(f(r_1 + r_2) + \omega_S) + \omega_S \\ &= \{s + \omega_S | s \in \gamma^*(f(r_1 + r_2) + \omega_S)\}. \end{aligned}$$

Then by (3) and (4), for $t_0 \in r_1 + r_2$,

$$f(t_0) + \omega_S \in \varphi((r_1 + I) + (r_2 + I)) \cap \big(\varphi(r_1 + I) + \varphi(r_2 + I)\big),$$

For $u_0 \in r_1 \cdot r_2$, we have

$$f(u_0) \in f(r_1 \cdot r_2) \subseteq \gamma^*(f(r_1 \cdot r_2)) \oplus \omega_S = \gamma^*(f(r_1 \cdot r_2) + \omega_S), \tag{5}$$

$$u_0 \in \gamma^*(u_0) \in \gamma^*(u_0) \oplus \gamma^*(I) = \gamma^*(r_1 \cdot r_2) \oplus \gamma^*(I) = \gamma^*(r_1 \cdot r_2 + I).$$
(6)

$$\varphi((r_1+I)\cdot(r_2+I)) = \varphi(\gamma^*(r_1\cdot r_2+I)+I)$$

= {f(t) + \omega_S | t \in \gamma^*(r_1 \cdot r_2+I)},

$$\varphi(r_1 + I) \cdot \varphi(r_2 + I) = \{s + \omega_S \mid s \in \gamma^*(f(r_1 \cdot r_2) + \omega_S)\}.$$

Therefore, by (5) and (6), $f(u_0) + \omega_S \in \varphi((r_1 + I) \cdot (r_2 + I)) \cap (\varphi(r_1 + I) \cdot \varphi(r_2 + I))$, and φ is an H_v -homomorphism of H_v -rings.

REFERENCES

- M. R. Darafsheh, B. Davvaz, H_v-ring of Fractions, Italian J. Pure Appl. Math. 5 (1999), 25-34.
- [2] B. Davvaz, Remark on Weak Hypermodules, Bull. Korean Math. Soc. 36 (1999), no. 3, 599-608.
- [3] B. Davvaz and M. Ghadiri, Weak equality and exact sequences in H_v-modules, Southeast Asian Bull. Math. 25 (2001), no. 3, 403-411.
- [4] M. Ghadiri and B. Davvaz, Direct System and Direct Limit of H_v-modules, Iran. J. Sci. Technol. Trans. A Sci. 28 (2004), no. 2, 267–275.
- [5] M. Ghadiri and B. N. Waphare, *n-ary P-H_v-Groups*, J. Appl. Math. & Informatics **26** (2008), no. 5-6, 445-959.
- [6] M. Ghadiri, B. N. Waphare and B. Davvaz, Quotient n-ary P-H_v-ring, Carpathian J. Math. 28 (2012), no. 2, 239-246.
- [7] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm. (1934), 45-49.
- [8] S. Spartalis, On the number of H_v-rings with P-hyperoperations, Discrete Math. 155 (1996), no. 1-3, 225-231.
- [9] S. Spartalis and T. Vougiouklis, The Fundamental Relations in H_v-rings, Rivista Math. Pura ppl. 14 (1994) 7-20.

88

- [10] T. Vougiouklis, The Fundamental Relations in Hyperrings, The General Hyperfield, Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), Scientific (1991) 203-211.
- [11] T. Vougiouklis, Convolutions on WASS hyperstructures, Discrete Math. 174 (1997), 347-355.
- [12] T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press Inc., Florida, 1994.
- [13] T. Vougiouklis, On H_v-rings and H_v-representations, Discrete Math. 208-209 (1999) 615-620.