H_{v}-FIELD OF FRACTIONS AND H_{v}-QUOTIENT RINGS

Mansour Ghadiri
Department of Mathematics, Yazd University, Yazd, Iran, mghadiri@yazd.ac.ir

Abstract

A larger class of algebraic hyperstructures satisfying the ring (field)-like axioms is the class of H_{v}-rings (H_{v}-fields). In this paper, we define the H_{v}-integral domain and introduce the H_{v}-field of fractions of an H_{v}-integral domain. Also, the H_{v}-quotient ring and some relative theorems are presented. Finally, some interesting results about the H_{v}-rings of fractions, H_{v}-quotient rings and the relations between them are proved.

Key words and Phrases: H_{v}-integral domain, H_{v}-field of fractions, H_{v}-normal subgroup, H_{v}-quotient ring, fundamental relation.

1. Introduction and preliminaries

Let H be a non-empty set and $\mathcal{P}^{*}(H)$ be the non-empty subsets of H. A hyperoperation on H is a mapping $*: H \times H \longrightarrow \mathcal{P}^{*}(H)$. The pair $(H, *)$ is called a hypergroupoid. A semi-hypergroup is a hypergroupoid with associative law: $(x *$ $y) * z=x *(y * z)$ for every $x, y, z \in H$; and a hypergroup is a semi-hypergroup with the reproduction axiom: $x * H=H * x=H$ for every $x \in H$. The theory of hyperstructures (hypergroup) was introduced by Marty in 1934 during the $8^{t h}$ Congress of the Scandinavian Mathematics [7]. This theory has been studied in the following decades and nowadays by many mathematicians. There are applications to the following subjects: geomemtry, hypergraphs, binary relations, lattices, fuzzy sets and rough sets. The concept of H_{v}-structures as a larger class than the well known hyperstructures was introduced by Vougiouklis in 1990 at Fourth Congress of AHA where the associative law was replaced by the non-empty intersections: $(x * y) * z \cap x *(y * z) \neq \emptyset$ for every $x, y, z \in H$. The basic definitions and results of $H_{v^{-}}$structures can be found in [12]. We deal with H_{v}-rings and H_{v}-fields. $H_{v^{-}}$ rings are the largest class of algebraic systems that satisfy ring-like axioms. In

[^0][8], Spartalis studied a wide class of H_{v}-rings resulting from an arbitrary ring by using the p-hyperoperations. Ghadiri, et al. introduced the concepts of direct limit and direct system of H_{v}-modules on an H_{v}-rings in [4], and n-ary $P-H_{v}$-rings in [6]. Darafsheh and Davvaz defined the H_{v}-ring of fractions of a commutative hyperring which is a generalization of the concept of ring of fractions in [1]. In this paper, we define a zero divisor, an H_{v}-integral domain and an H_{v}-field of fractions which are generalization of concepts. If $x \in H$ and $A, B \subseteq H$ then $A * B=\bigcup_{a \in A, b \in B} a * b, A * x=A *\{x\}, x * B=\{x\} * B$. An H_{v}-group H is called weak-commutative if $(x * y) \cap(y * x) \neq \emptyset$ for every $x, y \in H$. A nonempty subset K of H is called an H_{v}-subgroup if $(K, *)$ is an H_{v}-group. A triple $(R,+, \cdot)$ is called an $H_{v^{-}}$-ring if $(R,+)$ is an $H_{v^{-}}$-group, (R, \cdot) is a semi- $H_{v^{-}}$-group and - is weak distributive with respect to + , i.e., $(x \cdot(y+z)) \cap((x \cdot y)+(x \cdot z)) \neq \emptyset$ and $((x+y) \cdot z) \cap((x \cdot z)+(y \cdot z)) \neq \emptyset$. A mapping $f: R_{1} \longrightarrow R_{2}$ on H_{v}-rings $\left(R_{1},{ }_{1}, \cdot{ }_{1}\right)$ and $\left(R_{2},+_{2},{ }_{2}\right)$ is called a weak homomorphism if for every $x, y \in R_{1}$ we have $\left(f\left(x+_{1} y\right) \cap(f(x))+_{2} f(y)\right) \neq \emptyset, f\left(x \cdot{ }_{1} y\right) \cap(f(x) \cdot 2 f(y)) \neq \emptyset$ and is called strong homomorphism if $f\left(x+{ }_{1} y\right)=f(x)+{ }_{2} f(y), f\left(x \cdot{ }_{1} y\right)=f(x) \cdot{ }_{2} f(y)$. For more definitions, results and applications on H_{v}-rings and H_{v}-modules, see $[1,3,4,6,8,10,11,13]$. The smallest equivalence relation γ^{*} such that the quotient R / γ^{*} is a ring, is called the fundamental relation that is the transitive closure of the relation γ defined as follows [10]: let N be the set of natural numbers and the set of all finite polynomials of elements R over N denoted by $U\left(U_{R}\right)$. Now,
$$
x \gamma y \Leftrightarrow\{x, y\} \subseteq u \in U
$$
$a \gamma^{*} b$ if and only if there exist $x_{1}, x_{2}, \cdots, x_{m+1}$ in R such that $x_{1}=a, x_{m+1}=b$ and there exist $u_{1}, u_{2}, \cdots, u_{m}$ in U such that $\left\{x_{i}, x_{i+1}\right\} \subseteq u_{i}$ for all $i=1,2, \cdots, m$. Suppose $\gamma^{*}(r)$ is the equivalence class containing $r \in R$. On R / γ^{*}, the operations \oplus and \odot is defined as follows:
\[

$$
\begin{aligned}
& \gamma^{*}(x) \oplus \gamma^{*}(y)=\gamma^{*}(c), \text { for all } c \in \gamma^{*}(x)+\gamma^{*}(y), \\
& \gamma^{*}(x) \odot \gamma^{*}(y)=\gamma^{*}(d), \text { for all } d \in \gamma^{*}(x) \cdot \gamma^{*}(y) .
\end{aligned}
$$
\]

If $\phi: R \longrightarrow R / \gamma^{*}$ is the canonical map, then the kernel of $\phi, \omega_{R}=\{x \in R \mid \phi(x)=$ $0\}$ is called core of R and is denoted by ω_{R}, where 0 is the identity element of the group $\left(R / \gamma^{*}, \oplus\right)$. We have $\omega_{R} \oplus \gamma^{*}(x)=\gamma^{*}(x) \oplus \omega_{R}=\gamma^{*}(x)$ and

$$
\gamma^{*}(x+y)=\gamma^{*}(x) \oplus \gamma^{*}(y), \gamma^{*}(x \cdot y)=\gamma^{*}(x) \odot \gamma^{*}(y)
$$

for all $x, y \in R$ and so the $\operatorname{map} \phi: R \longrightarrow R / \gamma^{*}$ defined by $\phi(x)=\gamma^{*}(x)$ is a strong homomorphism. An H_{v}-ring can be commutative with respective either " + " or ". "; if it is in both commutative we call it commutative H_{v}-ring. The expression $(x \in x \cdot u=u \cdot x)$ defines a unit element. A scalar element u is such that $u \cdot x$ and $x \cdot u$ are single element subsets. Thus the scalar unit u is such that $u \cdot x=x \cdot u=\{x\}$. A non-empty subset I of R is called an H_{v}-ideal if $(I,+)$ is an H_{v}-subgroup of $(R,+)$ and $I \cdot R \subseteq I, R \cdot I \subseteq I$. A non-empty subset S of R is called a strong multiplicatively closed subset (s.m.c.s) if $1 \in S$ and $S \cdot a=a \cdot S \subseteq S$ for all $a \in S$. An H_{v}-ring is called H_{v}-field if it's fundamental ring R / γ^{*} is a field.

The H_{v}-ring of fractions with relative theorems and results are presented in section 2. Then in section 3, we define the H_{v}-integral domain and introduce the H_{v}-field of fraction of an H_{v}-integral domain. In section 4 , it is considered an $H_{v^{-}}$ ideal I of an H_{v}-ring R and we introduce the H_{v}-quotient ring R / I, then find out the fundamental relation of R / I. Also, some theorems that present the relation between H_{v}-field of fractions and H_{v}-quotient ring are proved.

2. H_{v}-Ring of Fractions

Throughout this paper we let R be a commutative hyperring with scalar unit 1 and S is a s.m.c.s. of R. It is denoted the operations sum and product of all rings $R, S^{-1} R$ and quotient rings by,$+ \cdot$ and we use index for the hyperoperations with the same symbols where is any ambiguity, like $\oplus_{R}, \oplus_{S^{-1} R},+{ }_{R}$ and $+_{S^{-1} R}$.

For $A \subseteq R$ and $B \subseteq S$, it is denoted the set $\{(a, b) \mid a \in A, b \in B\}$ by (A, B). The relation \sim is defined on $\mathcal{P}^{*}(R) \times \mathcal{P}^{*}(S)$ as follows:
$(A, B) \sim(C, D)$ if and only if there exists a subset X of S such that

$$
X \cdot(A \cdot D)=X \cdot(B \cdot C)
$$

The relation \sim is an equivalence relation on $\mathcal{P}^{*}(R) \times \mathcal{P}^{*}(S)$. Also, for $(r, s),\left(r_{1}, s_{1}\right) \in$ $R \times S$, define $(r, s) \sim\left(r_{1}, s_{1}\right)$ if and only if there exists $A \subseteq S$ such that $A \cdot\left(r \cdot s_{1}\right)=$ $A \cdot\left(r_{1} \cdot s\right)$, then the relation \sim is an equivalence relation on $R \times S$. The equivalence class containing (r, s) in $R \times S$ is denoted by $[r, s]$ and the set of all the equivalence classes by $S^{-1} R$. The equivalence class containing (A, B) in $\mathcal{P}^{*}(R) \times \mathcal{P}^{*}(S)$ is denoted by $\|A, B\|$. It is defined:

$$
\ll A, B \gg=\bigcup_{\left(A_{1}, B_{1}\right) \in\|A, B\|}\left\{\left[a_{1}, b_{1}\right] \mid a_{1} \in A_{1}, b_{1} \in B_{1}\right\},
$$

and so $\ll r, s \gg=\ll r . s^{\prime}, s . s^{\prime} \gg$.
The set $S^{-1} R$ with the following hyperoperation:

$$
\begin{aligned}
{\left[r_{1}, s_{1}\right] \oplus\left[r_{2}, s_{2}\right] } & =\bigcup_{(A, B) \in\left\|r_{1} \cdot s_{2}+r_{2} \cdot s_{1}, s_{1} \cdot s_{2}\right\|}\{[r, s] \mid r \in A, s \in B\} \\
= & \ll r_{1} \cdot s_{2}+r_{2} \cdot s_{1}, s_{1} \cdot s_{2} \gg \\
{\left[r_{1}, s_{1}\right] \otimes\left[r_{2}, s_{2}\right] } & =\bigcup_{(A, B) \in\left\|r_{1} \cdot r_{2}, s_{1} \cdot s_{2}\right\|}\{[r, s] \mid r \in A, s \in B\} \\
& =\ll r_{1} \cdot r_{2}, s_{1} \cdot s_{2} \ggg
\end{aligned}
$$

is an H_{v}-ring, which is called the H_{v}-ring of fractions of R [1].
For simplicity, we denote the $\gamma_{R}^{*}, \gamma_{S^{-1} R}^{*}$ and $U_{S^{-1} R}$ with $\gamma^{*}, \gamma_{s}^{*}$ and U_{s}, respectively.
Lemma 2.1. (i) If $u \in U_{R}$ then $\ll u, 1 \gg \in U_{S}$,
(ii) For $r_{1}, r_{2} \in R ; \gamma^{*}\left(r_{1}\right)=\gamma^{*}\left(r_{2}\right)$ implies $\gamma_{s}^{*}\left(\left[r_{1}, 1\right]\right)=\gamma_{s}^{*}\left(\left[r_{2}, 1\right]\right)$.

Proof. The proofs of (i) follows from definitions. For (ii), let $\gamma^{*}\left(r_{1}\right)=\gamma^{*}\left(r_{2}\right)$, so there exist $x_{1}, \cdots, x_{m+1} \in R$ and $u_{1}, \cdots, u_{m} \in U$ such that $\left\{x_{i}, x_{i+1}\right\} \subseteq u_{i}$ for $i=1, \cdots, m$. So $\left\{\left[x_{i}, 1\right],\left[x_{i+1}, 1\right]\right\} \subseteq \ll u_{i}, 1 \gg \in U_{S}$ and thus $\gamma_{s}^{*}\left(\left[r_{1}, 1\right]\right)=$ $\gamma_{s}^{*}\left(\left[r_{2}, 1\right]\right)$.

This Lemma is used in the proof of the following Theorem. Also we refer to this Lemma in the next sections.
Theorem 2.2. [1] The following diagram is a commutative diagram of H_{v}-homomorphisms and H_{v}-rings,

where φ and φ_{s} are canonical maps, $h(r)=[r, 1]$ and $h_{s}\left(\gamma^{*}(r)\right)=\gamma_{s}^{*}([r, 1])$.
Corollary 2.3. If $r \in \omega_{R}$ and $s \in S$ then $[r, s] \in \omega_{S^{-1} R}$.
Proof. For $r \in \omega_{R}$ and h_{s} in Theorem 2.2, we have $\gamma^{*}(r)=\omega_{R}$ and $\gamma_{s}^{*}([r, 1])=$ $h_{s}\left(\gamma^{*}(r)\right)=h_{s}\left(\omega_{R}\right)=\omega_{S^{-1} R}$, because h_{s} is a homomorphism of rings. So for $r \in \omega_{R}$ and $s \in S$,
$\gamma_{s}^{*}([r, s])=\gamma_{s}^{*}([r, 1] \cdot[1, s])=\gamma_{s}^{*}([r, 1]) \odot \gamma_{s}^{*}([1, s])=\omega_{S^{-1} R} \odot \gamma_{s}^{*}([1, s])=\omega_{S^{-1} R}$.
Therefore $[r, s] \in \omega_{S^{-1} R}$.

3. H_{v}-Integral Domain and H_{v}-Field of Fractions

To introduce the H_{v}-field of fraction of a hyperring we need to define the concepts: of an H_{v}-zero divisor, an H_{v}-integral domain and an invertible element. Also we need an extension of H_{v}-ideal which is called weak ideal, for completeness of H_{v}-fields argument.
Lemma 3.1. ω_{R} is an H_{v}-ideal of R.
Proof. Let $x, y \in \omega_{R}$ and $r \in R$, we have:

$$
\gamma^{*}(x+y)=\gamma^{*}(x) \oplus \gamma^{*}(y)=\omega_{R} \oplus \omega_{R}=\omega_{R}
$$

So $x+y \subseteq \omega_{R}$. Also there exits $z \in R$ such that $y \in x+z$. So $\gamma^{*}(y)=\gamma^{*}(x) \oplus \gamma^{*}(z)$, $\omega_{R}=\omega_{R} \oplus \gamma^{*}(z)=\gamma^{*}(z)$, then $z \in \omega_{R}$
On the other hand we have:

$$
\gamma^{*}(r \cdot x)=\gamma^{*}(r) \odot \gamma^{*}(x)=\gamma^{*}(r) \odot \omega_{R}=\omega_{R}
$$

So $R \cdot \omega_{R} \subseteq \omega_{R}$ and similarly $\omega_{R} \cdot R \subseteq \omega_{R}$.

Definition 3.2. Let $a \in R$, a is called a zero-divisor of R if there exists $b \in R-\omega_{R}$ such that $a \cdot b \subseteq \omega_{R}$. The set of all zero-divisors of R denoted by $Z(R)$.

Example 3.3. For $x \in \omega_{R}$ we have

$$
\gamma^{*}(x \cdot a)=\gamma^{*}(x) \odot \gamma^{*}(a)=\omega_{R} \odot \gamma^{*}(a)=\omega_{R}, \text { for every } a \in R,
$$

so $x \cdot a \subseteq \omega_{R}$ and $x \in Z(R)$. Therefore $\omega_{R} \subseteq Z(R)$.
Definition 3.4. A commutative hyper ($H_{v^{-}}$) ring R where $1_{R} \notin \omega_{R}$ or $R \neq \omega_{R}$ is called a non-trivial hyper $\left(H_{v^{-}}\right)$ring. Also, a non-trivial hyper ($H_{v^{-}}$) ring is called a hyper ($H_{v^{-}}$) integral domain if $Z(R)=\omega_{R}$.

Lemma 3.5. (i) R is an H_{v}-integral domain if and only if R / γ^{*} is an integral domain.
(ii) Every H_{v}-field is an H_{v}-integral domain.
(iii) R is an H_{v}-integral domain if and only if for every $a, b, c \in R-\omega_{R}, a \cdot b=$ $a \cdot c \Rightarrow \gamma^{*}(b)=\gamma^{*}(c)$.

Proof. (i) Suppose R is an H_{v}-integral domain, it is clear that $\gamma^{*}(1)$ is an unit in R / γ^{*}. Since $1_{R} \notin \omega_{R}$, then $\gamma^{*}(1) \neq \omega_{R}$ and $R / \gamma^{*} \neq\left\{\omega_{R}\right\}$. If $\gamma^{*}(r) \in Z\left(R / \gamma^{*}\right)$ then there exists $\gamma^{*}(x) \in R / \gamma^{*}$ such that $\gamma^{*}(x) \neq \omega_{R}$ and $\gamma^{*}(r \cdot x)=\gamma^{*}(r) \odot \gamma^{*}(x)=\omega_{R}$, thus $r \cdot x \subseteq \omega_{R}$. From $\omega_{R} \neq \gamma^{*}(x)$ we have $x \notin \omega_{R}$ and since R is an H_{v}-integral domain, $r \in Z(R)=\omega_{R}$, so $\gamma^{*}(r)=\omega_{R}$. Therefore $Z\left(R / \gamma^{*}\right)=\left\{\omega_{R}\right\}$ and R / γ^{*} is an integral domain. The converse is similarly. By using (i) the proofs of (ii) and (iii) are straightforward and omitted.

Definition 3.6. The element $x \in R$ is called invertible if there exists $y \in R$ such that $1 \in x \cdot y$.

Example 3.7. For every H_{v}-integral domain R;
(i) Every element of a s.m.c.s. of R is invertible,
(ii) If $t \notin \omega_{R}$, let us denote $t^{0}=1, t^{1}=t, t^{2}=t \cdot t, \cdots, t^{n}=t \cdot t^{n-1}$ and $S_{t}=\bigcup_{n \in N_{0}} t^{n}$, then S_{t} is a s.m.c.s. of R.

Theorem 3.8. Let R be a non-trivial hyperintegral domain and $S=R-\omega_{R}$. Then $S^{-1} R$ is an H_{v}-integral domain.

Proof. First, we prove that $S=R-\omega_{R}$ is a s.m.c.s of R. For $x, y \in S, x, y \notin \omega_{R}$ then $\gamma^{*}(x) \neq \omega_{R} \neq \gamma^{*}(y)$. By (i) of Lemma $3.5 x \cdot y \nsubseteq \omega_{R}$. Then $x \cdot y \cap \omega_{R}=\emptyset$ and $x \cdot y \subseteq R-\omega_{R}=S$; because, if $t \in x \cdot y \cap \omega_{R}$, we have $r^{*}(t)=r^{*}(x \cdot y)=\omega_{R}$ and so $x \cdot y \subseteq \omega_{R}$, that it is a contradiction by $x \cdot y \nsubseteq \omega_{R}$. Also by reproduction axiom there exists $z \in R$ such that $x \in y . z$. If $z \in \omega_{R}$, then $\omega_{R}=\gamma^{*}(y) \odot \gamma^{*}(z)=$ $\gamma^{*}(y \cdot z)=\gamma^{*}(x)$, that is a contradiction. So $z \in R-\omega_{R}=S$, and $y \cdot S=S$. Also $1 \in R-\omega_{R}=S$.

Now we show that; if $[a, s] \cdot[b, t] \subseteq \omega_{S^{-1} R}$, then $[a, s]$ or $[b, t]$ is in $\omega_{S^{-1} R}$. $[a, s] \cdot[b, t] \subseteq \omega_{S^{-1} R}$ implies $\omega_{S^{-1} R}=\gamma_{s}^{*}([c, d])$ for $c \in \gamma^{*}(a \cdot b), d \in \gamma^{*}(s \cdot t)$. For $c \in \gamma^{*}(a \cdot b)$, we consider two cases; $c \in \omega_{R}$ and $c \notin \omega_{R}$. The second case is not possible. Because if $c \notin \omega_{R}, c \in R-\omega_{R}=S$ and $\omega_{S^{-1} R}=\gamma_{s}^{*}([c, d]) \odot \gamma_{s}^{*}([d, c])=$ $\gamma_{s}^{*}([c, d] \cdot[d, c])=\gamma_{s}^{*}([t, t])$, for $\mathrm{t} \in \gamma^{*}(c \cdot d)$.

For t^{\prime} as an invertible of t we have

$$
\gamma_{s}^{*}([1,1])=\gamma_{s}^{*}\left(\left[t^{\prime} \cdot t^{\prime}\right] \cdot[t, t]\right)=\gamma_{s}^{*}\left(\left[t^{\prime} \cdot t^{\prime}\right]\right) \odot \gamma_{s}^{*}([t, t])=\omega_{S^{-1} R},
$$

that is a contradiction and so $c \in \omega_{R}$.
If $c \in \omega_{R}$, then $\gamma^{*}(a \cdot b)=\gamma^{*}(c)=\omega_{R}$ and $a \cdot b \subseteq \omega_{R}$, so $a \in \omega_{R}$ or $b \in \omega_{R}$, since R is hyperintegral domain, therefore by corollary $2.3,[a, s] \in \omega_{S^{-1} R}$ or $[b, t] \in \omega_{S^{-1} R}$ and $S^{-1} R$ is an $H_{v^{-}}$-integral domain.

Lemma 3.9. Let R be an H_{v}-ring, then
(i) $x \in R$ is invertible if and only if $\gamma^{*}(x)$ is invertible in R / γ^{*},
(ii) R is an H_{v}-field if and only if every element of $R-\omega_{R}$ is invertible,
(iii) if R is an H_{v}-integral domain then $a, b \in R-\omega_{R}$ if and only if $a \cdot b \nsubseteq \omega_{R}$.

Proof. The proof follows from definitions and (i) of Lemma 3.5 immediately.

Theorem 3.10. Let R be a hyper integral domain with scalar unit. If $S=R-\omega_{R}$ then $\left(S^{-1} R, \oplus, \otimes\right)$ is an H_{v}-field. This H_{v}-field is called the H_{v}-field of fractions of R.

Proof. By Lemma $3.9 S^{-1} R$ is an H_{v}-integral domain and an H_{v}-ring of fractions. So by Lemma 3.9 it is enough to prove $S^{-1} R$ has unit element and every element of $S^{-1} R-\omega_{S^{-1} R}$ is invertible. We know that $[a, b] \in \ll a, b \gg \lll 1 \cdot a, 1 \cdot b \gg=$ $\bigcup_{(A, B) \in\|1 \cdot a, 1 \cdot b\|}\{[x, y] \mid x \in A, y \in B\}=[1,1] \otimes[a, b]$. By corollary 2.3 and (iii) of Lemma 3.9, if $[a, b] \in S^{-1} R-\omega_{S^{-1} R}$ then $a, b \notin \omega_{R}$ and $a \cdot b \nsubseteq \omega_{R}$. So $[b, a] \in S^{-1} R$. Then $[1,1] \in \ll 1,1 \gg=\ll a \cdot b, a \cdot b \gg=[a, b] \otimes[b, a]$. Therefore, $[a, b]$ is invertible and $S^{-1} R$ is an H_{v}-field.

Definition 3.11. A subset L of H_{v}-ring R is called weak-ideal (w-ideal) of R if $\gamma^{*}(L)$ is an ideal of R / γ^{*}.

Lemma 3.12. Let R be an H_{v}-ring with fundamental relation γ^{*} and I be an H_{v}-ideal of R, then $\gamma^{*}(I)$ is an ideal of R / γ^{*}.

Proof. If $\gamma^{*}(x), \gamma^{*}(y) \in \gamma^{*}(I)$ then there exist $i_{1}, i_{2} \in I$ such that

$$
\gamma^{*}(x)=\gamma^{*}\left(i_{1}\right), \gamma^{*}(y)=\gamma^{*}\left(i_{2}\right)
$$

So, $\gamma^{*}(x) \oplus \gamma^{*}(y)=\gamma^{*}\left(i_{1}\right) \oplus \gamma^{*}\left(i_{2}\right)=\gamma^{*}(i)$ for some $i \in i_{1}+i_{2}$. Thus $\gamma^{*}(x) \oplus \gamma^{*}(y) \in$ $\gamma^{*}(I)$.

For associativity law, let $\gamma^{*}(x), \gamma^{*}(y), \gamma^{*}(z) \in \gamma^{*}(I)$. We have:

$$
\begin{aligned}
& \gamma^{*}(x) \oplus\left(\gamma^{*}(y) \oplus \gamma^{*}(z)\right)=\gamma^{*}(x+(y+z)), \\
& \left(\gamma^{*}(x) \oplus \gamma^{*}(y)\right) \oplus \gamma^{*}(z)=\gamma^{*}((x+y)+z)
\end{aligned}
$$

Since I is an H_{v}-group, we have $(x+(y+z)) \cap((x+y)+z) \neq \emptyset$. On the other hand, the left sides of above equations are single, so we obtain:

$$
\gamma^{*}(x) \oplus\left(\gamma^{*}(y) \oplus \gamma^{*}(z)\right)=\left(\gamma^{*}(x) \oplus \gamma^{*}(y)\right) \oplus \gamma^{*}(z)
$$

Suppose $\gamma^{*}(x)=\gamma^{*}\left(i_{1}\right) \in \gamma^{*}(I)$ where $i_{1} \in I$. By reproduction axiom of I there exists an $i \in I$ such that $i_{1} \in i_{1}+i$. Thus $\gamma^{*}\left(i_{1}\right)=\gamma^{*}\left(i_{1}\right) \oplus \gamma^{*}(i)$ and $\omega_{R}=\gamma^{*}(i) \in$ $\gamma^{*}(I)$ and so $\gamma^{*}(I)$ has zero element. If $\gamma^{*}(y)=\gamma^{*}\left(i_{2}\right) \in \gamma^{*}(I)$ where $i_{2} \in I$, there exists $i_{3} \in I$ such that $i \in i_{2}+i_{3}$. So $\omega_{R}=\gamma^{*}(i)=\gamma^{*}\left(i_{2}\right) \oplus \gamma^{*}\left(i_{3}\right)$ and $\gamma^{*}\left(i_{3}\right)$ is the inverse of $\gamma^{*}\left(i_{2}\right)$ in $\gamma^{*}(I)$. So $\gamma^{*}(I)$ is a subgroup of R / γ^{*}. Finally, since I is an H_{v}-ideal of R, for every $r \in R$ we have $\gamma^{*}(r) \odot \gamma^{*}(I)=\gamma^{*}(r \cdot I) \in \gamma^{*}(I)$. Therefore $\gamma^{*}(I)$ is an ideal of R / γ^{*}.

Example 3.13. (i) Every H_{v}-ideal is w-ideal,(ii) For $a \in R, R a=\bigcup_{r \in R} r \cdot a$ is a w-ideal, that is not H_{v}-ideal necessary.

Example 3.14. By Theorem 3.2.2 of [12], if $(H,+)$ be an H_{v}-group, then for every hyperoperation"." such that $\{x, y\} \subset x \cdot y$ for every $x, y \in H$, the hyperstructure $(H,+, \cdot)$ is an H_{v}-ring. So $R=\{a, b, c, d\}$ with the following hyperoperations is an H_{v}-ring:

+	a	b	c	d
a	a, b	a, b	c	d
b	a, b	a, b	c	d
c	c	c	d	a, b
d	d	d	a, b	c

\cdot	a	b	c	d
a	a	a, b	a, c	a, d
b	a, b	b	b, c	b, d
c	a, c	b, c	c	c, d
d	a, d	b, d	c, d	d

Now $I=\{a, b, c\}$ is a w-ideal $\left(\gamma^{*}(I)=R\right)$ but it is not an H_{v}-ideal $(c+c=d \notin I)$.
Definition 3.15. The H_{v}-ring R is called strong H_{v}-ring (s - H_{v}-ring) if every w ideal of R be an H_{v}-ideal of R.

Theorem 3.16. The non-trivial s - H_{v}-ring R is an H_{v}-field if and only if R and ω_{R} are only w-ideals of R.

Proof. Suppose R and ω_{R} are only w-ideals of R, we show that every element of $R-\omega_{R}$ is invertible. For $a \in R-\omega_{R}$ we consider the w-ideal $R \cdot a$. If $R \cdot a=\omega_{R}$ then $\{a\}=1 \cdot a \subset R \cdot a=\omega_{R}$ that is contradiction. So $R \cdot a \neq \omega_{R}$ and $R \cdot a=R$. Thus $1 \in R \cdot a$ i.e. $1 \in x \cdot a$ for some $x \in R$. Therefore, a is invertible and by Lemma 3.9 R is an H_{v}-field.

Conversely, suppose R is an H_{v}-field i.e. R / γ^{*} is a field and every element of $R-\omega_{R}$ is invertible. Let L be a w-ideal of R such that $\omega_{R} \subseteq L$. Suppose $a \in L-\omega_{R}$, then $a \in R-\omega_{R}$ and there exists $b \in R$ such that $1 \in a \cdot b \subseteq R \cdot a \subseteq L$ (since R is a s- H_{v}-ring, every w-ideal is an H_{v}-ideal and so $R \cdot a \subseteq L$), so $L=R$. Therefore, R and ω_{R} are only w-ideals of R.

Example 3.17. Every H_{v}-field is a s - H_{v}-ring. The H_{v}-ring R in the Example 3.14 is not s-H ${ }_{v}$-ring.

4. H_{v}-Quotient Ring

In this section, we build the quotient H_{v}-ring by using γ^{*}, the fundamental relation of ring.
Theorem 4.1. Let $(R,+, \cdot)$ be a commutative H_{v}-ring and I be an H_{v}-ideal of R. Define the hyperoperations + and \times on $R / I=\{r+I \mid r \in R\}$ as the following:

$$
\begin{aligned}
(r+I)+\left(r^{\prime}+I\right) & =\left\{x+I \mid x \in \gamma^{*}\left(r+r^{\prime}+I\right)\right\}=\gamma^{*}\left(r+r^{\prime}+I\right)+I \\
(r+I) \times\left(r^{\prime}+I\right) & =\left\{x+I \mid x \in \gamma^{*}\left(\left(r \cdot r^{\prime}\right)+I\right)\right\}=\gamma^{*}\left(r \cdot r^{\prime}+I\right)+I
\end{aligned}
$$

then $(R / I,+, \times)$ is an H_{v}-ring, this is called H_{v}-quotient ring R on I.
Proof. We show that " \times " is a well defined hyperoperation. First note that

$$
\begin{aligned}
\gamma^{*}\left(r_{1} \cdot r_{2}\right) \oplus \gamma^{*}(I) & =\left\{\gamma^{*}\left(r_{1} \cdot r_{2}\right) \oplus \gamma^{*}(i) \mid i \in I\right\} \\
& =\left\{\gamma^{*}\left(r_{1} \cdot r_{2}+i\right) \mid i \in I\right\} \\
& =\gamma^{*}\left(r_{1} \cdot r_{2}+I\right)
\end{aligned}
$$

Suppose $r_{1}+I=r_{1}^{\prime}+I$ and $r_{2}+I=r_{2}^{\prime}+I$ then $\gamma^{*}\left(r_{i}\right) \oplus \gamma^{*}(I)=\gamma^{*}\left(r_{i}^{\prime}\right) \oplus \gamma^{*}(I)$ for $i=1,2$ and they are elements of ordinary quotient ring $\frac{R / \gamma^{*}}{\gamma^{*}(I)}$. Thus

$$
\begin{aligned}
\left(\gamma^{*}\left(r_{1}\right) \oplus \gamma^{*}(I)\right) \otimes\left(\gamma^{*}\left(r_{2}\right) \oplus \gamma^{*}(I)\right) & =\left(\gamma^{*}\left(r_{1}^{\prime}\right) \oplus \gamma^{*}(I)\right) \otimes\left(\gamma^{*}\left(r_{2}^{\prime}\right) \oplus \gamma^{*}(I)\right) \\
\left.\left(\gamma^{*}\left(r_{1}\right) \otimes \gamma^{*}\left(r_{2}\right)\right) \oplus \gamma^{*}(I)\right) & \left.=\left(\gamma^{*}\left(r_{1}^{\prime}\right) \otimes \gamma^{*}\left(r_{2}^{\prime}\right)\right) \oplus \gamma^{*}(I)\right) \\
\gamma^{*}\left(r_{1} \cdot r_{2}\right) \oplus \gamma^{*}(I) & =\gamma^{*}\left(r_{1}^{\prime} \cdot r_{2}^{\prime}\right) \oplus \gamma^{*}(I) \\
\gamma^{*}\left(r_{1} \cdot r_{2}+I\right) & =\gamma^{*}\left(r_{1}^{\prime} \cdot r_{2}^{\prime}+I\right) \\
\gamma^{*}\left(r_{1} \cdot r_{2}+I\right)+I & =\gamma^{*}\left(r_{1}^{\prime} \cdot r_{2}^{\prime}+I\right)+I \\
\left(r_{1}+I\right) \times\left(r_{2}+I\right) & =\left(r_{1}^{\prime}+I\right) \times\left(r_{2}^{\prime}+I\right) .
\end{aligned}
$$

One can similarly investigate the other axioms in order to R / I is an H_{v}-ring.

Proposition 4.2. If I and J are H_{v}-ideals of the H_{v}-ring R and $\gamma^{*}(J) \subseteq I$, then $\frac{I}{J}$ is an H_{v}-ideal of $\frac{R}{J}$.
Proof. If $i_{1}, i_{2} \in I$, then $\left(i_{1}+J\right)+\left(i_{2}+J\right)=\left\{x+I \mid x \in \gamma^{*}\left(i_{1}+i_{2}+J\right)\right\} \subseteq \frac{I}{J}$. Let $x+J, y+J \in \frac{I}{J}$ by the reproduction axiom for I, there exists $z \in I$ such that $x \in y+z$, so $x+J \in(y+J)+(z+J)$. Now for every $r+J \in \frac{R}{J}$ and $i+J \in \frac{I}{J}$ we have $(r+J) \times(i+J)=\left\{x+J \mid x \in \gamma^{*}((r \cdot i)+J)\right\} \subseteq \frac{I}{J}$, since I is an H_{v}-ideal. Similarly $(i+J) \times(r+J) \subseteq \frac{I}{J}$. Therefore $\frac{I}{J}$ is an H_{v}-ideal of $\frac{R}{J}$.

Definition and Lemma 4.3. [1] An H_{v}-ideal I is called an H_{v}-isolated ideal if it satisfies the following axiom:

For all $X \subseteq I, Y \subseteq S$ if $(M, N) \in\|X, Y\|$, then $M \subseteq I$.
For H_{v}-isolated ideal I of $R, S^{-1} I=\{[a, s] \mid a \in I, s \in S\}$ is an H_{v}-ideal of $S^{-1} R$.
So, if I is an H_{v}-isolated ideal of R, then $\frac{S^{-1} R}{S^{-1} I}$ is an H_{v}-ring. Now by the following Lemma, we build a commutative diagram that relate the H_{v}-quotient rings and the H_{v}-ring of fractions.

It is straightforward to see that every element of $U_{R / I}$ is of the form $\gamma^{*}\left(u_{i}+\right.$ $I)+I$ for $u_{i} \in U$. So every expression of finite hyperoperations applied on finite subsets of R / I is equal to $\gamma^{*}(u+I)+I$ for some $u \in U$.

Lemma 4.4. If γ^{*} and γ_{I}^{*} are the fundamental relations of H_{v}-rings R and R / I respectively, then $\gamma_{I}^{*}\left(r_{1}+I\right)=\gamma_{I}^{*}\left(r_{2}+I\right)$ if and only if $\gamma^{*}\left(r_{1}+I\right)=\gamma^{*}\left(r_{2}+I\right)$.

Proof. For some $r_{1}, r_{2} \in R$, suppose $\gamma_{I}^{*}\left(r_{1}+I\right)=\gamma_{I}^{*}\left(r_{2}+I\right)$ then there exist $u_{1}, u_{2}, \cdots, u_{m} \in U$ and $x_{1}, x_{2}, \cdots, x_{m+1} \in R$ such that

$$
\begin{gathered}
x_{1}+I=r_{1}+I, x_{m+1}+I=r_{2}+I \\
\left\{x_{i}+I, x_{i+1}+I\right\} \subseteq u_{i}+I \text { for } i=1,2, \cdots, m
\end{gathered}
$$

Thus

$$
\begin{gathered}
\gamma^{*}\left(x_{1}\right) \oplus \gamma^{*}(I)=\gamma^{*}\left(r_{1}\right) \oplus \gamma^{*}(I), \gamma^{*}\left(x_{m+1}\right) \oplus \gamma^{*}(I)=\gamma^{*}\left(r_{2}\right) \oplus \gamma^{*}(I) \\
\left\{\gamma^{*}\left(x_{1}\right) \oplus \gamma^{*}(I), \gamma^{*}\left(x_{i+1}\right) \oplus \gamma^{*}(I)\right\} \subseteq \gamma^{*}\left(u_{i}+I\right) \oplus \gamma^{*}(I) \text { for } u_{i} \in U
\end{gathered}
$$

Let for $i=1,2, \cdots, m, u_{i} \in \sum^{n_{i}}\left[r_{i 1} \cdots r_{i k_{i}} \cdot \sum^{j_{k}} u_{i j}\right]$ where $u_{i j} \in R, j=$ $1,2, \cdots, j_{k}, k=1,2, \cdots, n_{i}$. Note that in this combination for u_{i} the order of hyperoperation omitted because this order is not important in $\gamma^{*}\left(u_{i}\right)$. Now by properties of fundamental relation, we have

$$
\gamma^{*}\left(u_{i}\right)=\oplus^{n_{i}}\left[\gamma^{*}\left(r_{i_{1}}\right) \odot \cdots \odot \gamma^{*}\left(r_{i k_{i}}\right) \odot\left(\oplus^{j_{k}} \gamma^{*}\left(u_{i j}\right)\right)\right]=\gamma^{*}\left(t_{i}\right) \text { for every } t_{i} \in u_{i} .
$$

Since $\gamma^{*}(I)$ is an ideal of $\gamma^{*}(R)$ then $\gamma^{*}\left(x_{i}\right)+\gamma^{*}(I), \gamma^{*}\left(u_{i}\right) \oplus \gamma^{*}(I)$ and $\gamma^{*}\left(t_{i}\right)+\gamma^{*}(I)$ are cosets of $\gamma^{*}(I)$ in R / γ^{*}, thus

$$
\gamma^{*}\left(x_{i}\right) \oplus \gamma^{*}(I)=\gamma^{*}\left(x_{i+1}\right) \oplus \gamma^{*}(I)=\gamma^{*}\left(t_{i}\right) \oplus \gamma^{*}(I) \text { for } i=1,2, \cdots, m
$$

Therefore $\gamma^{*}\left(r_{1}\right) \oplus \gamma^{*}(I)=\gamma^{*}\left(r_{2}\right) \oplus \gamma^{*}(I)$.
Conversely, if $\gamma^{*}\left(r_{1}\right) \oplus \gamma^{*}(I)=\gamma^{*}\left(r_{2}\right) \oplus \gamma^{*}(I)$ then $\gamma^{*}\left(r_{1}+I\right)=\gamma^{*}\left(r_{2}+I\right)$. So for every $s_{1} \in r_{1}+I$ there exists $s_{2} \in r_{2}+I$ such that $\gamma^{*}\left(s_{1}\right)=\gamma^{*}\left(s_{2}\right)$. Thus there exist $x_{1}, x_{2}, \cdots, x_{m+1} \in I, u_{1}, u_{2}, \cdots, u_{m} \in U$ such that $x_{1}=s_{1}, x_{m+1}=s_{2}$ and $\left\{x_{i}, x_{i+1}\right\} \subseteq u_{i}$ for $i=1,2, \cdots, m$. Thus $x_{1}+I=s_{1}+I, x_{m+1}+I=$ $s_{2}+I, \quad\left\{x_{i}+I, x_{i+1}+I\right\} \subseteq u_{i}+I$ for $i=1,2, \cdots, m$. By definition of γ_{I}^{*}, we conclude that $\gamma_{I}^{*}\left(s_{1}+I\right)=\gamma_{I}^{*}\left(s_{2}+I\right)$ and so $\gamma_{I}^{*}\left(r_{1}+I\right)=\gamma_{I}^{*}\left(r_{2}+I\right)$.

Theorem 4.5. Let I be an H_{v}-isolated ideal of R. Then the following diagram of H_{v}-homomorphisms and H_{v}-rings are commutative.

Proof. We prove that the left, up and front faces diagrams of cube are commutative diagrams of H_{v}-homomorphisms and H_{v}-rings. The left face diagram is the diagram in Theorem 2.2. For front face diagram we define the mappings in the diagram as the following; f by $f(r)=r+I, h$ by $h(r)=[r, 1], \bar{h}$ by $\bar{h}(r+I)=[r, 1]+S^{-1} I$ and f_{s} by $f_{s}([r, s])=[r, s]+S^{-1} I$. By the proof of Theorem 2.2, h is an $H_{v^{-}}$ homomorphisms. It is easy to see that f and f_{s} are H_{v}-homomorphisms. Now we have

$$
\begin{aligned}
\bar{h}\left(\left(r_{1}+I\right)+\left(r_{2}+I\right)\right) & =\bar{h}\left(\left\{x+I \mid x \in \gamma^{*}\left(r_{1}+r_{2}+I\right)\right\}\right) \\
& =\left\{[x, 1]+S^{-1} I \mid x \in \gamma^{*}\left(r_{1}+r_{2}+I\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{h}\left(r_{1}+I\right)+\bar{h}\left(r_{2}+I\right) & =\left[r_{1}, 1\right]+S^{-1} I+\left[r_{2}, 1\right]+S^{-1} I \\
& =\left\{[x, s]+S^{-1} I \mid[x, s] \in \gamma_{S}^{*}\left(\left[r_{1}, 1\right]+\left[r_{2}, 1\right]+S^{-1} I\right)\right\} \\
& =\left\{[x, s]+S^{-1} I \mid[x, s] \in \gamma_{S}^{*}\left([r, 1]+S^{-1} I\right),\right. \\
& \left.r \in \gamma_{S}^{*}\left(r_{1}+r_{2}\right)\right\} .
\end{aligned}
$$

By setting $x=r \in r_{1}+r_{2}$ and $s=1$ we have

$$
[r, s]+S^{-1} I \in \bar{h}\left(\left(r_{1}+I\right)+\left(r_{2}+I\right)\right) \cap\left(\bar{h}\left(r_{1}+I\right)+\bar{h}\left(r_{2}+I\right)\right) \neq \emptyset
$$

Similarly we obtain $\bar{h}\left(\left(r_{1}+I\right) \times\left(r_{2}+I\right)\right) \cap\left(\bar{h}\left(r_{1}+I\right) \times \bar{h}\left(r_{2}+I\right)\right) \neq \emptyset$. Finally, for commutativity, for every $r \in R$ we have:

$$
\begin{gathered}
\bar{h}(f(r))=\bar{h}(r+I)=[r, 1]+S^{-1} I \\
f_{s}(h(r))=f_{s}([r, 1])=[r, 1]+S^{-1} I
\end{gathered}
$$

In the up face diagram; φ and $\bar{\varphi}$ are the canonical strong homomorphisms of R and R / I related to fundamental ring R / γ^{*} and $\frac{R}{I} / \gamma_{I}^{*}$, respectively. Define \bar{f} by $\bar{f}\left(\gamma^{*}(r)\right)=\gamma_{I}^{*}(r+I)$. For $r_{1}, r_{2} \in R$, we have:

$$
\begin{aligned}
\gamma^{*}\left(r_{1}\right)=\gamma^{*}\left(r_{2}\right) & \Rightarrow \gamma^{*}\left(r_{1}\right)+\gamma^{*}(I)=\gamma^{*}\left(r_{2}\right)+\gamma^{*}(I) \\
& \Rightarrow \gamma^{*}\left(r_{1}+I\right)=\gamma^{*}\left(r_{2}+I\right) \\
& \Rightarrow \gamma_{I}^{*}\left(r_{1}+I\right)=\gamma_{I}^{*}\left(r_{2}+I\right), \text { by Lemma } 4.4
\end{aligned}
$$

Therefore, \bar{f} is well defined. Also

$$
\begin{align*}
\bar{f}\left(\gamma^{*}\left(r_{1}\right)+\gamma^{*}\left(r_{2}\right)\right) & =\bar{f}\left(\gamma^{*}\left(r_{1}+r_{2}\right)\right) \\
& =\bar{f}\left(\gamma^{*}(t)\right)=\gamma_{I}^{*}(t+I), \text { for some } t \in r_{1}+r_{2} \tag{1}
\end{align*}
$$

On the other hand

$$
\begin{align*}
\bar{f}\left(\gamma^{*}\left(r_{1}\right)\right)+\bar{f}\left(\gamma^{*}\left(r_{2}\right)\right) & =\gamma_{I}^{*}\left(r_{1}+I\right)+\gamma_{I}^{*}\left(r_{2}+I\right) \\
& =\gamma_{I}^{*}(t+I), \text { for some } t \in \gamma^{*}\left(r_{1}+r_{2}+I\right) \tag{2}
\end{align*}
$$

Since $r_{1}+r_{2} \subseteq \gamma^{*}\left(r_{1}+r_{2}\right) \subseteq \gamma^{*}\left(r_{1}+r_{2}+I\right)$, the statements in (1) and (2) are equal and \bar{f} is a strong homomorphism. Also $\bar{\varphi}(f(r))=\bar{\varphi}(r+I)=\gamma_{I}^{*}(r+I)$ and $\bar{f}(\varphi(r))=\bar{f}\left(\gamma^{*}(r)\right)=\gamma_{I}^{*}(r+I)$.

The diagram in other faces get from discussed diagrams by replacing R / I, $S^{-1} R, S^{-1} I, \gamma_{s}^{*}, \gamma_{I s}^{*}$ instead of $R, R, I, \gamma^{*}, \gamma_{I}^{*}$, respectively and so these diagrams are commutative diagrams of H_{v}-homomorphisms and H_{v}-rings.

Theorem 4.6. Let I and J be H_{v}-ideals of H_{v}-rings R such that $I \subseteq L \subseteq R$ then
(i) L / I is a w-ideal of R / I,
(ii) $\gamma_{I}^{*}\left(\frac{L}{I}\right) \cong \frac{\gamma^{*}(L)}{\gamma^{*}(I)}$.

Proof. (i) We know $\frac{L}{I}=\{l+I \mid l \in L\}, \gamma_{I}^{*}\left(\frac{L}{I}\right)=\left\{\gamma_{I}^{*}(l+I) \mid l \in L\right\}$. Suppose $l_{1}+I, l_{2}+I \in \frac{L}{I}$ and $r+I \in \frac{R}{I}$, we show that

$$
\gamma_{I}^{*}\left(l_{1}+I\right) \oplus \gamma_{I}^{*}\left(l_{2}+I\right) \in \gamma_{I}^{*}\left(\frac{L}{I}\right) \text { and } \gamma_{I}^{*}(r+I) \otimes \gamma_{I}^{*}\left(l_{1}+I\right) \in \gamma_{I}^{*}\left(\frac{L}{I}\right)
$$

For $t \in \gamma^{*}\left(l_{1}+l_{2}+I\right)$ we have

$$
\gamma^{*}(t) \in \gamma^{*}\left(l_{1}+l_{2}+I\right)=\gamma^{*}\left(l_{1}+l_{2}\right) \oplus \gamma^{*}(I)
$$

and
$\gamma^{*}(t+I)=\gamma^{*}(t) \oplus \gamma^{*}(I)=\gamma^{*}\left(l_{1}+l_{2}\right) \oplus \gamma^{*}(I)=\gamma^{*}(l) \oplus \gamma^{*}(I)$, where $l \in l_{1}+l_{2}$.
Thus for every $t \in \gamma^{*}\left(l_{1}+l_{2}+I\right)$ and $l \in l_{1}+l_{2}$:

$$
\begin{aligned}
\gamma^{*}(t+I) & =\gamma^{*}(l+I) \\
\gamma_{I}^{*}(t+I) & =\gamma_{I}^{*}(l+I), \text { by Lemma 4.4. }
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\gamma_{I}^{*}\left(l_{1}+I\right) \oplus \gamma_{I}^{*}\left(l_{2}+I\right) & =\gamma_{I}^{*}(t+I), \text { for some } t \in \gamma^{*}\left(l_{1}+l_{2}+I\right) \\
& =\gamma_{I}^{*}(l+I), \text { for some } l \in l_{1}+l_{2} \\
& \in \gamma_{I}^{*}\left(\frac{L}{I}\right)
\end{aligned}
$$

And by similar argument, we conclude:

$$
\gamma_{I}^{*}(r+I) \otimes \gamma_{I}^{*}\left(l_{1}+I\right) \in \gamma_{I}^{*}\left(\frac{L}{I}\right)
$$

(ii) Define $\theta: \gamma_{I}^{*}\left(\frac{L}{I}\right) \longrightarrow \frac{\gamma^{*}(L)}{\gamma^{*}(I)}$ by $\theta\left(\gamma_{I}^{*}(l+I)\right)=\gamma^{*}(l) \oplus \gamma^{*}(I)$. By Lemma 4.4, θ is an one to one mapping. Let $l_{1}+I, l_{2}+I \in \frac{L}{I}$, we have

$$
\begin{aligned}
\theta\left(\gamma_{I}^{*}\left(l_{1}+I\right) \oplus \gamma_{I}^{*}\left(l_{2}+I\right)\right) & =\theta\left(\gamma_{I}^{*}\left[\left(l_{1}+I\right)+\left(l_{2}+I\right)\right]\right) \\
& =\theta\left(\gamma_{I}^{*}\left[\gamma^{*}\left(l_{1}+l_{2}+I\right)+I\right]\right) \\
& =\theta\left(\gamma_{I}^{*}(x+I)\right), \text { for some } x \in \gamma^{*}\left(l_{1}+l_{2}+I\right) \\
& =\gamma^{*}(x) \oplus \gamma^{*}(I), \text { for some } x \in \gamma^{*}\left(l_{1}+l_{2}+I\right) \\
& =\gamma^{*}\left(l_{1}+l_{2}\right) \oplus \gamma^{*}(I) \\
& =\left(\gamma^{*}\left(l_{1}\right) \oplus \gamma^{*}\left(l_{2}\right)\right) \oplus \gamma^{*}(I) \\
& =\left(\gamma^{*}\left(l_{1}\right) \oplus \gamma^{*}(I)\right) \oplus\left(\gamma^{*}\left(l_{2}\right) \oplus \gamma^{*}(I)\right) \\
& =\theta\left(\gamma^{*}\left(l_{1}+I\right)\right) \oplus \theta\left(\gamma^{*}\left(l_{2}+I\right)\right) .
\end{aligned}
$$

And so

$$
\begin{aligned}
\theta\left(\gamma_{I}^{*}(r+I) \otimes \gamma_{I}^{*}\left(l_{1}+I\right)\right) & =\theta\left(\gamma_{I}^{*}\left((r+I) \times\left(l_{1}+I\right)\right)\right) \\
& =\theta\left(\gamma_{I}^{*}\left(\gamma^{*}\left(r \cdot l_{1}+I\right)+I\right)\right) \\
& =\theta\left(\gamma_{I}^{*}(x+I)\right), \text { where } x \in \gamma^{*}\left(r \cdot l_{1}+I\right) \\
& =\gamma^{*}(x) \oplus \gamma^{*}(I), \text { for some } x \in \gamma^{*}\left(r \cdot l_{1}+I\right) \\
& =\gamma^{*}\left(r \cdot l_{1}\right) \oplus \gamma^{*}(I) \\
& =\gamma^{*}(r) \odot \gamma^{*}\left(l_{1}\right) \oplus \gamma^{*}(I) \\
& =\left(\gamma^{*}(r) \oplus \gamma^{*}(I)\right) \otimes\left(\gamma^{*}\left(l_{1}\right) \oplus \gamma^{*}(I)\right) \\
& =\theta\left(\gamma_{I}^{*}(r+I)\right) \otimes \theta\left(\gamma_{I}^{*}\left(l_{1}+I\right)\right) .
\end{aligned}
$$

Corollary 4.7. Let I and J are H_{v}-ideals of an H_{v}-ring R and $I \subseteq J$, then
(i) $\frac{R / I}{\gamma_{I}^{*}} \cong \frac{\gamma^{*}(R)}{\gamma^{*}(I)}$,
(ii) $\omega_{\frac{R}{I}}=\gamma^{*}(I)+I$,
(iii) $\omega_{\frac{R}{\omega_{R}}}=\omega_{R}$.

Proof. (i) is immediate corollary of Theorem 4.6.
(ii) Consider the isomorphism $\theta: \frac{R / I}{\gamma_{I}^{*}} \longrightarrow \frac{\gamma^{*}(R)}{\gamma^{*}(I)}$ similar to Theorem 4.6 (ii), then by (i)

$$
\begin{aligned}
\omega_{R / I} & =\left\{r+I \mid \theta\left(\gamma_{I}^{*}(r+I)\right)=\gamma^{*}(I)\right\} \\
& =\left\{r+I \mid \gamma^{*}(r) \oplus \gamma^{*}(I)=\gamma^{*}(I)\right\} \\
& =\gamma^{*}(I)+I .
\end{aligned}
$$

(iii) By using the proof of (ii) we have $\omega_{\frac{R}{\omega_{R}}}=\gamma^{*}\left(\omega_{R}\right)+\omega_{R}=\omega_{R}+\omega_{R}=\omega_{R}$.

Proposition 4.8. Let M be a maximal H_{v}-ideal of an $s-H_{v}$-ring R then $\gamma^{*}(M)$ is a maximal ideal of R / γ^{*}.

Proof. We prove that $\gamma^{*}(M) \oplus R / \gamma^{*} \otimes X=R / \gamma^{*}$ for every $X \in R / \gamma^{*}-\gamma^{*}(M)$. Suppose for some $x \in R, \gamma^{*}(x)=X \in R / \gamma^{*}-\gamma^{*}(M)$, so $x \notin M$. But $\gamma^{*}(M+$ $R \cdot x)=\gamma^{*}(M) \oplus R / \gamma^{*} \otimes \gamma^{*}(x)$ is an ideal of R / γ^{*} and $M+R \cdot x$ is a w-ideal of R so $M+R \cdot x$ is an H_{v}-ideal of R. Therefore, $M+R \cdot x=R$ and $\gamma^{*}(M)+R /$ $\gamma^{*} \otimes X=\gamma^{*}(R)$.

Theorem 4.9. (First homomorphism theorem) Let $f: R \longrightarrow S$ be a strong homomorphism of H_{v}-rings and $I=\operatorname{ker} f$, then $\varphi: R / I \longrightarrow S / \omega_{S}$ where $\varphi(r+I)=$ $f(r)+\omega_{S}$ is an H_{v}-homomorphism of H_{v}-rings.

Proof. For $r_{1}+I, r_{2}+I \in R / I$;

$$
\begin{aligned}
r_{1}+I=r_{2}+I & \Rightarrow f\left(r_{1}\right)+f(I)+\omega_{S}=f\left(r_{2}\right)+f(I)+\omega_{S} \\
& \Rightarrow f\left(r_{1}\right)+\omega_{S}=f\left(r_{2}\right)+\omega_{S}, \text { since } f(I) \subseteq \omega_{S}
\end{aligned}
$$

So φ is well defined.
For $t_{0} \in r_{1}+r_{2}$ we have:

$$
\begin{gather*}
f\left(t_{0}\right) \in f\left(r_{1}+r_{2}\right) \subseteq \gamma^{*}\left(f\left(r_{1}+r_{2}\right)\right) \oplus \omega_{S}=\gamma^{*}\left(f\left(r_{1}+r_{2}\right)+\omega_{S}\right) \tag{3}\\
t_{0} \in \gamma^{*}\left(t_{0}\right) \in \gamma^{*}\left(t_{0}\right) \oplus \gamma^{*}(I)=\gamma^{*}\left(r_{1}+r_{2}\right) \oplus \gamma^{*}(I)=\gamma^{*}\left(r_{1}+r_{2}+I\right) \tag{4}
\end{gather*}
$$

Also

$$
\begin{aligned}
\varphi\left(\left(r_{1}+I\right)+\left(r_{2}+I\right)\right) & =\varphi\left(\gamma^{*}\left(r_{1}+r_{2}+I\right)+I\right) \\
& =\left\{f(t)+\omega_{S} \mid t \in \gamma^{*}\left(r_{1}+r_{2}+I\right)\right\} \\
\varphi\left(r_{1}+I\right)+\varphi\left(r_{2}+I\right) & =\left(f\left(r_{1}\right)+\omega_{S}\right)+\left(f\left(r_{2}\right)+\omega_{S}\right) \\
& =\gamma^{*}\left(\left(f\left(r_{1}\right)+f\left(r_{2}\right)+\omega_{S}\right)+\omega_{S}\right) \\
& =\gamma^{*}\left(f\left(r_{1}+r_{2}\right)+\omega_{S}\right)+\omega_{S} \\
& =\left\{s+\omega_{S} \mid s \in \gamma^{*}\left(f\left(r_{1}+r_{2}\right)+\omega_{S}\right)\right\}
\end{aligned}
$$

Then by (3) and (4), for $t_{0} \in r_{1}+r_{2}$,

$$
f\left(t_{0}\right)+\omega_{S} \in \varphi\left(\left(r_{1}+I\right)+\left(r_{2}+I\right)\right) \cap\left(\varphi\left(r_{1}+I\right)+\varphi\left(r_{2}+I\right)\right),
$$

For $u_{0} \in r_{1} \cdot r_{2}$, we have

$$
\begin{align*}
& f\left(u_{0}\right) \in f\left(r_{1} \cdot r_{2}\right) \subseteq \gamma^{*}\left(f\left(r_{1} \cdot r_{2}\right)\right) \oplus \omega_{S}=\gamma^{*}\left(f\left(r_{1} \cdot r_{2}\right)+\omega_{S}\right), \tag{5}\\
& u_{0} \in \gamma^{*}\left(u_{0}\right) \in \gamma^{*}\left(u_{0}\right) \oplus \gamma^{*}(I)=\gamma^{*}\left(r_{1} \cdot r_{2}\right) \oplus \gamma^{*}(I)=\gamma^{*}\left(r_{1} \cdot r_{2}+I\right) . \tag{6}\\
& \varphi\left(\left(r_{1}+I\right) \cdot\left(r_{2}+I\right)\right)=\varphi\left(\gamma^{*}\left(r_{1} \cdot r_{2}+I\right)+I\right) \\
&=\left\{f(t)+\omega_{S} \mid t \in \gamma^{*}\left(r_{1} \cdot r_{2}+I\right)\right\}, \\
& \varphi\left(r_{1}+I\right) \cdot \varphi\left(r_{2}+I\right)=\left\{s+\omega_{S} \mid s \in \gamma^{*}\left(f\left(r_{1} \cdot r_{2}\right)+\omega_{S}\right)\right\} .
\end{align*}
$$

REFERENCES

[1] M. R. Darafsheh, B. Davvaz, H ${ }_{v}$-ring of Fractions, Italian J. Pure Appl. Math. 5 (1999), 25-34.
[2] B. Davvaz, Remark on Weak Hypermodules, Bull. Korean Math. Soc. 36 (1999), no. 3, 599608.
[3] B. Davvaz and M. Ghadiri, Weak equality and exact sequences in H_{v}-modules, Southeast Asian Bull. Math. 25 (2001), no. 3, 403-411.
[4] M. Ghadiri and B. Davvaz, Direct System and Direct Limit of H_{v}-modules, Iran. J. Sci. Technol. Trans. A Sci. 28 (2004), no. 2, 267-275.
[5] M. Ghadiri and B. N. Waphare, n-ary P-H -Groups, J. Appl. Math. \& Informatics 26 (2008), no. 5-6, 445-959.
[6] M. Ghadiri, B. N. Waphare and B. Davvaz, Quotient n-ary P-H H_{v}-ring, Carpathian J. Math. 28 (2012), no. 2, 239-246.
[7] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm. (1934), 45-49.
[8] S. Spartalis, On the number of H_{v}-rings with P-hyperoperations, Discrete Math. 155 (1996), no. 1-3, 225-231.
[9] S. Spartalis and T. Vougiouklis, The Fundamental Relations in H_{v}-rings, Rivista Math. Pura ppl. 14 (1994) 7-20.
[10] T. Vougiouklis, The Fundamental Relations in Hyperrings, The General Hyperfield, Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), Scientific (1991) 203-211.
[11] T. Vougiouklis, Convolutions on WASS hyperstructures, Discrete Math. 174 (1997), 347-355.
[12] T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press Inc., Florida, 1994.
[13] T. Vougiouklis, On H_{v}-rings and H_{v}-representations, Discrete Math. 208-209 (1999) 615620.

[^0]: 2020 AMS Mathematics Subject Classification: 20N20
 Received: 24-08-2019, accepted: 16-02-2021.

